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Cluster-first route-second methods like the sweep heuristic (Gillett and Miller, 1974) are
well known in vehicle routing. They determine clusters of customers compatible with vehi-
cle capacity and solve a traveling salesman problem for each cluster. The opposite
approach, called route-first cluster-second, builds a giant tour covering all customers
and splits it into feasible trips. Cited as a curiosity for a long time but lacking numerical
evaluation, this technique has nevertheless led to successful metaheuristics for various
vehicle routing problems in the last decade. As many implementations consider an order-
ing of customers instead of building a giant tour, we propose in this paper the more general
name of ordering-first split-second methods. This article shows how this approach can be
declined for different vehicle routing problems and reviews the associated literature, with
more than 70 references.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Vehicle routing problems are widespread in various activities like distribution, waste management, city logistics, meter
reading, and inspection of power lines. Their study constitutes a very active research domain in which significant advances
have been realized in the two last decades. A considerable number of variants have been studied to cope with various fea-
tures and constraints, like hard time windows (Repoussis and Tarantilis, 2010), soft time windows (Figliozzi, 2010), dynamic
allocation of swap containers (Huth and Mattfeld, 2009), configurable vehicle capacities (Qu and Bard, 2013), or stochastic
demands (Bertazzi et al., 2013).

The solution techniques are also quite diversified, including for instance branch-and-cut algorithms (Bettinelli et al.,
2011), metaheuristics like tabu search (Badeau et al., 1997) and even simulation (Juan et al., 2011). As most vehicle routing
problems are computationally intractable, the current limit of exact algorithms is around one hundred customers and heu-
ristic approaches are thus required for solving the much larger instances met in many industries.

Solving vehicle routing problems involves two kinds of decisions: partitioning the customers into clusters compatible
with vehicle capacity and sequencing the customers in each cluster to get a route. A classical approach for constructive heu-
ristics dedicated to the capacitated vehicle routing problem (CVRP) is based on the cluster-first route-second principle, in which
the partition is determined first. A traveling salesman problem (TSP) is then solved for each cluster, exactly or heuristically.
Two good examples are the sweep algorithm, commonly attributed to Gillett and Miller (1974), and the Fisher and Jaikumar
(1981), where clusters are obtained solving a generalized assignment problem.
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In the same vein, Beasley (1983) introduced route-first cluster-second heuristics, in which the two phases are inverted:
vehicle capacity is temporarily relaxed to compute a TSP tour covering all customers, often called giant tour, which is then
decomposed into feasible vehicle routes. Fig. 1, in which a circle symbolizes a depot while a square indicates a customer to
visit, illustrates both the cluster-first route-second and the route-first cluster-second concepts for a vehicle routing problem.

Some advantages stand out in the second approach. Some users may prefer the computation of a giant tour to a clustering
algorithm in the first phase. Moreover, Beasley (1983) observed that the second phase can be solved exactly as a shortest
path problem in an auxiliary graph, but without reporting numerical experiments. Despite this interesting property, almost
twenty years later, Laporte and Semet (2002, p. 121) wrote in a survey on CVRP heuristics: ‘‘We are not aware of any com-
putational experience showing that route-first, cluster-second heuristics are competitive with other approaches’’.

Since 2002, comments have changed. In fact, the route-first cluster-second approach has led in the last decade to success-
ful constructive heuristics and metaheuristics for node routing problems like the CVRP, but also for arc routing problems like
the capacitated arc routing problem (CARP), where a subset of arcs or edges must be serviced. The main reasons for this grow-
ing success are a smaller solution space for metaheuristics (they search the set of giant tours instead of the much larger set of
CVRP solutions), flexibility (many additional constraints can be handled) and efficiency (state of the art metaheuristics based
on this approach are now available for many vehicle routing problems).

The purpose of this paper is to recall the basic route-first cluster-second approach, to show how it can be implemented
efficiently, to see how it can be used in constructive heuristics and metaheuristics, and to review the literature on the numer-
ous extensions published after Beasley’s seminal article, with more than 70 papers. As we shall see, the giant tour deter-
mined in the first phase is seldom used and some algorithms rather consider an ordering of customers or a priority list
before building the routes. This is why we prefer to speak about order-first split-second methods in the title and in the sequel.
Moreover, as the ordering can be obtained in a variety of ways like heuristics, crossovers and mutation operators, the article
mainly focuses on the splitting phase.

The paper is organized as follows. Section 2 describes a general frame for using splitting procedures, beyond a simple
usage in constructive heuristics, underlines its advantages and introduces a classification of related published papers. Sec-
tions 3–6 are dedicated to each proposed class, with known utilizations in constructive heuristics and metaheuristics. Sec-
tion 3 defines some notations, recalls the two classical capacitated routing problems (CVRP and CARP) and provides an
efficient implementation of the basic splitting procedure (called Split) for these problems and some variants. Section 4 is de-
voted to simple extensions of the basic Split, where the construction of the auxiliary graph is affected but not the shortest
path computation. More complicated versions with a different shortest path algorithm must be applied are exposed in Sec-
tion 5. Some cases requiring a more general auxiliary graph are described in Section 6. The main advantages and current lim-
itations of the approach are recapitulated in Section 7, before concluding remarks in Section 8.
Cluster-first Route-second

Route-first Cluster-second

Fig. 1. Examples of two-phase procedures in vehicle routing.
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2. Utilization context of splitting procedures and proposed classification

This section describes a general framework for using splitting procedures, explains its advantages and introduces a clas-
sification of the literature, based on different extensions of the basic case.
2.1. A general framework for splitting procedures in vehicle routing

In the context of vehicle routing problems, apart from a few works studying approximation results or aiming at recycling
TSP algorithms to solve the CVRP, most order-first split-second methods generate in a first phase an indirect solution repre-
sentation (ISR), often called giant tour or task ordering. Feasible routes are deduced from this ISR in a second phase. This ap-
proach offers the following advantages: (i) any solution of the routing problem has an indirect representation; (ii) using a
splitting procedure, each ISR can be decoded into a solution to the original problem, and this splitting can be made optimally
(see Section 3.2); and (iii) there exists at least one ‘‘optimal’’ ISR, i.e., one that gives an optimal solution to the original prob-
lem after splitting.

To check the latter property, consider an optimal solution S to the vehicle routing problem to be studied and concatenate
the customers of its successive trips to get a giant tour T. This transformation is called Split�1 in the sequel. The optimal solu-
tion S will be found again if the splitting procedure is applied to T.

Several effective metaheuristics, based on this approach depicted in Fig. 2, have been published. As an optimal solution
(subject to the sequence) can be deduced from each giant tour and as optimal tours exist, such metaheuristics can search the
smaller space of ISRs without losing information.

More generally, an iterative search based on ISRs can involve a local search procedure for intensification, in general ap-
plied to a complete solution S. For vehicle routing problems, the resulting solution S0 can be converted into a new giant tour
using the procedure Split�1 explained before. Several published works include also a perturbation or mutation mechanism to
avoid premature convergence to low-quality local optima. This can be done in the ISR space since a small modification in a
giant tour may have a stronger impact on the decoded solution. To take full advantage of the indirect representation of solu-
tions, the search can even alternate cyclically between the two search spaces (giant tours and complete solutions). Such a
method, depicted in Fig. 3, is used in the most successful metaheuristics involving splitting procedures.
2.2. Proposed classification of literature

The seminal works on order-first split-second methods have been applied to the CVRP and the CARP at the beginning of
the 1980s. In a first step, an ordered sequence of tasks (required nodes or edges) is built by relaxing vehicle capacities. The
resulting sequence is partitioned into feasible routes in a second step. As we shall see in Section 3, the second step is equiv-
alent to computing a least-cost path in an auxiliary graph in which each arc models one possible trip (subsequence of tasks in
the giant tour). The path can be computed using Bellman’s algorithm for directed acyclic graphs. The approach has been
An ISR (giant tour) A solution to the vehicle 
routing problem considered

ISR space explored by the metaheuristic Search space of complete solutions

Split

Split 

Split

Split 

Split

Split 

Fig. 2. Metaheuristic operating on the smaller search space of ISRs.



Fig. 3. Alternation between the set of giant tours and the set of complete solutions in metaheuristics.
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extended to vehicle routing problems involving more complex networks, extra constraints, and additional decisions like de-
pot location or vehicle selection.

An analysis of literature allowed us to detect more than 70 articles involving splitting procedures. They are gathered in
Table 1, with a proposed classification based on four classes:

� Basic Split: This class relies on the basic Split procedure presented in Section 3. It includes the seminal works on the CVRP,
the CARP and closely related problems (two objectives, coexistence of required nodes and required edges) but without
additional constraints. Two improved versions called Split with Flips and Split with Shifts are also described.
� Simple extensions: This class surveyed in Section 4 includes many problems with additional constraints. These constraints

eliminate some arcs in the auxiliary graph, because the corresponding routes are infeasible, and/or change the way in
which route costs are computed. Nevertheless, once the graph is ready, Bellman’s algorithm can still be used.
� Shared resources: In this class reviewed in Section 5, the routes compete for limited resources like capacitated depots or a

fixed heterogeneous fleet of vehicles. Apart from a few polynomial cases, the resource consumptions associated with the
arcs in the auxiliary graph raise hard shortest path problems. More complex label-based shortest path algorithms must be
used.
� Special graphs: This last category presented in Section 6 concerns approaches which can still be considered as order-first

split second methods, but involving special auxiliary graphs.

3. Basic Split

This section first recalls the CVRP and the CARP, the two basic NP-hard problems with capacitated vehicles in node and
arc routing, and introduces some notation. Then it presents the principle of the basic splitting procedure to decompose a
giant tour, provides a compact algorithm and analyses its complexity. Finally, the main applications of the basic Split are
presented.
3.1. CVRP and CARP: the first vehicle routing problems handled by splitting procedures

The CVRP met for instance in distribution is defined on a complete undirected graph G = (X, E). The node-set X contains
one depot (0) and n customers indexed from 1 to n. A fleet of identical vehicles with capacity Q is based at the depot. In gen-
eral the fleet size is not imposed: the number of vehicles used is a decision variable. Each customer i has a non-negative de-
mand qi. For any two nodes i and j, a (n + 1) � (n + 1) matrix C gives the cost cij (distance or duration) of a shortest path from i
to j in the real network. Some instances involve service times si and a maximum trip length or working time L. The goal is to
determine a least-cost set of trips, such that each trip begins and ends at the depot, each customer is visited exactly once and
the total amount delivered by a vehicle respects its capacity.

The CARP, raised by applications like municipal refuse collection, is also defined on an undirected graph G = (X, E) but this
graph is often sparse. The edge-set E includes a subset ER of n required edges, to be serviced by a vehicle. A deadheading cost
de is incurred each time edge e is traversed by a vehicle without being serviced. Each required edge e e ER has in addition a
non-negative demand qe and a service cost se, counted when the edge is traversed (in any direction) by a vehicle to be ser-
viced. Like in the CVRP, a virtually unlimited fleet of identical vehicles with capacity Q is based at a depot node, the load of a
vehicle may not exceed its capacity, and split services are prohibited. The aim is to find a minimum cost set of routes to ser-
vice all required edges.

The following CARP encoding leads to similar splitting procedures for the two problems. It is based on a list A of 2n + 1
arcs, indexed from 0 onward, containing one loop on the depot (index 0) and two opposite arcs (i, j) and (j, i) for each
required edge [i, j]. These two arcs represent the two possible service directions of the edge. Each arc u – 0 is defined by



Table 1
Classification of published papers involving order-first split-second methods.

References in temporal order Problem studied Basic Split Simple extensions Shared resources Special graphs
Section 3 Section 4 Section 5 Section 6

Part 1
CARP and extensions
Ulusoy (1985) Fleet size and mix CARP X
Lacomme et al. (2001) CARP X
Fleury et al. (2004) Stochastic CARP X
Lacomme et al. (2004) CARP X X
Fleury et al. (2005) Stochastic CARP X
Lacomme et al. (2005) Periodic CARP X
Belenguer et al. (2006) Mixed CARP X
Chu et al. (2006) Periodic CARP X
Lacomme et al. (2006) Bi-objective CARP X
Reghioui et al. (2007) CARP with time-windows X
Fleury et al. (2008) Bi-objective stochastic CARP X
Labadi et al. (2008a) CARP with time-windows X
Labadi et al. (2008c) Split delivery CARP X
Wøhlk (2008) CARP X
Mourão et al. (2009) Sectoring arc routing problem X
Prins et al. (2009) CARP X X
Tang et al. (2009) CARP X
Belenguer et al. (2010) CARP X
Kansou and Yassine (2010) Multi-depot CARP X
Liu et al. (2010a) CARP X
Santos et al. (2010) CARP X
Xing et al. (2010) Multi-depot CARP X
Mei et al. (2011) Periodic CARP X

VRP and extensions
Beasley (1983) VRP X
Golden et al. (1984) Vehicle fleet mix problem (VFMP) X
Haimovich and Rinnooy Kan (1985) Unit-demand VRP X
Altinkemer and Gavish (1990) Unit-demand VRP X
Ryan et al. (1993) VRP X
Renaud et al. (1996) VRP X
Salhi and Sari (1997) Multi-depot VFMP X
Mosheiov (1998) Unit-demand PDP X
Prins (2004) VRP X
Sörensen (2006) Bi-objective VRP X
Boudia et al. (2007) Split delivery VRP X
Chang and Chen (2007) VRP with time-windows X
Jozefowiez et al. (2007) VRP with route balancing X
El Fallahi et al. (2008) Multi-compartment VRP X
Labadi et al. (2008b) VRP with time-windows X
Imran et al. (2009) VFMP X
Jozefowiez et al. (2009) VRP with route balancing X
Liu et al. (2009) VFMP X
Prins (2009a) VFMP and HVRP X X
Prins (2009b) VRP X
Prins et al. (2009) VRP X X

(continued on next page)

C.Prins
et

al./Transportation
R

esearch
Part

C
40

(2014)
179–

200
183



Table 1 (continued)

References in temporal order Problem studied Basic Split Simple extensions Shared resources Special graphs
Section 3 Section 4 Section 5 Section 6

Velasco et al. (2009) PDP X
Bontoux et al. (2010) Generalized TSP X
Bouly et al. (2010) Team orienteering problem X
Hamdi-Dhaoui (2011) VRP X
Liu et al. (2010b) VRP with task selection X
Mendoza et al. (2010) Multi-compartment SVRP X
Ngueveu et al. (2010) Cumulative VRP X
Duhamel et al. (2011a) 2-dimensional loading CVRP X
Duhamel et al. (2011b) HVRP X
Ursani et al. (2011) VRP with time-windows X
Duhamel et al. (2012) HVRP X
Reiter and Gutjahr (2012) Bi-objective VRP X
Velasco et al. (2012) Bi-objective PDP X
Vidal et al. (2012) Multi-depot periodic VRP X
Khebbache-Hadji et al. (2013) 2L-CVRP with time-windows X
Lacomme et al. (2013) 3-dimensional loading CVRP X
Vidal et al. (2013a) VRP with time-windows X X
Vidal et al. (2013b) 26 VRP variants
Afsar et al. (2014) Generalized VRP (GVRP) X
Vidal et al. (2014) Multi-depot VFMP X X

Part 2
LRP and extensions
Nagy and Salhi (1996) LRP X
Prins et al. (2006) LRP X
Prodhon and Prins (2008) Periodic LRP X
Duhamel et al. (2010) LRP X
Villegas et al. (2010) Truck and trailer routing pb X
Duhamel et al. (2011b) LRP X
Villegas et al. (2011) Truck and trailer routing pb X
Nguyen et al. (2012a) Two-echelon LRP X
Nguyen et al. (2012b) Two-echelon LRP X

Other routing problems
Jansen (1993) Capacitated general routing pb X
Prins and Bouchenoua (2004) Node, edge and arc routing pb X
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Fig. 4. Example of splitting procedure.
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a demand qu, a service cost su (inherited from the edge of origin) and the index inv(u) of the opposite arc. The encoding is
completed by a pre-computed (2n + 1) � (2n + 1) matrix C, indexed by arc numbers, in which cuv is the cost of a shortest path
(in terms of deadheading cost) from node eu to node bv in the original network.

Using this notation, a CVRP trip can be defined as a list of distinct customers T = (T1, T2, . . . , Tk), visited in this order, with a
total cost cð0; T1Þ þ

Pk�1
i¼1 ðsðTiÞ þ cðTi; Tiþ1ÞÞ þ sðTkÞ þ cðTk;0Þ. A giant tour T corresponds to the particular case k = n since it

must cover the n customers. For the CARP, a trip can be stored as a list (T1, T2, . . . , Tk) of arc numbers, each arc representing
one of the two directions of a required edge, but its cost can be computed using the same formula as above. A giant tour T for
the CARP contains the n required edges, each one being represented by one of its two arcs. In the sequel, the word task will
refer indifferently to a customer or a required edge.
3.2. Basic splitting process

Consider the CVRP to fix ideas and a given ordering T ¼ ðT1; T2; . . . ; TnÞ of the n customers. As shown by Beasley (1983), an
optimal splitting (subject to the sequence) can be obtained by computing a shortest path in an auxiliary graph H = (Y, U). Y
contains n + 1 nodes numbered from 0 to n. Each subsequence (Ti, Ti+1, . . . , Tj) corresponding to a feasible trip is modeled in U
by one arc (i � 1, j), weighted by the trip cost costði; jÞ ¼ cð0; TiÞ þ

Pj�1
k¼iðsðTkÞ þ cðTk; Tkþ1ÞÞ þ sðTjÞ þ cðTj;0Þ. The optimal split-

ting corresponds to a shortest path from node 0 to node n in H.
Fig. 4 depicts a small example with five customers. The given ordering T = (a, b, c, d, e) is materialized on the left as a

giant tour, to show traveling costs between customers and between customers and the depot. The values in brack-
ets are the demands. The auxiliary graph in the lower part is built assuming a vehicle capacity Q = 10. For instance,
arc ab models a trip visiting customers a and b, with total cost 55, while arc abc is not present due to an excessive
demand (13). The shortest path (thick arcs) has three arcs and cost 205. The resulting CVRP solution is given on the
right.

The shortest path can be computed using Bellman’s algorithm for directed acyclic graphs. Algorithm 1 is a compact ver-
sion where the auxiliary graph is not generated explicitly (Prins, 2004). A version for the CARP can be found in Lacomme et al.
(2004). Roughly speaking, two nested loops indexed by i and j inspect each subsequence (Ti, Ti+1, . . . , Tj) and compute its total
demand (load) and the trip cost (cost). The subsequence is ignored if it violates vehicle capacity. Otherwise, it corresponds to
arc (i � 1, j) in the implicit auxiliary graph and label Vj of node j is updated when improved, i.e., if Vi�1 + cost < Vj. This label
(value on top of each node in the auxiliary graph of Fig. 4) is the cost of a shortest path from node 0 to node j. The cost of the
CVRP solution can be found at the end in Vn.

The role of Pj in Algorithm 1 is to store the predecessor of node j on the shortest path leading to j. Algorithm 2
shows how to extract the CVRP solution S using these predecessors. S is coded as a list of trips, each trip being a list
of customers.
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Algorithm 1. A compact implementation of Split for the CVRP
1
 V0 0

2
 P0 0

3
 for i 1 to n do Vi =1 endfor
4
 for i 1 to n do
5
 j i

6
 load 0

7
 repeat
8
 load load + q(Tj)

9
 if i = j then

10
 cost c(0, Ti) + s(Ti) + c(Ti, 0)

11
 else
12
 cost cost � c(Tj�1, 0) + c(Tj�1, Tj) + s(Tj) + c(Tj, 0)

13
 endif
14
 if ðload 6 QÞ and ðVi�1 þ cost < VjÞ then

15
 Vj Vi�1 + cost

16
 Pj i – 1

17
 endif
18
 j j + 1

19
 until ðj > nÞ or ðload > QÞ

20
 endfor
Algorithm 2. Extraction of CVRP solution after Split
1
 S = £
2
 j n

3
 repeat
4
 trip £
5
 for k Pj + 1 to j do

6
 add customer Tk at the end of trip

7
 endfor
8
 add trip at the beginning of S

9
 j Pj
10
 until j = 0
The key-observation to establish the complexity of Algorithm 1 is that the load and cost for subsequence (Ti, Ti+1, . . . , Tj+1) are
deduced in O(1) from the ones for (Ti, Ti+1, . . . , Tj), instead of browsing the whole subsequence. So, each subsequence is trea-
ted in O(1) and the complexity of Split is proportional to the number O(n2) of feasible subsequences, which is also the number
of arcs in the auxiliary graph H. If b denotes the average length (number of customers) of feasible subsequences, H has nb arcs
and we get a more precise complexity in O(nb). In particular, the running time decreases in practice when the quotient q/Q
increases, q denoting the average demand.

3.3. Application of basic Split to CVRP and CARP

3.3.1. Constructive heuristics and local search procedures
The Split method as described in Section 3.2 was originally introduced by Beasley in 1983 for the CVRP. This author pro-

posed to relax vehicle capacity to solve a TSP, exactly or heuristically, and then to apply the Split procedure to the resulting
tour. The goal of the paper was to show that any TSP algorithm can be recycled to solve the CVRP, not to provide computa-
tional results.

Some authors investigated greedy versions of Split: starting from one node, the giant tour is cut whenever the next node
does not fit residual vehicle capacity. The result is no longer optimal. Haimovich and Rinnooy Kan (1985) described a tour
partitioning (TP) heuristic for the VRP with unit demands: a TSP tour is cut into successive trips with Q customers. They also
studied an iterated TP (ITP), in which TP is applied to each possible starting node to return the best solution. Altinkemer and
Gavish (1990) showed that this ITP has a worst case error ratio of 2 � 1/Q if the TSP tour is optimal. Mosheiov (1998) derived
similar heuristics for a pickup and delivery problem with unit demands.



C. Prins et al. / Transportation Research Part C 40 (2014) 179–200 187
Other interesting theoretical results exist for the optimal Split procedure. Jansen (1993) analyzed a two-phase heuristic
called Shortest Optimal Tour Partitioning (SOTP) for the capacitated general routing problem (CGRP), a problem with required
nodes and edges. A giant tour covering all tasks is determined using a 3/2 approximation algorithm and then split into fea-
sible routes. Jansen shows that the approximation factor of SOTP is 7/2 � 3/Q, provided all demands and Q are integral and
Q P 3.

The basic Split respects the edge traversal directions specified by the giant tour. This paragraph and the next concern im-
proved versions for the CARP, able to select the best traversal direction of each edge. Wøhlk (2008) showed that Jansen’s
approximation factor (1993) concerns the CARP too, since required nodes in the CGRP can be transformed into demand
edges. She proposed a new heuristic A-ALG for the CARP, with the same approximation factor, but always at least as good
as SOTP for the same giant tour. The tour construction remains identical but the partition is computed via a dynamic pro-
gramming procedure which selects the best traversal direction for each edge in feasible trips. In fact, this procedure gives the
same results as Split with Flips, described in the next paragraph. A numerical evaluation shows that A-ALG outperforms clas-
sical constructive heuristics for the CARP.

In a guided local search for the CARP, Beullens et al. (2003) described a move which relocates a subsequence of required
edges in a trip, while determining the best direction of each edge. The same technique can be applied in Split, giving a version
for the CARP called Split with Flips (Prins et al., 2009). Fig. 5 gives one example for a subsequence (T2, T3, T4). As said in Sec-
tion 3.1, each required edge is coded as two arcs linked by a pointer inv. The upper layer contains the directions defined by
the giant tour while the lower layer contains the opposite arcs. Two copies of the depot are added as source and destination.
Thin lines represent shortest paths in the real network and their costs. The best edge directions are given by a shortest path
between the two depot copies (labels correspond to framed numbers). The best path (inv(T2), T3, T4) has a cost 64 instead of
80 for the original directions. It is possible to embed this computation in Algorithm 1 while preserving its O(nb) complexity:
the trick is to reuse the two labels computed for Tj and inv(Tj) when testing subsequence (Ti, Ti+1, . . . , Tj+1).

In the basic Split, the route associated to a subsequence of customers begins at the depot, visits the customers in the spec-
ified order and returns to the depot. Prins et al. (2009) proposed an improvement called Split with Shifts which considers each
subsequence as a circular list and determines the best insertion of the depot. Fig. 6 depicts this process on a subsequence
(T2, T3, T4) of three customers, assuming c(T4, T2) = 20. The costs if the trip starts with the first, second or third customer
are respectively 120, 100 and 120. In Split with Shifts, the cost of arc (1, 4) which models the subsequence in the auxiliary
graph will correspond to the best insertion (100) instead of 120 in the basic Split.

Recall that Algorithm 1 tests each subsequence (Ti, Ti+1, . . . , Tj) of the giant tour. In Split with Shifts, the best depot position
must be recorded for each subsequence, to reorder the trip correctly when the CVRP solution is extracted using Algorithm 2.
When j = i, the depot must be before Ti. Consider a subsequence (Ti, Ti+1, . . . , Tj) for which the best depot position is before
customer Tk, i 6 k 6 j. For the next subsequence (Ti, Ti+1, . . . , Tj+1), it is easy to see that the best depot position is still before
Tk, before Tj+1, or after Tj+1. So, the best position for the depot can be updated in O(1) instead of browsing (Ti, Ti+1, . . . , Tj+1) and,
finally, Split with Shifts has the same O(nb) complexity as the basic Split. Experiments with two-phase constructive heuristics
for the CVRP and the CARP show that versions with Split with Shifts outperform the ones based on the basic Split (Prins et al.,
2009).

In the basic Split, the only filter to model or not a subsequence (Ti, Ti+1, . . . , Tj) as one arc in H is to check if vehicle capacity
is respected, i.e., if

Pj
k¼i qðTkÞ 6 Q . Other limitations like a maximum volume, distance traveled or working time are easily

tackled. For instance, most benchmarks for the CVRP include some instances with a maximum distance L: any subsequence
such that cost(i, j) > L can be ignored. This test can be added to the if statement line 14 in Algorithm 1, like in Prins (2004).

As an optimal TSP or RPP tour does not necessarily lead to an optimal CVRP or CARP solution after splitting, the giant tour
can be computed in practice by any heuristic. An easy way to improve the final result consists in splitting several giant tours,
generated via a randomized heuristic. Prins et al. (2009) showed that this approach competes with classical heuristics for the
CVRP and the CARP.

Prins et al. (2009) also describe iterative improvement procedures. An initial giant tour T is split, the resulting solution S
undergoes a local search procedure to get a solution S0 and the trips of S0 are concatenated by Split�1 to get a new giant tour T0.
As the local search moves some customers, T0 may differ significantly from T and a solution at least as good as S0 is obtained if
the same process is repeated on T0. In this method, the local search explores rather small neighborhoods, involving one or
two trips, while Split behaves like a large neighborhood move, able to change simultaneously all trip limits. Tests on the CARP
indicate that this approach is very effective but rather time-consuming.
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Fig. 5. Split with Flips for a subsequence of three tasks.
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3.3.2. Metaheuristics
A more advanced application of Split is to evaluate chromosomes encoded as an ordering of the tasks in population-based

metaheuristics. This idea is based on the iterative approach presented in Section 2.1 (Fig. 3). Lacomme et al. (2001) were the
first to develop a memetic algorithm (MA, a genetic algorithm hybridized with a local search) based on this principle for the
CARP and designed in 2004 a more efficient version. Prins (2004) proposed for the CVRP a similar method which was the first
genetic algorithm able to compete with the best methods available at that time, tabu search heuristics. In all these algo-
rithms, new chromosomes are generated using a crossover operator. In the ant colony optimization algorithm proposed
by Santos et al. (2010), Split is used again to evaluate giant tours, but these tours are built by the ants on the basis of pher-
omone deposits.

Prins (2009b) proposed for the CVRP another iterative approach called multi-start evolutionary local search (MS-ELS).
This method constructs an initial CVRP solution S using a randomized heuristic and concatenates its trips to get a giant tour
T, which gives a first pair (S, T). Then, each iteration produces a fixed number of children-solutions as follows: it applies a
mutation operator to a copy T0 of T, splits T0 to get a CVRP solution S0 and improves S0 using a local search. The trips of
the resulting best child are finally concatenated to give the pair (S, T) for the next iteration. MS-ELS outperforms the previous
MA, both in terms of solution quality and running time. More recent MS-ELS methods implementing the alternation of Fig. 3
are cited in Sections 4 and 5 for other routing problems.

Split was used as a large neighborhood move by Tang et al. (2009), in a MA for the CARP. The local search of this MA
browses classical moves like 2-OPT and ends with a new move called merge-split (MS). MS selects a subset of routes at ran-
dom, merges the customers into an unordered list and applies a classical CARP heuristic (Path-Scanning) to get five solutions.
The trips of each solution are concatenated to get a giant tour and the basic Split is applied. The best resulting solution is
returned. MS is quite effective to generate new solutions significantly different from the current solution.

The basic Split has been used in bi-objective genetic algorithms with chromosomes encoded as giant tours. Note that in all
references cited below the Split procedure acts upon the total distance only: the other objective is handled by other compo-
nents of the metaheuristic.

Lacomme et al. (2006) minimize the total length and the length of the longest route in the CARP, using the non-dominated
sorting genetic algorithm NSGA-II (Deb, 2001). Reiter and Gutjahr (2012) consider the same objectives for the CVRP. An
adaptive e-constraint method is used to derive all Pareto-optimal solutions from a set of non-dominated solutions pre-com-
puted by NSGA-II. A branch-and-cut algorithm is called to ensure that the solution of each single-objective sub-problem is
optimal.

Jozefowiez et al. (2007) consider another balance criterion for the CVRP, the difference between maximum and minimum
route lengths. They develop a new multi-objective heuristic, called Target Aiming Pareto Search, in which each solution of
the Pareto front P computed via NSGA-II undergoes a local search restricted to a vertical stripe between this solution and the
previous one on P. This strategy ensures that the entire area that dominates P is explored, while avoiding that two local
searches examine the same area. In 2009, the same authors developed for the same problem a cooperative MA based on
the island model and implemented on eight processors.

Sörensen (2006) designed a MA to compute good but not too similar CVRP solutions. The chromosomes are encoded as
giant tours and decoded by Split. The dissimilarity is evaluated by a distance measure in solution space. If DP(C) is the small-
est distance of a child C to any solution in population P, child C is accepted if Dp(C) P D, where D is a diversity parameter.
This acceptance rule leads to a final population which provides the decision maker with good and diverse solutions.

In the stochastic CARP, demands are random variables like the amount of garbage of a street in waste collection. When a
trip planned with average demands is executed, two cases are possible, depending on the real demands met on the field: if
the total demand does not exceed vehicle capacity, the planned distance is respected, otherwise the trip must be interrupted
to go and unload at the depot, which incurs an additional distance. Fleury et al. (2005) run the CARP MA (Lacomme et al.,
2004) with average demands and with or without a spare capacity in each vehicle and then evaluate the robustness of solu-
tions through simulation.
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Using mild assumptions, Fleury et al. (2004) derive analytical expressions for the mathematical expectation of the cost of
each route. The basic Split is still used to convert each giant tour into a planned solution, using deterministic costs, but the
associated expected cost on the field is immediately deduced using the analytical formulas. Fleury et al. (2008) extended this
approach by adding a second objective to balance the routes, the duration of the longest trip.
3.4. Other applications of basic Split

Several vehicle routing problems closely related to the CVRP or the CARP can be handled by changing the composition of
giant tours, without affecting the auxiliary graph construction and the shortest path algorithm. For example, a giant tour may
combine required nodes and edges in waste collection problems, or contain several occurrences of the same customer in split
delivery problems.

The mixed CARP (MCARP), inspired by municipal waste collection, combines required edges and required arcs with given
demands. A one-way street is modeled by one arc. A two-way street with two sides collected separately gives two opposite
arcs. A required edge models a two-way street whose both sides can be collected in parallel and in any direction. Belenguer
et al. (2006) adapted to the MCARP the CARP MA designed by Lacomme et al. (2004). Compared with the encoding of Sec-
tion 3.1, a required arc u is such that invu = 0 and giant tours contain all required arcs and one of the two arcs that represent
required edges. Lacomme et al. (2004) described how to adapt their CARP MA to what they call the Extended CARP (ECARP).
This ECARP corresponds to a MCARP with forbidden turns, turn penalties and parallel links, useful to model service roads for
instance.

The node, edge and arc routing problem (NEARP) or mixed and capacitated general routing problem (MCGRP) can be viewed
as a MCARP to which required nodes are added. In a waste management context, these nodes correspond to punctual accu-
mulations of waste like hospitals or supermarkets. A memetic algorithm for the NEARP was designed by Prins and Bouche-
noua (2004). Giant tours include all required arcs, all required nodes, and one arc (traversal direction) for each required edge.

Apart from the giant tour composition, the splitting procedure remains identical in these memetic algorithms for the
MCARP and the NEARP but the local search procedure is more involved. For instance, a 2-OPT move consisting in inverting
a subsequence of tasks is always possible in the CVRP and the CARP, but it becomes infeasible for the MCARP if the subse-
quence contains required arcs.

Mourão et al. (2009) investigated the sectoring-arc routing problem (SARP) raised by municipal refuse collection. The goal
is to partition the mixed graph of the streets in a given number of sectors (each sector being assigned to a vehicle and its
crew), and to solve the MCARP in each sector to minimize the total duration of trips. Three heuristics are described. One
of them builds balanced sectors and solves the mixed CARP for each sector by constructing a mixed rural postman tour which
is then converted into a set of feasible trips via the Split procedure.

Liu et al. (2010b) investigate the task selection and routing problem. A carrier with a private fleet considers two sets of
transportation requests defined by an origin i, a destination j and a distance. The first set contains tasks given by shippers,
which can be executed by private vehicles or sub-contracted with a penalty gij. The second set contains tasks subcontracted
by other carriers, which can be refused or processed with a compensative payment eij. The goal is to select the tasks and to
calculate a set of routes to minimize a total cost including the distance travelled, the fixed costs of vehicles used and the
penalties for sub-contracting demands, decreased by the compensative payments for accepting demands from other carriers.
Each route performs one request at a time and is limited by a maximum distance. Liu et al. designed a MA where each chro-
mosome is an ordering T of the n requests.

The goal of the splitting procedure is to determine a position p such that demands T1 to Tp are served by private vehicles
while Tp+1 to Tn are left to external carriers. The basic splitting procedure is first applied with ordinary costs (without pen-
alties and compensations), which gives the labels Vj of Algorithm 1. For a given p, the solution cost is then
Vp �

Pp
k¼1 eðTkÞ þ

Pn
k¼pþ1 gðTkÞ. The best solution for a given ordering is finally obtained by testing each value of p.

Vehicle routing problems with split deliveries have raised a growing interest since a paper by Archetti et al. (2006), showing
that the optimal cost for a CVRP instance can be halved in the best case if split deliveries are allowed. Labadi et al. (2008c)
introduce a memetic algorithm with a distance measure in solution space for the split-delivery CARP (SDCARP). The crossover
operator generates giant tours in which each edge may occur several times, with the amount served for each visit. For a trip
with multiple visits to the same edge, it is easy to see that the cost does not increase if all but one copies of the edge are
deleted, if the triangle inequality holds. As finding the best deletions can be time-consuming if the trip contains many inter-
leaved split edges, the splitting procedure keeps only, in each subsequence, the first visit to each split edge to assign a cost to
the trip. Belenguer et al. (2010) reuses the same encoding and splitting method, but in a more efficient multi-start evolution-
ary local search. Boudia et al. (2007) adapted the MA of Labadi et al. (2008c) to the split-delivery VRP (SDVRP).

Multi-depot problems can be solved by specific splitting methods able to select the best depot for each trip, see Sections 4.2
and 5. However, a few authors handled the location-routing problem (LRP) using one giant tour per depot. Nagy and Salhi
(1996) developed a nested heuristic with route length estimation, in which a local search improves progressively a subset
of open depots. To avoid solving completely a multi-depot VRP to evaluate each move, they assign customers to depots
and build one giant tour for each depot. Instead of splitting the tour, the cost of the routes is derived from the tour length
using a regression formula. Prins et al. (2006) describe a memetic algorithm for the location-routing problem, where each
chromosome has two parts: one indicates which depots are open and to which depot each customer is assigned, the other
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contains one customer ordering for each open depot. To define the routes and get a complete LRP solution, Split is applied to
each ordering. Prodhon and Prins (2008) generalize this MA to the periodic LRP, using the same encoding in each period.
4. Simple extensions impacting arc feasibility and/or arc costs

Up to now, the routes have been deduced from any task ordering (even mixing required nodes, arcs and edges) by the
basic version of Split. Several CVRP and CARP extensions have been treated using simple modifications, like giant tours with
multiple visits to customers in the split-delivery case or the application of the basic Split to sub-problems restricted to one
depot or sector. This section covers cases for which the criteria for adding an arc in the auxiliary graph H and/or computing
its cost are affected, but without changing the shortest path algorithm once the auxiliary graph is ready.

4.1. Extra constraints on tasks

In practice, many tasks have a time window [bi, ei] to begin service, giving a vehicle routing problem with time windows
(VRPTW). Late arrivals are forbidden but a vehicle may arrive before bi and wait. Most published heuristics try to minimize
the fleet size f1 and then the total distance f2: time windows are only used to check route feasibility. Labadi et al. (2008b)
designed a MA with chromosomes encoded as giant tours. In Split, subsequences of customers violating time windows
are detected using the dynamic programming techniques introduced by Kindervater and Savelsbergh (1997) and discarded.
Using an objective function Mf1 + Nf2, this MA can give priority either to the number of vehicles used (M large and N = 1) or to
the total distance (M = 1 and N large). Chang and Chen (2007) designed independently a similar memetic algorithm to min-
imize the total distance traveled.

Ursani et al. (2011) considered the VRPTW with distance minimization as the sole objective and study a localized genetic
algorithm, based on overlapping sub-problems. Starting from one random ordering of customers, evaluated by Split, the fol-
lowing cycle is applied: (a) the overlapping sub-problems, corresponding to all possible pairs of routes, are optimized indi-
vidually using a fast GA; (b) a non-bipartite matching problem is solved to select a subset of route-disjoint pairs maximizing
the total saving; and (c) the trips of the resulting VRPTW are concatenated to yield a new giant tour which is perturbed using
random exchanges of customers.

Labadi et al. (2008a) applied a GRASP with path relinking to the CARP with time windows (CARPTW). In each GRASP iter-
ation, a path is generated from the incumbent solution S to one target solution S0 randomly selected in a pool of elite solu-
tions. In fact, the giant tour obtained by Split�1(S) is progressively converted into the giant tour corresponding to S0. The
intermediate tours are decoded by Split and improved using the local search of the GRASP. Reghioui et al. (2007) improved
this algorithm using better greedy randomized heuristics, a path relinking between S and the most distant solution in the
pool, and Split with Shifts (see Section 3.2) to evaluate giant tours.

Pairing constraints are frequent in pickup and delivery problems (PDP) met for instance in on-demand transportation.
Each request comprises a pickup node and a delivery node. Each time a vehicle route stops at a node, passengers may be
taken or dropped but a route transporting a passenger must contain both his/her pickup and delivery nodes. In Split, subse-
quences violating these pairing constraints must be ignored. Velasco et al. (2009) analyze a memetic algorithm based on this
principle for a PDP raised by the transportation of personnel to oil fields by helicopter. The same authors designed in 2012 a
bi-objective version with the total duration of the routes and a service level measure (a weighted sum of arrival times).

4.2. Impact on route costs

4.2.1. Unlimited heterogeneous fleet
The vehicle fleet mix problem (VFMP) or fleet size and mix problem considers a virtually unlimited fleet of p vehicle types.

Each vehicle type k has a capacity Qk, a purchase cost Fk and a cost per distance unit Zk: hence, the cost of a trip of length k is
Fk þ kZk. The goal is to determine the fleet of vehicles and their trips to minimize the total cost. Split can tackle the VFMP by
allocating to each subsequence of customers the cheapest vehicle type with enough capacity.

Golden et al. (1984) tested a two-phase VFMP heuristic in which a number of 2-optimal TSP tours are partitioned in this
way into feasible routes. Ulusoy (1985) tackled a fleet size and mix CARP, solving first a rural postman problem (RPP) to get a
giant tour. To initialize a variable neighborhood search for the VFMP, Imran et al. (2009) compute one giant tour using a
sweep algorithm and improve it by 2-opt moves before splitting. Salhi and Sari (1997) introduce a three-phase heuristic
for a multi-depot VFMP. The first phase assigns customers to depots, builds one giant tour for each depot used and its cus-
tomers, and splits each giant tour. The second phase is a local search based on simple moves while the third one is devoted to
more involved moves that may change the depot assigned to each route.

The splitting procedure has been applied in memetic algorithms for the VFMP to evaluate chromosomes encoded as giant
tours, see Liu et al. (2009) and Prins (2009a). The latter reference describes two versions tackling both the VFMP and the
heterogeneous fixed fleet VRP described in Section 5. The second version uses a distance measure in solution space to control
diversity.

In open routing problems, the vehicles stay at the last customer at the end of their trip instead of going back to the depot.
This possibility is offered by some truck rental contracts. The trip cost in Split simply becomes
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costði; jÞ ¼ cð0; TiÞ þ
Pj�1

k¼iðsðTkÞ þ cðTk; Tkþ1ÞÞ. Liu et al. (2010a) implement such a splitting procedure in a memetic algorithm
for the open capacitated arc routing problem.

In multi-depot problems, the departure and end nodes for each trip must be selected among a set D of depots. Uncapac-
itated depots are easily handled by selecting for each subsequence (Ti, Ti+1, . . . , Tj) the best depot
depði; jÞ ¼ arg minfcðk; TiÞ þ cðTj; kÞjk 2 Dg and computing the trip cost as costði; jÞ ¼ cðdepði; jÞ; TiÞ þ

Pj�1
k¼iðsðTkÞþ

cðTk; Tkþ1ÞÞ þ sðTjÞ þ cðTj; depði; jÞÞ. The best depot for all pairs (i, j) of customers can be pre-computed in O(n2). Kansou and
Yassine (2010) apply this technique in an ant colony algorithm for the multi-depot CARP (MDCARP): each ant builds a rural
postman tour, then Split determines the trips with their best depot. Xing et al. (2010) focus on the ECARP defined in Sec-
tion 3.3 but add multiple depots. Their solution method is a memetic algorithm inspired by the CARP MA of Lacomme
et al. (2004) and the MCARP MA of Belenguer et al. (2006), but involving edge frequencies to choose break-points in the
crossover and mutation operators.

Recently, Vidal et al. (2014) extended Split with Shifts, described in Section 3.2, in an iterated local search and a hybrid
genetic algorithm for the multi-depot VRP (MDVRP). For each subsequence of the giant tour, the splitting procedure deter-
mines both the best depot and its optimal insertion. It is even possible to add an unlimited heterogeneous fleet of vehicles,
giving a multi-depot vehicle fleet mix problem (MDVFMP): in that case, Split selects additionally the cheapest vehicle type
compatible with the trip load. All these extensions are implemented with the same O(nb) complexity as the basic Split. More-
over, the hybrid GA outperforms state of the art metaheuristics on the two problems.

The 2-echelon location-routing problem (LRP-2E) is another multi-depot problem where two levels of routes must be built:
from a main depot to potential satellite depots, with opening costs and limited capacities, and from the selected satellites to
a set of customers. Nguyen et al. (2012a) designed for this problem a GRASP reinforced by a learning process and path relink-
ing. One of the randomized heuristics called in this GRASP builds a set of subtours covering all customers, each subtour being
compatible with the capacity of a first-level vehicle. Satellite capacities are then relaxed and the splitting process explained
before for the MDCARP is used to partition each subtour into second-level trips while selecting the best satellite. Possible
satellite capacity violations are repaired by transferring trips. Finally, a nearest neighbor heuristic constructs first-level trips
to serve the open satellites and obtain a complete LRP-2E solution.

The same authors (2012b) developed a multi-start iterated local search (MS-ILS) implementing the alternation of Fig. 3
between giant tours and complete solutions. The splitting procedure is identical to the one used in the GRASP, except that
the giant tour covers all customers and a subset of satellites to open is pre-selected, with enough capacity to serve the
customers.

The memetic algorithm proposed by Vidal et al. (2012) for the periodic and multi-depot VRP with limited fleet (see Sec-
tion 5.1) was extended to time windows in Vidal et al. (2013a). This MA accepts infeasible but penalized solutions with re-
spect to route constraints: capacity, duration and time windows. A sophisticated local search evaluates moves in amortized
constant time while problem decompositions are developed to cope efficiently with large instances. The algorithm outper-
forms all published methods for the VRPTW and the PVRP and MDVRP with time windows.

4.3. Constraints on vehicle loading

Regulations on hazardous materials like chemicals forbid the transportation of some products in a same vehicle.
Hamdi-Dhaoui (2011) studies a hybrid GA for a VRP where each customer requires a set of products and a list of incompat-
ibilities (product pairs) is given. In the splitting procedure, subsequences containing incompatible products do not
correspond to valid trips and can be discarded.

Even when products are compatible, they must be loaded in the vehicles. In the two-dimensional loading VRP (2L-VRP),
each customer orders rectangular items. A feasible packing in the rectangular bay of the vehicle must be determined for
the set of items delivered in each route. The problem is extremely hard because it combines two NP-hard problems: the
CVRP and a two-dimensional bin packing problem. Split must check that a feasible packing exists for each subsequence of
customers.

Duhamel et al. (2011a) develop a multi-start evolutionary local search for the 2L-VRP, with the same alternation between
giant tours and complete solutions as in Prins (2009b). The NP-complete packing problem to decide if the items assigned to a
vehicle can be loaded is relaxed as a resource-constrained scheduling problem with one resource (vehicle area) and solved by
a fast heuristic. The subsequence is accepted if this heuristic finds a feasible solution to the relaxed problem. A real packing is
determined at the end of the MS-ELS for the best solutions recorded during the search. This technique is very efficient: the
tests show that this packing can be found in more than 90% of cases if the relaxed problem has a solution. The approach has
been extended to three-dimensional loading constraints by Lacomme et al. (2013). Khebbache-Hadji et al. (2013) study a
giant tour memetic algorithm for the 2L-VRP with time windows, in which feasibility is checked using a packing heuristic.

El Fallahi et al. (2008) consider a multi-compartment vehicle routing problem (MC-VRP) where each vehicle can carry q
kinds of products (e.g., frozen goods, refrigerated products and non-perishable foodstuffs), using q dedicated compartments.
Knowing the demands of customers for each product, the goal is to build a least-cost set of trips in which each product or-
dered by a customer is delivered by one vehicle. However, a customer may receive its different products from several vehi-
cles. In fact, this MC-VRP can be viewed as a restricted split-delivery VRP, in which the products for a customer may be
delivered separately, but not the amount specified for one product. The authors describe a hybrid GA with path relinking:
like in the SDCARP papers (Labadi et al., 2008c; Belenguer et al., 2010) cited in Section 3.3, a customer may occur several
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times in giant tours (but here no more than q times) and Split regroups all deliveries to a customer on the first visit when
computing the cost of a trip.

Mendoza et al. (2010) also consider a CVRP with multiple compartments, but this time the q products ordered by a cus-
tomer must be brought by the same vehicle and the demand for each product is stochastic. Vehicle routing problems with
stochastic demands are cited in Section 3.1, but they have no compartments and the giant tours are partitioned using deter-
ministic trip costs by the basic Split. Mendoza et al. compute the probability of trip interruption caused by one product, the
probability of interruption if all products are considered simultaneously and the resulting mathematical expectation of trip
cost. These costs are used as arc weights in the auxiliary graph.
5. Split taking into account limitations on shared resources

Considerations that played a role in the modifications of the splitting procedure studied until now have no influence
on the computation of the shortest path to determine the routes, once the auxiliary graph is ready. In this section,
Bellman’s algorithm for directed acyclic graphs can no longer be used in Split, due to special objective functions or limited
resources to be shared by the different trips. More involved shortest paths algorithms, sometimes not fully polynomial, must
be used.
5.1. Homogeneous fixed fleet

Bellman’s algorithm for directed acyclic graphs, used in Algorithm 1, has no control on the number of vehicles (number of
arcs on the shortest path). For a limited fleet of b vehicles, the general form of Bellman’s algorithm can be used. At the begin-
ning, it initializes labels V0

0 ¼ 0 and V0
j ¼ 1 for each node j – 0. At each iteration k > 0, it computes

Vk
j ¼minfVk�1

i þ costði; jÞji predecessor of jg. It is easy to show recursively that labels at iteration k define the costs of short-
est paths with at most k arcs. Like in Section 3.2, let b be the average number of customers per feasible subsequence. Each
iteration costs O(nb) and the best splitting with at most b vehicles can be obtained in O(bnb), by stopping the algorithm at the
end of iteration b.

This method has been used in population-based methods with giant tours for periodic problems. These problems are
defined over a multi-period horizon and can be solved by splitting the list of customers visited in each period. The peri-
odic CARP (PCARP) is a good example raised by household refuse collection. Each edge (street segment) e has a frequency
fe and a daily waste production qe. To satisfy implicitly spacing constraints between services, a set of day combinations or
patterns is associated with each street, for instance {(Monday, Thursday), (Tuesday, Friday)} for fe = 2. For each pattern
and each of its days, a demand can be deduced from the qe. Indeed, the amount of waste found in a street by a vehicle
is the total amount of waste produced since the previous day of the combination. The goal is to select one day combi-
nation for each visit and to solve a CARP in each period, to minimize the total cost of the routes over the planning hori-
zon. The fleet is always limited, otherwise optimal solutions concentrate the activity in a few periods, leading to excessive
workload variations.

Lacomme et al. (2005) design for the PCARP a memetic algorithm in which each chromosome, divided into ordered sub-
lists (one per day), contains fe copies compatible with a day combination for each edge e, e.g., the index of one edge e with
frequency two and day combination (Monday, Thursday) appears in sub-lists 1 and 4. New chromosomes satisfying also fre-
quencies and day combinations are generated using a periodic LOX crossover (PLOX) which extends the classical linear order
crossover (LOX) for the TSP. The hierarchical objective function, to be minimized, gives priority to the required fleet size and
then to the total length of the routes. Split is first applied to each sub-list, with a unit cost on each arc of the auxiliary graph H.
The costs of resulting shortest paths correspond to the minimum number of vehicles required in each day, and the fleet size b
is the maximum of these values. Split is finally executed for each day, with the real trip cost on each arc of H and an addi-
tional constraint: the shortest path may use up to b arcs, i.e., up to b vehicles.

Chu et al. (2006) develop a scatter search based on the same splitting procedure. Although Split is optimal for
the sequence defined by a chromosome, the crossover may generate children with an excessive fleet size. Mei et al.
(2011) improve on average the results of the two previous metaheuristics by adding a procedure which reduces fleet
size.

Vidal et al. (2012) elaborate a powerful memetic algorithm for the PVRP, based on the chromosome encoding used in
Lacomme et al. (2005) for the PCARP. However, the fleet size b is imposed in the data, a different crossover called PIX (peri-
odic insertion crossover) is used, the algorithm accepts solutions that violate vehicle capacity, and chromosomes are re-
placed according to a rule which takes both solution quality and diversity into account. The general form of Bellman’s
algorithm is used to split the sub-chromosome associated with each period into at most b routes. To avoid too many arcs
in the auxiliary graph and limit capacity violations, the load of each subsequence modeled as one arc in the auxiliary graph
is limited to 2Q. The proposed MA can solve the PVRP, the multi-depot VRP (each depot being assimilated to a period) and the
PVRP with multiple depots.

Ngueveu et al. (2010) address the cumulative VRP with a limited fleet, where the objective consists in minimizing the sum
of arrival times at serviced nodes. This problem is raised by disaster logistics, in which relief goods must be quickly
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dispatched. The cost of an arc in the auxiliary graph is the sum of arrival times at the nodes of the corresponding subse-
quence in the giant tour. Here again, the general form of Bellman’s algorithm is executed to extract the routes.

Lacomme et al. (2004) consider a version of the CARP raised by urban refuse collection, where the goal is to minimize the
length of the longest route, subject to a limited fleet. This can be achieved using a min–max version of Bellman’s algorithm,
in which the label of node j at iteration k is recursively computed as Vk

j ¼minfmaxðVk�1
i ; costði; jÞÞ : i predecessor of jg.
5.2. Multiple resources

Many routing problems encompass in practice several categories of resources like vehicles and depots. Each resource in a
category can be characterized by a set of attributes. For a depot k, the attributes can be for instance its capacity Xk and open-
ing cost Ok. For a vehicle type k, one can define the number of vehicles available ak, a capacity Qk, a fixed cost Fk and a cost per
distance unit Zk.

The consumption of resources by a route of length k and total demand load depends on the category. For vehicles, we can
choose one in any type k such that load 6 Qk, with a route cost Fk þ kZk. Regarding depots, we can take any depot k with
enough residual capacity and the route will consume in this depot load units of storage for the goods to be shipped. However,
the opening cost Ok will be charged only once, even if several routes are based at the same depot. To simplify the exposé, we
consider in the sequel the heterogeneous fixed fleet VRP (HVRP) with p vehicle types having the attributes defined above. The
discussion can be easily transposed to depots or other shared resources.

In the basic Split, the label Vj on a node j of the auxiliary graph H is the minimum cost of the paths connecting the dummy
node 0 to node j. For the HFVRP, we have to select one compatible vehicle for each arc in H, in such a way that the resource
consumptions r1, r2, . . . , rp of each path (number of vehicles consumed for each type) do not exceed a1, a2, . . . , ap, respec-
tively. The search for a least-cost path in these conditions becomes a resource-constrained shortest path problem (RCSPP). Such
problems are in general NP-hard, except in some particular cases like p ¼ 1 in Section 5.1.

Fortunately, the RCSPP for the HVRP can be solved quickly enough in practice, by adapting a multi-label extension of Bell-
man’s algorithm (Desrochers, 1988). The label for a path becomes a vector V = (/|r1, r2, . . . , rp) with the path cost / and re-
source consumptions rk. Indeed, we have to remember these consumptions to know if a partial path can be extended.
Theoretically, we should store at node j the labels of all incoming paths because, contrary to the basic Split, it is not certain
that the cheapest path can be extended to reach the final node. In practice, many labels can be discarded using a dominance
rule. Let V.f denote field f of label V: label V dominates (weakly) label W if V � / 6W � / and 8k : V � rk 6W � rk. If V does not
dominate W and W does not dominate V, the two labels are incomparable. A set of labels is said non-dominated if its labels are
pairwise incomparable. A stronger domination rule where at least one of the inequalities must be strict could be used, like in
multi-objective optimization, but a weak domination is enough here: if two labels corresponding to distinct paths have the
same cost and resource consumptions, we can keep only one of them.

For example, consider one HVRP instance with p = 3 vehicle types, a = (4, 3, 10), and one label V = (1254|2, 1, 3). This
means that the path associated with this label has a cost 1254 and consumes 2, 1 and 3 vehicles of each respective
type. V dominates (1254|2, 2, 3) which has the same cost but requires more vehicles of type 2. V dominates also
(1259|2, 1, 3): it requires the same vehicles while being cheaper, and (1259|3, 1, 4) because it is both cheaper and less
vehicle-consuming. Finally, V and (1259|2, 0, 1) are not comparable: V is cheaper but needs more vehicles for types 2
and 3.

The splitting problem for one HVRP giant tour T is sketched in Algorithm 3. Like in Algorithm 1, all feasible subsequences
(Ti, Ti+1, . . . , Tj) of the giant tour are enumerated (by the for loop line 3 and the repeat loop line 6) and the auxiliary graph H is
not built explicitly. Only non-dominated labels are stored on each node and K(i) denotes the set of labels for node i. Service
times are here ignored because the cost of each route is deduced from its length and vehicle type, using the formulas pre-
sented before.

At the beginning, only node 0 has a label, corresponding to an empty path. The incumbent subsequence (Ti, Ti+1, . . . , Tj)
has a total demand load (line 7) and a length k (lines 8–12). Like in the basic Split, recall that this subsequence is modeled
by one arc (i � 1, j) in the auxiliary graph. This is why we try to propagate each label W of node i � 1 (for loop lines 14–
24). For this, we test each vehicle type k (for loop lines 15–23). If the type has enough capacity and is still available, the
cost of the route is deduced from its length and a new label W is prepared for node j (line 18). If W is not dominated (line
19), all labels it dominates are erased (lines 20–21) and the label is saved (line 21). The basic Split stops scanning the
routes which begin at customer Ti when load exceeds the unique vehicle capacity Q. Here, a flag stop indicates if new
labels have been generated for (Ti, Ti+1, . . . , Tj): if this not the case, it is useless to increment j and the algorithm may pro-
ceed with the next i.

In general, several non-dominated labels are obtained at node n and the returned solution corresponds to the least-cost
one. Some giant tours may be infeasible, even if total demand does not exceed fleet capacity. For instance, consider p = 2
vehicle types with availabilities a = (1, 1) and capacities Q = (10, 5), and n = 3 customers with demands 7, 3, 5: T = (1, 2, 3)
is feasible but not T’ = (1, 3, 2). This can be detected line 14 if K(i � 1) = £. In metaheuristics, infeasible tours are simply
discarded.
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Algorithm 3. Implementation of Split for the HVRP
1

1: (0 | 

0

co

0

1

2

3

4

0

K(0) {(0|0, . . . , 0)}

2
 for i 1 to n do K(i) = £ endfor
3
 for i 1 to n do
4
 j i

5
 load 0

6
 repeat
7
 load load + q(Tj)

8
 if i = j then

9
 k cð0; TiÞ þ cðTi;0Þ

10
 else
11
 k k� cðTj�1;0Þ þ cðTj�1; TjÞ þ cðTj;0Þ

12
 endif
13
 stop false

14
 for each label V = (/|r1, r2, . . . , rp) in K(i � 1) do

15
 for each vehicle type k such that ðload 6 QkÞ and (rk < ak) do

16
 stop true

17
 cost  Fk þ kUk
18
 W (/ + cost|r1, . . . , rk + 1, . . . , rp)

19
 if no label in K(j) dominates W then
20
 delete in K(j) all labels dominated by W

21
 K(j) K(j) [ {W}

22
 endif
23
 endfor
24
 endfor
25
 j j+ 1

26
 until ðj > nÞ or ðstop ¼ falseÞ

27
 endfor
Fig. 7 gives one example of label propagation for the three first customers T1; T2; T3 of a giant tour. The figure provides the
locations of customers in the Euclidean plane and their demands in brackets. The fleet has p = 2 vehicle such that a = (3, 1),
Q = (10, 9), F = (2, 1) and Z = (0.2, 0.6). Hence, the cost for a trip of length k is 2þ 0:2k for type 1 and 1þ 0:6k for type 2. The
0,0)

2(1,1): (2.40 | 1,0)
3(1,2): (2.20 | 0,1)
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4(1,1): (2.68 | 1,0)
5(1,2): (3.05 | 0,1)
6(2,1): (4.97 | 2,0) dom. by 4
7(2,2): (5.10 | 1,1) dom. by 4, 5
8(3,1): (4.77 | 1,1) dom. by 4, 5

1 2 3
trip (0,T1,0)

load=4, λ = 2
trip (0,T2,0)

load=5, λ = 2.83
trip (0,T3,0)

load=3, λ = 4

trip (0,T1,T2,0)
load=9, λ = 3.41

trip (0,T2,T3,0)
load=8, λ = 4.83

Depot 0

T1 (4) T2 (5)

T3 (3)

st

λ
1 2 3 4

type 1

type 2

x

y

0

1

0 1 2

5

Fig. 7. Example of label propagation in Split for the HVRP.
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list of generated labels is given for each node. In the header ‘‘h(p, k)’’ before each label, h is a counter indicating in which
order the labels are generated, p is the index of the label used as predecessor and k the type of vehicle used. Thanks to dom-
inance, only two labels are obtained at node 3: (5.17|1, 1) and (5.37|2, 0).

In addition to dominance, various knacks can be used to discard the new label W generated line 14. For example, let
Q res ¼

Pp
k¼1ðak � rkÞ be the residual fleet capacity and Dres ¼

Pn
k¼jþ1 qðTkÞ the total demand not yet satisfied: W can be ig-

nored if Dres > Qres. Another way is to compute an upper bound UB, using a greedy heuristic, and a lower bound LB(j) for
the cost of a shortest path from node j to node n in H, relaxing resource constraints. The label can be discarded if
W � /þ LBðjÞP UB.

Suboptimal but faster versions of Split can be used in metaheuristics to accelerate the search on large instances. The sim-
plest way is to limit the number of labels for each node (only the cheapest ones are kept) and/or the total number of labels
generated. As Algorithm 3 examines the outgoing arcs for node 0;1; . . . ;n, many labels can be generated before getting a first
label at node n. A depth-first-search (DFS) of the auxiliary graph can be used to reach node n more rapidly. This method
called DFS Split requires a stack of labels which stores a partial path rooted at node 0. This stack is initialized with an empty
path label, like in line 1 of Algorithm 3. When a path is extended, the corresponding label is pushed on the stack. A backtrack
occurs when the final node is reached or when the incumbent path cannot be extended due to lack of resources. The search
stops when the stack is empty.

Prins (2009a) implemented Algorithm 3 in a memetic algorithm for the HVRP, including the label elimination based on
remaining demands and vehicles. The splitting procedure can be implemented in O(mpnp), where m is the number of sub-
sequences such that load 6maxðQ kjk ¼ 1;2; . . . ; pÞ. This pseudo-polynomial complexity becomes fully polynomial when the
number of vehicle types p is fixed, which is often true in practice since most companies use the same types during a few
years. In practice, the algorithm is fast enough for p 6 5.

Duhamel et al. (2010) adapted this algorithm to the LRP, where resources correspond to depots with limited capacity.
Their version named greedy split is strengthened by a lower bound, a limited number of labels per node and a limit on
the total number of labels. Called in a multi-start evolutionary local search, it improves several best-known solutions for
classical LRP instances. The same authors (2011b) compared the greedy split with DFS Split when included in MS-ELS for
the HVRP and the LRP. The results indicate that limiting the number of labels has only a marginal impact on solution quality
and that the DFS version leads to better results on average. A further study on the HVRP confirmed the superiority of DFS Split
in a hybrid evolutionary local search (Duhamel et al., 2012).
6. Split dedicated to special auxiliary graphs

This section surveys algorithms which are still based on the ordering-first split-second principle but whose auxiliary
graph H differs from the one used in the splitting procedures presented up to now.

Ryan et al. (1993) study a CVRP heuristic where customers are sorted in ascending polar angle, taking the depot as origin,
to give a circular list T = (T1, T2, . . . , Tn). The solution of a TSP for the customers of a subsequence of T is called a 1-petal. The
best partition into 1-petals requires a special auxiliary graph H. Its node-set is a ring whose the nodes correspond to T1,
T2, . . . , Tn, respectively. Any feasible subsequence (Ti, Ti+1, . . . , Tj) (circularly) is modeled in H as one arc ði; ðjþ 1ÞmodnÞ:
e.g., a trip visiting Tn only gives arc (n, 1). The associated 1-petal and its cost are computed applying an Or-Opt local search
to the trip (0, Ti, Ti+1, . . . , Tj, 0). The best partition with k as first customer is given by a shortest circuit containing k, comput-
able as follows: (a) take a copy H0 of H, (b) discard all arcs bypassing k, (c) split node k into one origin k0 and one destination
k00, k0 initiating the outgoing arcs of k and k00 receiving its incoming arcs, and (d) compute a shortest path from k0 to k00 in H0.
This process can be repeated for k = 1, 2, . . . , n to get the overall best partition. In fact, if (Ti, Ti+1, . . . , Tj) denotes the smallest
feasible subsequence (in terms of customers), the authors show that the optimal partition can be found by using only
Ti, Ti+1, . . . , Tj, Tj+1 as first customer k.

Renaud et al. (1996) extends the previous heuristic by adding 2-petals to the auxiliary graph. A 2-petal is a pair of routes
built from the customers of a subsequence of T, with a total load greater than Q but not greater than 2Q. It is initialized by
two back-and-forth routes connecting the two most distant customers and the depot. The remaining customers are added
using successive cheapest insertions, interleaved with a reoptimization of the two emerging routes via 4-Opt� (double
bridge) moves.

In the generalized traveling salesman problem (GTSP), the n customers are partitioned into p clusters and the goal is to
determine a minimum-cost cycle, starting and ending at the depot, and visiting a single node in each cluster. Bontoux
et al. (2010) devised a memetic algorithm in which each chromosome is an ordering T = (T1, T2, . . . , Tp) of the clusters. The
evaluation is based on an acyclic auxiliary graph with p + 2 layers of nodes. Layers 1 and p + 2 contain only the depot while
layers 1 to p contain the nodes of clusters T1, T2, . . . , Tp, respectively. The arc-set contains all arcs (i, j) such that i e Tk and
j e Tk+1, for any cluster k = 1, 2, . . . , p � 1. The optimal GTSP solution subject to this ordering corresponds to a shortest path
between the two copies of the depot.

The generalized VRP (GVRP) is the capacitated version of the GTSP. A multi-start iterated local search has been developed
recently for this problem by Afsar et al. (2014). It alternates between giant tours and complete solutions, according to the
principle depicted in Fig. 3. A giant tour is in fact an ordering T = (T1, T2, . . . , Tp) of the p clusters. The decoding involves
two nested splitting procedures. The basic Split is employed as usual to compute a shortest path in an auxiliary graph where
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each arc (i � 1, j) represents a route servicing clusters T1 to Tj in this order. The method of Bontoux et al. (2010) is called in-
side to determine the best route for each subsequence. The cost of this route is used to weight the corresponding arc in the
auxiliary graph of the basic Split.

Bouly et al. (2010) also use a special auxiliary graph for the team orienteering problem (TOP), in which a fleet of m identical
vehicles with limited working time L must visit customers with known profits. Due to the time limit, it is impossible to serve
all customers and the problem consists in selecting customers and building routes to maximize the total profit. Bouly et al.
analyze a memetic algorithm in which chromosomes are giant tours containing all customers. Their interpretation of the
splitting is to select subsequences (feasible routes) to maximize profit, but not necessarily consecutive: the customers left
between two selected routes are not visited. They call saturated route a feasible route (Ti, Ti+1, . . . , Tj) such that j = n (last route
selected) or the duration of (Ti, Ti+1, . . . , Tj, Tj+1) exceeds L. They show that there exists an optimal selection in which all routes
are saturated.

The auxiliary graph contains four layers of nodes. Layer 1 is reduced to the depot (node 0), connected by one arc to each
node in layer 2, which contains nodes 1 to n modeling customers T1 to Tn. Layer 3 is made of nodes n + 1 to 2n which are
copies of nodes 1 to n. One arc links each of these nodes to a depot copy (node 2n + 1) in layer 4. One arc (i, n + i) from layer
2 to layer 3 models the saturated route beginning at customer Ti, it is weighted by the associated profit. One arc (n + i, j) from
layer 3 to layer 2, with a null cost, indicates that the saturated tour beginning at Tj may start after the one starting at Ti,
maybe some unvisited customers in between. The optimal splitting corresponds to a shortest path with at most 2m + 1 arcs
in the resulting graph.

Villegas et al. (2010) develop a MS-ELS for the single truck and trailer routing problem (STTRP), where a truck with a trailer
must serve n customers inaccessible with the trailer. The complete vehicle makes one primary trip linking parking locations,
where the trailer is detached to do secondary trips on customers. A specific auxiliary graph is used to split a giant tour
T = (T1, T2, . . . , Tn) for h parkings. It contains one row of n nodes per parking, between two depot copies. The node [k, i] in
row k, column i models a partial splitting whose last trip visits Ti before returning to parking k. An arc ([k, i], [l, j]) extends
the partial splitting [k, i] as follows: (i) if k – l then the truck takes its trailer to move from parking k to parking l and (ii) then
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Fig. 8. Auxiliary graph for the single truck and trailer routing problem (Villegas et al. 2010).



C. Prins et al. / Transportation Research Part C 40 (2014) 179–200 197
the truck drops the trailer at l, visits customers Ti+1, Ti+2, . . . , Tj and returns to l. An arc (0, [k, i]) means that the vehicle leaves
the depot, goes to parking k, detaches the trailer, visits T1 to Ti and returns to k. Finally, an arc ([k, i], 0) completes the partial
splitting [k, i] by a return to the depot. All arcs are weighted by the length of the associated move.

An optimal splitting corresponds to a least-cost path in this graph, computable in O(nbh2), where b is the average number
of customers per secondary trip. Fig. 8 (Villegas et al., 2010) shows a small instance with trailer capacity 3, two parkings
(nodes 1, 2) and four clients 3, 4, 5, 6 with respective demands 2, 1, 1, 1. The grid (a) is made of 1 � 1 squares and the distance
is Euclidean. Part (b) shows the auxiliary graph and the shortest path in boldface. Part (c) gives the resulting solution.

Villegas et al. (2011) extends this approach to the truck and trailer routing problem (TTRP) with several vehicles. Roughly
speaking, they nest two polynomial splitting procedures. The giant tour is partitioned via the basic Split to get the subset of
customers processed by each vehicle. The splitting procedure for the single-vehicle case is called to assign a cost to each fea-
sible subsequence.
7. Achievements, efficiency and limits of tour splitting approaches

Table 1 refers to 74 papers published over 30 years, concerning 38 different vehicle routing problems with ad hoc split-
ting procedures, and involving more than 70 sets of benchmark instances. Therefore, it is not possible in a limited space to
provide tables of comparison with other approaches. It is also very difficult to quantify the contribution of a splitting pro-
cedure to the overall performance, when it constitutes one component among others in a metaheuristic. For instance, to
compare a GA based on giant tours with one working on complete solutions, the crossover operator and the heuristics to
fill the initial population must be also changed. However, we try in this section to recapitulate the main achievements of
the ordering-first split-second approach, its efficiency, and its current limits.

7.1. Main achievements

The race for the best metaheuristics in vehicle routing has evolved very quickly in the last 30 years and many algorithms
which outperformed their competitors at the time of their publication have been progressively out-distanced by new ap-
proaches. Nevertheless, split-based methods have been permanently well placed in this race and this survey provides many
examples.

Concerning constructive heuristics, performance guarantees are known for splitting algorithms like SOTP for the capac-
itated general routing problem (Jansen, 1993) and A-ALG for the CARP (Wøhlk, 2008). Such results which are still rare in
vehicle routing must be underlined. Moreover, A-ALG outperforms in practice well-known greedy heuristics for the CARP.
Prins et al. (2009) showed that splitting a series of giant tours generated via a randomized heuristic outperforms many clas-
sical heuristics for the CARP and the CVRP.

Concerning metaheuristics, the memetic algorithms from Lacomme et al. (2001, 2004) for the CARP and from Prins (2004)
for the CVRP were the first genetic methods to outperform state of the art tabu search algorithms. Other successes of split-
based evolutionary algorithms include the mixed CARP (Belenguer et al., 2006), the periodic CARP (Chu et al., 2006), the het-
erogeneous fixed fleet VRP (Prins, 2009a), the multi-compartment VRP with stochastic demands (Mendoza et al., 2010), the
location routing problem (Prodhon and Prins, 2008) and the cumulative VRP (Ngueveu et al., 2010).

In the last five years, the giant tour approach has led to better results when integrated in other types of metaheuristics, for
instance in iterated local searches for the CVRP (Prins, 2009b), the location-routing problem (Duhamel et al., 2010) and the
heterogeneous fixed fleet VRP (Duhamel et al., 2012), in a path relinking algorithm for the truck and trailer routing problem
(Villegas et al., 2011), and in an ant colony optimization method for the CARP (Santos et al., 2010).

There is a strong competition today in vehicle routing between such algorithms and adaptive large neighborhood search
(ALNS) but recent events indicate that genetic algorithms are now back to the pole position, with the hybrid GAs from Vidal
et al. (2012, 2013a,b, 2014). It is true that the efficiency of these GAs not only relies on the giant tour approach, but also on
sophisticated local search procedures and population management techniques, but anyway they constitute today the most
efficient metaheuristics. For instance, Vidal et al. (2014) describe a hybrid GA with a unified splitting procedure, able to han-
dle most simple extensions of Section 4 via an object-oriented software design. This GA is at least as good as the current best
metaheuristics on 26 different problems.

7.2. Considerations about efficiency and limits

Two main reasons can be put forward to explain the efficiency on split-based metaheuristics. As we saw in Section 2.1, the
approach allows working on a smaller search space, without losing information since an optimal solution (subject to the se-
quence) to the problem at hand can be deduced from each giant tour. Moreover, when used in conjunction with a local
search, like in Fig. 3, the split procedure can be viewed as a large neighborhood operator which completes and strengthens
the local search. The price to pay is the extra time spent in the splitting procedure, but we saw in Section 3.2 that the basic
Split is quite fast, with an O(nb) algorithmic complexity. Most additional constraints discussed in Section 4 can be handled
without increasing this low complexity, e.g., time windows, multiple uncapacitated depots, unlimited heterogeneous fleets
of vehicles.



Table 2
Distribution of papers in the four categories.

Comments Basic Split Simple extensions Shared resources Special graphs
Section 3 Section 4 Section 5 Section 6

First publication 1983 1984 2004 1993
First use in metaheuristics 2001 2004 2004 2010
Number of publications 34 27 10 7
Routing problems handled 19 13 6 5
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An increase in complexity can be observed when restricted resources must be shared by the routes. This situation is not
critical when the splitting procedure remains fully polynomial. When b identical vehicles are available, for instance, the com-
plexity becomes O(bnb).

The border between easy and hard cases is crossed in problems like the heterogeneous fixed fleet VRP (HVRP) and the
location-routing problem with capacitated depots (CLRP), which raise NP-hard resource-constrained shortest path problems.
Fortunately, multi-label extensions of Bellman’s algorithms with a pseudo-polynomial complexity are often possible. It is fair
to say that the running time can become excessive if many resources are involved, for instance more than 5 vehicle types in
the HVRP (Prins, 2009a). However, even in such cases, it is possible to resort to heuristic and faster splitting procedures, with
a small loss in solution quality, see Duhamel et al. (2010) for the CLRP and Duhamel et al. (2012) for the HVRP.

The difficulty cannot be predicted for splitting procedures based on unusual auxiliary graphs, like in Section 6. The prob-
lem must be studied in details to find the ad hoc graph and see if a polynomial implementation can be designed. This is at
least the case for the generalized TSP (Bontoux et al., 2010), the team orienteering problem (Bouly et al., 2010), the truck and
trailer routing problem (Villegas et al., 2010), and the generalized VRP (Afsar et al., 2014).

According to us, two research directions are promising. The first one consists in accelerating the split procedures in the
hard cases like the HVRP, using for instance relaxed but accurate versions based on Lagrangean relaxation. The other direc-
tion is to better understand what happens when a metaheuristic navigates between giant tours and complete solutions. For
instance, the current split-based heuristics alternate systematically between the two search spaces: it is probably possible to
obtain better results by defining criteria to decide when Split or Split�1 must be called.

8. Conclusion

This article reviews for the first time the main contributions on order-first split-second methods for vehicle routing prob-
lems. The eleven publications from 1980 to 2000 define the principles of these approaches and apply them to constructive
heuristics or worst-case performance analysis. In most of these papers, the second phase consists in splitting a giant tour by
computing a shortest path in an auxiliary graph, in which each arc models a possible trip. A turning point occurs in 2001 with
the first publication integrating a splitting procedure in a metaheuristic (Lacomme et al., 2001). The key-feature consists in
encoding solutions as giant tours and using a splitting procedure to extract the corresponding solution of the vehicle routing
problem. After this work, more than 60 publications have reported very good results with the inclusion of splitting proce-
dures in various metaheuristics.

Table 2 resumes the distribution of published articles according to this classification. The total number of papers is larger
than in Table 1 because some papers propose several splitting procedures. The recent paper from Vidal et al. (2014) is not
included because it would hide the trends, with its treatment of 26 problems by a single GA. It appears that 43% of publi-
cations use the basic version, even to deal with extensions of classical routing problems. Around 35% of articles tackle simple
extensions required for instance by time windows or unlimited heterogeneous fleets. More involved adaptations with shared
resources or special auxiliary graphs are still scarce, in spite of their numerous potential applications to rich vehicle
problems.

We hope that the reader is now convinced that route-first cluster second heuristics compete with other heuristics for
vehicle routing, contradicting what Laporte and Semet wrote in 2002 (see introduction).
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