
Rollout Algorithms for Discrete Optimization:

A Survey

by

Dimitri P. Bertsekas
Massachusetts Institute of Technology

Cambridge, MA 02139
dimitrib@mit.edu

August 2010

Abstract

This chapter discusses rollout algorithms, a sequential approach to optimization problems, whereby the
optimization variables are optimized one after the other. A rollout algorithm starts from some given heuristic
and constructs another heuristic with better performance than the original. The method is particularly simple
to implement, and is often surprisingly e↵ective. This chapter explains the method and its properties for
discrete deterministic optimization problems.

1. INTRODUCTION

Rollout is a form of sequential optimization that originated in dynamic programming (DP for short). It may
be viewed as a single iteration of the fundamental method of policy iteration. The starting point is a given
policy (called the base policy), whose performance is evaluated in some way, possibly by simulation. Based
on the evaluation, an improved policy is obtained by one-step lookahead. When the problem is discrete and
deterministic, as will be assumed in this chapter, the method is very simple to implement: the base policy
is just some heuristic, and the rollout policy consists of repeated application of this heuristic. The rollout
policy is guaranteed to improve the performance of the base policy, often very substantially in practice. In
this chapter, rather than using the dynamic programming formalism, the method is explained starting from
first principles.

Consider the minimization of a function

g(x1, . . . , xN)

of the discrete variables x1, . . . , xN , assumed to take values in some finite set. This can be done (at least
conceptually) by minimizing over x1 the result of minimization of g over the remaining variables x2, . . . , xN ,
with x1 held fixed, i.e., finding

x⇤1 2 arg min
x1

J1(x1)

where the function J1 is defined by

J1(x1) = min
x2,...,xN

g(x1, x2, . . . , xN).

1

Leaving aside for the moment the di�culty of calculating J1(x1), given the optimal value x⇤1, the optimal
value of x2 can be found by the minimization

x⇤2 2 arg min
x2

J2(x⇤1, x2),

where the function J2 is defined by

J2(x1, x2) = min
x3,...,xN

g(x1, x2, x3, . . . , xN).

Similarly, for every k = 1, . . . , n, given the optimal values x⇤1, . . . , x
⇤
k�1, the optimal value of xk can be found

by the minimization
x⇤k 2 arg min

xk
Jk(x⇤1, . . . , x⇤k�1, xk), k = 1, . . . , N, (1.1)

where the function Jk is defined by

Jk(x1, . . . , xk) = min
xk+1,...,xN

g(x1, . . . , xk, xk+1, . . . , xN). (1.2)

This is a calculation that is typical of DP, where the functions Jk are called the optimal cost-to-go functions,
and are defined by the recursion

Jk(x1, . . . , xk) = min
xk+1

Jk+1(x1, . . . , xk, xk+1),

starting from the boundary condition

JN (x1, . . . , xN) = g(x1, . . . , xN).

[The validity of this recursion can be seen from the definition (1.2) of Jk.]
Unfortunately, there is a serious di�culty with the preceding approach: calculating numerically and

storing the functions Jk in tables is impossible in practice (except for very special problems; if each of the
variables x1, . . . , xk may take m distinct values, the storage of Jk requires a table of size mk). In DP this is
known as the curse of dimensionality.

In the rollout approach, Jk is approximated by a function that is more easily calculated and does not
require excessive storage. In particular, for any given x1, . . . , xk, an easily implementable heuristic (called
base heuristic) is used to approximate the minimization (1.2). If Hk(x1, . . . , xk) denotes the corresponding
approximately optimal value, the rollout algorithm obtains a suboptimal solution by replacing Jk with Hk

in Eq. (1.1):
x̃k 2 arg min

xk
Hk(x̃1, . . . , x̃k�1, xk), k = 1, . . . , N. (1.3)

These minimizations are carried out in sequence, first obtaining x̃1 2 arg minx1 H1(x1), then obtaining
x̃2 2 arg minx2 H2(x̃1, x2), and proceeding with x̃3, . . . , x̃N in that order.

With some analysis and algorithmic refinement, it can be shown that rollout results in no performance
deterioration over just applying the base heuristic once to the original problem. Most importantly, experi-
mentation has shown that rollout typically results in significant and often dramatic improvement over the
common approach of just applying the base heuristic. This improvement comes at the expense of a sub-
stantial but often tractable (polynomial) increase in computational requirements. The following example
provides some insight into the nature of cost improvement.

2

root

Figure 1: Binary tree with N stages for the breakthrough problem. Each
arc is either free or is blocked (crossed out in the figure). The problem is to
find a path from the root to one of the leaves, which is free (such as the one
shown with thick lines).

Example 1: (The Breakthrough Problem)

Consider a binary tree with N stages as shown in Fig. 1. Stage k of the tree has 2k nodes. There are two types of
tree arcs: free and blocked . A free (or blocked) arc can (cannot, respectively) be traversed in the direction from
the root to the leaves. The objective is to break through the graph with a sequence of free arcs (a free path)
starting from the root, and ending at one of the leaves.

One may use a DP-like algorithm to discover a free path (if one exists) by starting from the last stage and
by proceeding backwards to the root node. The kth step of the algorithm determines for each node of stage N�k
whether there is a free path from that node to some leaf node, by using the results of the preceding step. The
amount of calculation at the kth step is O(2N�k). Adding the calculations for the N stages, it can be seen that
the total amount of calculation is O(N2N), so it increases exponentially with the number of stages.

As an alternative, one may suboptimally use a greedy algorithm, which starts at the root node, selects a
free outgoing arc (if one is available), and tries to construct a free path by adding successively nodes to the path.
Generally, at the current node, if one of the outgoing arcs is free and the other is blocked, the greedy algorithm
selects the free arc. Otherwise, it selects one of the two outgoing arcs according to some fixed rule that depends
only on the current node (and not on the status of other arcs). Clearly, the greedy algorithm may fail to find a
free path even if such a path exists, as can be seen from Fig. 1 (e.g., if the choice at the root node is the right-hand
side arc). On the other hand the amount of computation associated with the greedy algorithm is O(N), which
is much faster than the O(N2N) computation of the optimal algorithm. Thus one may may view the greedy
algorithm as a fast heuristic, which is suboptimal in the sense that there are problem instances where it fails while
the DP algorithm succeeds.

Consider also the rollout algorithm that uses the greedy algorithm as the base heuristic. This algorithm
starts at the root and tries to construct a free path by exploring alternative paths constructed by the greedy
algorithm. At the current node, it proceeds according to the following two cases:

(a) If at least one of the two outgoing arcs of the current node is blocked, the rollout algorithm adds to the
current path the arc that the greedy algorithm would select at the current node.

(b) If both outgoing arcs of the current node are free, the rollout algorithm considers the two end nodes of
these arcs, and from each of them it runs the greedy algorithm. If the greedy algorithm succeeds in finding
a free path that starts from at least one of these nodes, the rollout algorithm stops with a free path having
been found; otherwise, the rollout algorithm moves to the node that the greedy algorithm would select at
the current node.

Thus, when both outgoing arcs are free, the rollout algorithm explores further the suitability of these arcs,
as in case (b) above. Because of this additional discriminatory capability, the rollout algorithm always does at

3

least as well as the greedy (it always finds a free path when the greedy algorithm does, and it also finds a free
path in some cases where the greedy algorithm does not). This is consistent with our earlier discussion of the
generic cost improvement property of the rollout algorithm over the base heuristic. On the other hand, the rollout
algorithm applies the greedy heuristic as many as 2N times, so that it requires O(N2) amount of computation
– this is intermediate between the O(N) computation of the greedy and the O(N2N) computation of the DP
algorithm.

The greedy and the rollout algorithms may be evaluated by calculating the probabilities that they will find
a free path given a randomly chosen breakthrough problem. In particular, the graph of the problem may be
generated randomly, by selecting each of its arcs to be free with probability p, independently of the other arcs. If
the corresponding probabilities of success for the greedy and the rollout algorithms are calculated, it follows that
the rollout algorithm has an O(N) times larger probability of finding a free path than the greedy algorithm, while
requiring O(N) times more computation (see [8], Example 6.4.2). This type of tradeo↵ is qualitatively typical:
the rollout algorithm achieves a substantial performance improvement over the base heuristic at the expense of
extra computation that is equal to the computation time of the base heuristic times a factor that is a low order
polynomial of the problem size.

2. THE BASIC ROLLOUT ALGORITHM FOR DISCRETE OPTIMIZATION

The rollout algorithm will now be formalized by introducing a graph search problem that can serve as a
general model for discrete optimization. A graph is given that has a finite set of nodes N , a finite set of
arcs A, and a special node s, called the origin. The arcs are directed in the sense that arc (i, j) is distinct
from arc (j, i). A subset N of nodes is also given, called destinations, and a cost g(i) for each destination i.
The destination nodes are terminal in the sense that they have no outgoing arcs. The problem is to find a
path that starts at the origin s, ends at one of the destination nodes i 2 N , and is such that the cost g(i) is
minimized.

In our terminology, a path is a sequence of arcs

(i1, i2), (i2, i3), . . . , (im�1, im),

all of which are oriented in the forward direction. The nodes i1 and im are called the start node and the
end node of the path, respectively. For convenience, and without loss of generality,† it will be assumed that
given an ordered pair of nodes (i, j), there is at most one arc with start node i and end node j, which (if
it exists) will be denoted by (i, j). In this way, a path consisting of arcs (i1, i2), (i2, i3), . . . , (im�1, im) is
unambiguously specified as the sequence of nodes (i1, i2, . . . , im).

Let us assume the availability of a heuristic path construction algorithm, denoted H, which given
a non-destination node i /2 N , constructs a path (i, i1, . . . , im, i) starting at i and ending at one of the
destination nodes i. Implicit in this assumption is that for every non-destination node, there exists at least
one path starting at that node and ending at some destination node. The algorithm H is referred to as
the base heuristic, and will be used as the basic building block for constructing the rollout algorithm to be
introduced shortly.

The end node i of the path constructed by the base heuristic H is completely specified by the start
node i. The node i is called the projection of i under H, and is denoted by p(i). The corresponding cost is
denoted by H(i),

H(i) = g
�
p(i)

�
.

The projection of a destination node is the node itself by convention, so that i = p(i) and H(i) = g(i) for
all i 2 N . Note that while the base heuristic H will generally yield a suboptimal solution, the path that it

† In the case where there are multiple arcs connecting a node pair, all these arcs can be merged to a single arc,
since the set of destination nodes that can be reached from any non-destination node will not be a↵ected.

4

s i1 im

j1

j2

j3

j4

p(j1)

p(j2)

p(j3)

p(j4)

im-1

Neighbors of im
Projections of

Neighbors of im

Figure 2: Illustration of the rollout algorithm. After m steps, the algorithm has
constructed the path (s, i1, . . . , im). To extend this path at the next step, the set
N(im) of neighbors of the terminal node im is generated, and the neighbor that
has the best projection is selected from this set, i.e.

im+1 2 arg min
j2N(im)

H(j) 2 arg min
j2N(im)

g
�
p(j)

�
.

constructs may involve a fairly sophisticated suboptimization. For example, H may construct several paths
ending at destination nodes according to some heuristics, and then select the path that yields minimal cost.

One possibility for suboptimal solution of the problem is to start at the origin s and use the base
heuristic H to obtain the projection p(s). It is instead proposed to use H to construct a path to a destination
node sequentially. At the typical step, a path that starts at s and ends at a node i is available, the base
heuristic H is run starting from each of the downstream neighbors j of i, and the corresponding projections
and costs are obtained. The neighbor that gives the best projection is chosen as the next node in the current
path. This sequential version of H is called the rollout algorithm based on H, and is denoted by RH.

Formally, let N(i) denote the set of downstream neighbors of a non-destination node i,

N(i) =
�
j | (i, j) is an arc

.

The rollout algorithm RH starts with the origin node s. At the typical step, given a node sequence
(s, i1, . . . , im), where im is not a destination, RH adds to the sequence a node im+1 such that

im+1 2 arg min
j2N(im)

H(j). (2.1)

If im+1 is a destination node, RH terminates. Otherwise, the process is repeated with the sequence
(s, i1, . . . , im, im+1) replacing (s, i1, . . . , im); see Fig. 2.

Once RH has terminated with a path (s, i1, . . . , im), the projection p(ik) of each of the nodes ik,
k = 1, . . . ,m, will have been obtained. The best of these projections yields a cost

min
k=1,...,m

H(ik) = min
k=1,...,m

g
�
p(ik)

�
,

and the projection that corresponds to the minimum above may be taken as the final (suboptimal) solution
produced by the rollout algorithm. The above minimal cost may also be compared with the cost g

�
p(s)

�
of

the projection p(s) of the origin, so that p(s) is used as the final solution if it produces a smaller cost. This
will ensure that the rollout algorithm will produce a solution that is no worse than the one produced by the
base heuristic. Note that while the best neighbor of im is im+1 according to Eq. (2.1), it does not necessarily
follow that im+1 has a better projection that im under H, i.e., that

H(im+1) H(im). (2.2)

5

The reason is that if the path constructed by H starting from im is (im, j1, . . . , jk, i), it is not necessarily
true that the path constructed by H starting from j1 is (j1, . . . , jk, i). If this were so, then Eq. (2.2) would
hold, since im+1 would have no worse projection that j1 according to Eq. (2.1). This argument will be the
basis for further analysis to be given later (see Prop. 1).

Example 2: (Traveling Salesman Problem)

Let us consider the traveling salesman problem, whereby a salesman wants to find a minimum mileage/cost tour
that visits each of N given cities exactly once and returns to the city he started from. With each city i = 1, . . . , N ,
a node is associated and an arc (i, j) with traversal cost aij is introduced for each ordered pair of nodes i and j.
Note that the graph is assumed complete; that is, there exists an arc for each ordered pair of nodes. There is no
loss of generality in doing so because a very high cost aij can be assigned to an arc (i, j) that is precluded from
participation in the solution. The problem is to find a cycle that goes through all the nodes exactly once and
whose sum of arc costs is minimum.

There are many heuristic approaches for solving the traveling salesman problem. For illustration purposes,
consider a simple nearest neighbor heuristic. It starts from a path consisting of just a single node i1 and at each
iteration, it enlarges the path with a node that does not close a cycle and minimizes the cost of the enlargement.
In particular, after k iterations, a path {i1, . . . , ik} consisting of distinct nodes has been constructed, and at the
next iteration, an arc (ik, ik+1) that minimizes aiki over all arcs (ik, i) with i 6= i1, . . . , ik, is added. After N � 1
iterations, all nodes are included in the path, which is then converted to a tour by adding the final arc (iN , i1).

The traveling salesman problem can be formulated as a graph search problem as follows: A starting city,
say i1, is chosen corresponding to the origin of the graph search problem. Each node of the graph search
problem corresponds to a path (i1, i2, . . . , ik), where i1, i2, . . . , ik are distinct cities. The neighbor nodes of the
path (i1, i2, . . . , ik) are paths of the form (i1, i2, . . . , ik, ik+1) that correspond to adding one more unvisited city
ik+1 6= i1, i2, . . . , ik at the end of the path. The destinations are the cycles of the form (i1, i2, . . . , iN), and the
cost of a destination in the graph search problem is the cost of the corresponding cycle. Thus a path from the
origin to a destination in the graph search problem corresponds to constructing a cycle in N � 1 arc addition
steps, and at the end incurring the cost of the cycle.

Let us now use as base heuristic the nearest neighbor method. The corresponding rollout algorithm operates
as follows: After k iterations, a path {i1, . . . , ik} consisting of distinct nodes has been constructed. At the next
iteration, the nearest neighbor heuristic is run starting from each of the paths of the form {i1, . . . , ik, i} where
i 6= i1, . . . , ik, and a corresponding cycle is obtained. The node ik+1 of the path is selected to be the node i that
corresponds to the best cycle thus obtained.

2.1 Termination and Sequential Consistency

The rollout algorithm RH is said to be terminating if it is guaranteed to terminate finitely starting from
any node. Contrary to the base heuristic H, which by definition, has the property that it yields a path
terminating at a destination starting from any node, the rollout algorithm RH need not have this property
in the absence of additional conditions. The termination question can usually be resolved quite easily, and
a few di↵erent methods by which this can be done will now be discussed.

One important case where RH is terminating is when the graph is acyclic, since then the nodes of the
path generated by RH cannot be repeated within the path, and their number is bounded by the number of
nodes in N . As a first step towards developing another case where RH is terminating, consider the following
definition, which will also set the stage for further analysis of the properties of RH.

Definition 1: The base heuristic H is said to be sequentially consistent if for every node i, it has the
following property: If H generates the path (i, i1, . . . , im, i) when it starts at i, it generates the path
(i1, . . . , im, i) when it starts at the node i1.

6

Thus H is sequentially consistent if all the nodes of a path that it generates have the same projection.
There are many examples of sequentially consistent algorithms that are used as heuristics in combinatorial
optimization, including the following.

Example 3: (Greedy Algorithms as Base Heuristics)

Consider a function F , which for each node i, provides a scalar estimate F (i) of the optimal cost starting from i,
that is, the minimal cost g(i) that can be obtained with a path that starts at i and ends at one of the destination
nodes i 2 N . Then F can be used to define a base heuristic, called the greedy algorithm with respect to F , as
follows:

The greedy algorithm starts at a node i with the (degenerate) path that consists of just node i. At the
typical step, given a path (i, i1, . . . , im), where im is not a destination, the algorithm adds to the path a node
im+1 such that

im+1 2 arg min
j2N(im)

F (j). (2.3)

If im+1 is a destination, the algorithm terminates with the path (i, i1, . . . , im, im+1). Otherwise, the process is
repeated with the path (i, i1, . . . , im, im+1) replacing (i, i1, . . . , im).

An example of a greedy algorithm is the nearest neighbor heuristic for the traveling salesman problem (cf.
Example 2). Recall from that example that nodes of the graph search problem correspond to paths (sequences of
distinct cities), and a transition to a neighbor node corresponds to adding one more unvisited city to the end of
the current path. The function F in the nearest neighbor heuristic specifies the cost of the addition of the new
city.

It is also interesting to note that by viewing F as a cost-to-go approximation, the greedy algorithm may
be considered to be a special type of one-step lookahead policy. Furthermore, if F (j) is chosen to be the cost
obtained by some base heuristic starting from j, then the greedy algorithm becomes the corresponding rollout
algorithm. Thus, it may be said that the rollout algorithm is a special case of a greedy algorithm. However, the
particular choice of F used in the rollout algorithm is responsible for special properties that are not shared by
other types of greedy algorithms.

Let us denote by H the greedy algorithm described above and assume that it terminates starting from every
node (this has to be verified independently). Let us also assume that whenever there is a tie in the minimization
of Eq. (2.3), H resolves the tie in a manner that is fixed and independent of the starting node i of the path, e.g.,
by resolving the tie in favor of the numerically smallest node j that attains the minimum in Eq. (2.3). Then it
can be seen that H is sequentially consistent, since by construction, every node on a path generated by H has the
same projection.

For a sequentially consistent base heuristic H, a restriction will be imposed in the way the rollout
algorithm RH resolves ties in selecting the next node on its path; this restriction will guarantee that RH is
terminating. In particular, suppose that after m steps, RH has produced the node sequence (s, i1, . . . , im),
and that the path generated by H starting from im is (im, im+1, im+2, . . . , i). Suppose that among the
neighbor set N(im), the node im+1 attains the minimum in the selection test

min
j2N(im)

H(j), (2.4)

but there are also some other nodes, in addition to im+1, that attain this minimum. Then, the tie is broken in
favor of im+1, i.e., the next node added to the current sequence (s, i1, . . . , im) is im+1. Under this convention
for tie-breaking, the following proposition shows that the rollout algorithm RH terminates at a destination
and yields a cost that is no larger than the cost yielded by the base heuristic H.†

† For an example where this convention for tie-breaking is not observed and as a consequence RH does not
terminate, assume that there is a single destination d and that all other nodes are arranged in a cycle. Each non-
destination node i has two outgoing arcs: one arc that belongs to the cycle, and another arc which is (i, d). Let H
be the (sequentially consistent) base heuristic that starting from a node i 6= d, generates the path (i, d). When the

7

Proposition 1: Let the base heuristic H be sequentially consistent. Then the rollout algorithm RH is
terminating. Furthermore, if (i1, . . . , im̃) is the path generated by RH starting from a non-destination
node i1 and ending at a destination node im̃, the cost of RH starting from i1 is less or equal to the cost
of H starting from i1. In particular,

H(i1) � H(i2) � · · · � H(im̃�1) � H(im̃). (2.5)

Furthermore, for all m = 1, . . . , m̃,

H(im) = min
⇢

H(i1), min
j2N(i1)

H(j), . . . , min
j2N(im�1)

H(j)
�

. (2.6)

Proof: Let im and im+1 be two successive nodes generated by RH, and let (im, i0m+1, i
0
m+2, . . . , im) be the

path generated by H starting from im, where im is the projection of im. Then, since H is sequentially
consistent,

H(im) = H(i0m+1) = g(im).
Furthermore, since i0m+1 2 N(im), using the definition of RH [cf. Eq. (2.1)],

H(i0m+1) � min
j2N(im)

H(j) = H(im+1).

Combining the last two relations,

H(im) � H(im+1) = min
j2N(im)

H(j). (2.7)

To show that RH is terminating, note that in view of Eq. (2.7), either H(im) > H(im+1), or else
H(im) = H(im+1). In the latter case, in view of the convention for breaking ties that occur in Eq. (2.4) and
the sequential consistency of H, the path generated by H starting from im+1 is the tail portion of the path
generated by H starting from im, and has one arc less. Thus the number of nodes generated by RH between
successive times that the inequality H(im) > H(im+1) holds is finite. On the other hand, the inequality
H(im) > H(im+1) can occur only a finite number of times, since the number of destination nodes is finite,
and the destination node of the path generated by H starting from im cannot be repeated if the inequality
H(im) > H(im+1) holds. Therefore, RH is terminating.

Finally, if (i1, . . . , im̃) is the path generated by RH, the relation (2.7) implies the desired relations (2.5)
and (2.6). Q.E.D.

Proposition 1 shows that in the sequentially consistent case, the rollout algorithmRH has an important
“automatic cost sorting” property, whereby it follows the best path generated by the base heuristic H. In
particular, whenRH generates a path (i1, . . . , im̃), it does so by usingH to generate a collection of other paths
and corresponding projections starting from all the successor nodes of the intermediate nodes i1, . . . , im̃�1.
However, (i1, . . . , im̃) is guaranteed to be the best among this path collection and im̃ has minimal cost
among all generated projections [cf. Eq. (2.6)]. Of course this does not guarantee that the path generated
by RH will be a near-optimal path, because the collection of paths generated by H may be “poor.” Still,
the property whereby RH at all times follows the best path found so far is intuitively reassuring.

The following example illustrates the preceding concepts.

terminal node of the path is node i, the rollout algorithm RH compares the two neighbors of i, which are d and the
node next to i on the cycle, call it j. Both neighbors have d as their projection, so there is tie in Eq. (2.4). It can be
seen that if RH breaks ties in favor of the neighbor j that lies on the cycle, then RH continually repeats the cycle
and never terminates.

8

Example 4: (One-Dimensional Walk)

Consider a person who walks on a straight line and at each time period takes either a unit step to the left or a
unit step to the right. There is a cost function assigning cost g(i) to each integer i. Given an integer starting
point on the line, the person wants to minimize the cost of the point where he will end up after a given and fixed
number N of steps.

This problem can be formulated as a graph search problem of the type discussed in the preceding section.
In particular, without loss of generality, assume that the starting point is the origin, so that the person’s position
after n steps will be some integer in the interval [�n, n]. The nodes of the graph are identified with pairs (k, m),
where k is the number of steps taken so far (k = 1, . . . , N) and m is the person’s position (m 2 [�k, k]). A
node (k, m) with k < N has two outgoing arcs with end nodes (k + 1, m� 1) (corresponding to a left step) and
(k + 1, m + 1) (corresponding to a right step). The starting state is (0, 0) and the terminating states are of the
form (N, m), where m is of the form N � 2l and l 2 [0, N] is the number of left steps taken.

Let the base heuristic H be defined as the algorithm, which, starting at a node (k, m), takes N�k successive
steps to the right and terminates at the node (N, m+N � k). Note that H is sequentially consistent. The rollout
algorithm RH, at node (k, m) compares the cost of the destination node (N, m+N �k) (corresponding to taking
a step to the right and then following H) and the cost of the destination node (N, m + N � k� 2) (corresponding
to taking a step to the left and then following H).

Let us say that an integer i 2 [�N + 2, N � 2] is a local minimum if g(i� 2) � g(i) and g(i) g(i + 2). Let
us also say that N (or �N) is a local minimum if g(N � 2) g(N) [or g(�N) g(�N + 2), respectively]. Then
it can be seen that starting from the origin (0, 0), RH obtains the local minimum that is closest to N , (see Fig.
3). This is no worse (and typically better) than the integer N obtained by H. This example illustrates how RH
may exhibit “intelligence” that is totally lacking from H, and is in agreement with the result of Prop. 1.

g(i)

iNN - 2-N 0

(N,0)

(0,0)

(N,-N) (N,N)

i
_

i
_

Figure 3: Illustration of the path generated by the rollout algorithm RH in
Example 4. The algorithm keeps moving to the left up to the time where the base
heuristic H generates two destinations (N, i) and (N, i� 2) with g(i) g(i� 2).
Then it continues to move to the right ending at the destination (N, i), which
corresponds to the local minimum closest to N .

9

Sequential Improvement

It is possible to show that the rollout algorithm improves on the base heuristic (cf. Prop. 1) under weaker
conditions. To this end the following definition is introduced.

Definition 2: The base heuristic H is said to be sequentially improving if for every non-destination
node i,

H(i) � min
j2N(i)

H(j). (2.8)

It can be seen that a sequentially consistent H is also sequentially improving, since sequential consis-
tency implies that H(i) is equal to one of the values H(j), j 2 N(i). The following proposition generalizes
Prop. 1.

Proposition 2: Let the base heuristic H be sequentially improving, and assume that the rollout algo-
rithm RH is terminating. Let (i1, . . . , im̃) be the path generated by RH starting from a non-destination
node i1 and ending at a destination node im̃. Then the cost of RH starting from i1 is less or equal to
the cost of H starting from i1. In particular, for all m = 1, . . . , m̃,

H(im) = min
⇢

H(i1), min
j2N(i1)

H(j), . . . , min
j2N(im�1)

H(j)
�

. (2.9)

Proof: For each m = 1, . . . , m̃� 1,
H(im) � min

j2N(im)
H(j),

by the sequential improvement assumption, while

min
j2N(im)

H(j) = H(im+1),

by the definition of the rollout algorithm. These two relations imply Eq. (2.9). Since the cost of RH starting
from i1 is H(im̃), the result follows. Q.E.D.

Example 5: (One-Dimensional Walk – Continued)

Consider the one-dimensional walk problem of Example 4, and let H be defined as the algorithm that, starting
at a node (k, m), compares the cost g(m + N � k) (corresponding to taking all of the remaining N � k steps to
the right) and the cost g(m�N + k) (corresponding to taking all of the remaining N � k steps to the left), and
accordingly moves to node

(N, m + N � k) if g(m + N � k) g(m�N + k),

or to node
(N, m�N + k) if g(m�N + k) < g(m + N � k).

It can be seen that H is not sequentially consistent, but is instead sequentially improving. Using Eq. (2.9), it
follows that starting from the origin (0, 0), RH obtains the global minimum of g in the interval [�N, N], while H
obtains the better of the two points �N and N .

10

Proposition 2 actually follows from a general equation for the cost of the path generated by the rollout
algorithm, which holds for any base heuristic (not necessarily one that is sequentially improving). This is
given in the following proposition.

Proposition 3: Assume that the rollout algorithm RH is terminating. Let (i1, . . . , im̃) be the path
generated by RH starting from a non-destination node i1 and ending at a destination node im̃. Then
the cost of RH starting from i1 is equal to

H(i1) + �i1 + · · ·+ �im̃�1 ,

where for every non-destination node i,

�i = min
j2N(i)

H(j)�H(i).

Proof: By the definition of the rollout algorithm

H(im) + �im = min
j2N(im)

H(j) = H(im+1), m = 1, . . . , m̃� 1.

By adding these equations over m,

H(i1) + �i1 + · · ·+ �im̃�1 = H(im̃).

Since the cost of RH starting from i1 is H(im̃), the result follows. Q.E.D.

If the base heuristic is sequentially improving, there holds �i 0 for all non-destination nodes i, so it
follows from Prop. 3 that the cost of the rollout algorithm is less or equal to the cost of the base heuristic
(cf. Prop. 2).

The Fortified Rollout Algorithm

A variant of the rollout algorithm will now be described, which implicitly uses a sequentially improving base
heuristic, so that it has the cost improvement property of Prop. 2. This variant, called the fortified rollout
algorithm, and denoted by RH, starts at the origin s, and after m steps, maintains, in addition to the current
sequence of nodes (s, i1, . . . , im), a path

P (im) = (im, i0m+1, . . . , i
0
k),

ending at a destination i0k. Roughly speaking, the path P (im) is the tail portion of the best path found
after the first m steps of the algorithm, in the sense that the destination i0k has minimal cost over all the
projections of nodes calculated thus far.

In particular, initially P (s) is the path generated by the base heuristic H starting from s. At the
typical step of the fortified rollout algorithm RH, a node sequence (s, i1, . . . , im) has been constructed and
the path P (im) = (im, i0m+1, . . . , i

0
k) is available, where im is not a destination. Then, if

min
j2N(im)

H(j) < g(i0k), (2.10)

RH adds to the node sequence (s, i1, . . . , im) the node

im+1 2 arg min
j2N(im)

H(j),

11

and sets P (im+1) to the path generated by H, starting from im+1. On the other hand, if

min
j2N(im)

H(j) � g(i0k), (2.11)

RH adds to the node sequence (s, i1, . . . , im) the node

im+1 = i0m+1,

and sets P (im+1) to the path (im+1, i0m+2, . . . , i
0
k). If im+1 is a destination,RH terminates, and otherwiseRH

repeats the process with (s, i1, . . . , im+1) replacing (s, i1, . . . , im), and P (im+1) replacing P (im), respectively.
The idea behind the construction of RH is to follow the path P (im) unless a path of lower cost is

discovered through Eq. (2.10). It can be shown that RH may be viewed as the rollout algorithm RH
corresponding to a modified version of H, called fortified H, and denoted H. This algorithm is applied to
a slightly modified version of the original problem, which involves an additional downstream neighbor for
each node im that is generated in the course of the algorithm RH and for which the condition (2.11) holds.
For every such node im, the additional neighbor is a copy of i0m+1, and the path generated by H starting
from this copy is (i0m+1, . . . , i

0
k). From every other node, the path generated by H is the same as the path

generated by H.
It can be seen that H is sequentially improving, so that RH is terminating and has the automatic cost

sorting property of Prop. 2; that is,

H(im) = min
⇢

H(i1), min
j2N(i1)

H(j), . . . , min
j2N(im�1)

H(j)
�

.

The above property can also be easily verified directly, using the definition of RH. Finally, it can be seen
that when H is sequentially consistent, the rollout algorithm RH and its fortified version RH coincide.

Using Multiple Base Heuristics - Parallel Rollout

In many problems, several promising path construction heuristics may be available. It is then possible to
use all of these heuristics in parallel within the rollout framework, essentially by combining them into a
single “superheuristic.” In particular, let us assume that K algorithms H1, . . . ,HK are available. The kth of
these algorithms, given a non-destination node i, produces a path (i, i1, . . . , im, i) that ends at a destination
node i, and the corresponding cost is denoted by Hk(i) = g(i). The K algorithms can be incorporated in a
generalized version of the rollout algorithm, which uses the minimal cost

H(i) = min
k=1,...,K

Hk(i), (2.12)

in place of the cost obtained by any one of the K algorithms H1, . . . ,HK .
In particular, the algorithm starts with the origin node s. At the typical step, given a node sequence

(s, i1, . . . , im), where im is not a destination, the algorithm adds to the sequence a node im+1 such that

im+1 2 arg min
j2N(im)

H(j).

If im+1 is a destination node, the algorithm terminates, and otherwise the process is repeated with the
sequence (s, i1, . . . , im, im+1) replacing (s, i1, . . . , im).

An interesting property, which can be readily verified by using the definitions, is that if all the algo-
rithms H1, . . . ,HK are sequentially improving, the same is true for H. This is evident from the fact that
the heuristics run in parallel from a given node may be viewed as a single heuristic, which has the cost
improvement property of Def. 2. The fortified version of the rollout algorithm RH easily generalizes for the

12

case of Eq. (2.12), by defining the path generated starting from a node i as the path generated by the path
construction algorithm, which attains the minimum in Eq. (2.12).

In an alternative version of the rollout algorithm that uses multiple path construction heuristics, the
results of the K algorithms H1, . . . ,HK are weighted with some fixed scalar weights rk to compute H(i) for
use in Eq. (2.1):

H(i) =
KX

k=1

rkHk(i). (2.13)

The weights rk may be adjusted by trial and error, or more sophisticated techniques which may be found in
the literature (see e.g., [6]).

Extension for Intermediate Arc Costs

Let us consider a variant of the graph search problem where in addition to the terminal cost g(i), there is
a cost c(i, j) for a path to traverse an arc (i, j). Within this context, the cost of a path (i1, i2, . . . , in) that
starts at i1 and ends at a destination node in is redefined to be

g(in) +
n�1X
k=1

c(ik, ik+1). (2.14)

Note that when the cost g(i) is zero for all destination nodes i, this is the problem of finding a shortest
path from the origin node s to one of the destination nodes, with c(i, j) viewed as the length of arc (i, j).
However, here we are interested in problems where the number of nodes is very large, and the use of the
shortest path algorithms is impractical.

One way to transform the problem with arc costs into one involving a terminal cost only is to redefine
the graph of the problem so that nodes correspond to sequences of nodes in the original problem graph. Thus
having arrived at node ik using path (i1, . . . , ik), the choice of ik+1 as the next node is viewed as a transition
from (i1, . . . , ik) to (i1, . . . , ik, ik+1). Both nodes (i1, . . . , ik) and (i1, . . . , ik, ik+1) are viewed as nodes of a
redefined graph. Furthermore, in this redefined graph, a destination node has the form (i1, i2, . . . , in), where
in is a destination node of the original graph, and has a cost given by Eq. (2.14).

After the details are worked out, it can be seen that to recover our earlier algorithms and analysis, the
cost of the heuristic algorithm H needs to be modified as follows: If the path (i1, . . . , in) is generated by H
starting at i1, then

H(i1) = g(in) +
n�1X
k=1

c(ik, ik+1).

Furthermore, the rollout algorithm RH at node im selects as next node im+1 the node

im+1 2 arg min
j2N(im)

⇥
c(im, j) + H(j)

⇤
;

[cf. Eq. (2.1)]. The definition of a sequentially consistent algorithm remains unchanged. Furthermore, Prop.
1 remains unchanged except that Eqs. (2.5) and (2.6) are modified to read

H(ik) � c(ik, ik+1) + H(ik+1) = min
j2N(ik)

⇥
c(ik, j) + H(j)

⇤
, k = 1, . . . ,m� 1.

A sequentially improving algorithm should now be characterized by the property

H(ik) � c(ik, ik+1) + H(ik+1),

where ik+1 is the next node on the path generated by H starting from ik. Furthermore, Prop. 2 remains
unchanged, except that Eq. (2.9) is modified to read

H(ik) � min
j2N(ik)

⇥
c(ik, j) + H(j)

⇤
, k = 1, . . . ,m� 1.

13

Finally, the criterion minj2N(im) H(j) < g(i0k) [cf. Eq. (2.10)] used in the fortified rollout algorithm, given
the sequence (s, i1, . . . , im), where im /2 N , and the path P (im) = (im, i0m+1, . . . , i

0
k), should be replaced by

min
j2N(im)

⇥
c(im, j) + H(j)

⇤
< g(i0k) + c(im, i0m+1) +

k�1X
l=m+1

c(i0l, i
0
l+1).

Rollout Algorithms with Multistep Lookahead

It is possible to incorporate multistep lookahead into the rollout framework. To describe the case of 2-step
lookahead, suppose that after m steps of the rollout algorithm, the current node sequence is (s, i1, . . . , im).
Then the set of all 2-step-ahead neighbors of im is considered, defined as

N2(im) =
�
j 2 N | j 2 N(im) and j 2 N , or j 2 N(n) for some n 2 N(im)

.

The base heuristic H is then run starting from each j 2 N2(im) and the node j 2 N2(im) that has projection
of minimum cost is found. Let im+1 2 N(im) be the node next to im on the (one- or two-arc) path from im
to j. If im+1 is a destination node, the algorithm terminates. Otherwise, the process is repeated with the
sequence (s, i1, . . . , im, im+1) replacing (s, i1, . . . , im).

Note that a fortified version of the rollout algorithm described above is possible along the lines described
earlier. Also, it is possible to eliminate from the set N2(im) some of the 2-step neighbors of im that are
judged less promising according to some heuristic criterion, in order to limit the number of applications of
the base heuristic. This may be viewed as selective depth lookahead . Finally, the extension of the algorithm
to lookahead of more than two steps is straightforward: the 2-step-ahead neighbor set N2(im) is simply
replaced with a suitably defined k-step ahead neighbor set Nk(im).

Interpretation in Terms of DP

Let us now reinterpret the graph-based rollout algorithm within the context of deterministic DP. The base
heuristic will be viewed as a suboptimal policy, and the rollout algorithm will be viewed as a policy obtained
by a process of policy improvement, provided the base heuristic is sequentially consistent.

To this end, the graph search problem is cast as a sequential decision problem, where each node
corresponds to a state of a dynamic system. At each non-destination node/state i, a node j must be selected
from the set of neighbors N(i); then if j is a destination, the process terminates with cost g(j), and otherwise
the process is repeated with j becoming the new state. The DP algorithm calculates for every node i, the
minimal cost that can be achieved starting from i, that is, the smallest value of g(i) that can be obtained
using paths that start from i and end at destination nodes i. This value, denoted J⇤(i), is the optimal
cost-to-go starting at node i. Once J⇤(i) is computed for all nodes i, an optimal path (i1, i2, . . . , im) can be
constructed starting from any initial node/state i1 by successively generating nodes using the relation

ik+1 2 arg min
j2N(ik)

J⇤(j), k = 1, . . . ,m� 1, (2.15)

up to the point where a destination node im is encountered.†
A base heuristic H defines a policy ⇡, i.e., an assignment of a successor node to any non-destination

node. However, starting from a given node i, the cost of ⇡ need not be equal to H(i) because if a
path (i1, i2, i3, . . . , im) is generated by H starting from node i1, it is not necessarily true that the path
(i2, i3, . . . , im) is generated by the base heuristic starting from i2. Thus the successor node chosen at node
i2 by policy ⇡ may be di↵erent than the one used in the calculation of H(i1). On the other hand, if H

† It is assumed here that there are no termination/cycling di�culties of the type illustrated in the footnote
following Example 3.

14

is sequentially consistent, the cost of policy ⇡ starting from a node i is H(i), since sequential consistency
implies that the path that the base heuristic generates starting at the successor node is part of the path it
generates at the predecessor node. It turns out that the cost improvement property of the rollout algorithm
in the sequentially consistent case is a special case of a cost improvement property for rollout algorithms
that holds for more general DP contexts, including stochastic ones.

Generally, in the DP context the rollout algorithm RH is viewed as a one-step lookahead policy that
uses H(j) as a cost-to-go approximation from state j. In some cases, H(j) is the cost of some policy (in the
DP sense), such as for example when H is sequentially consistent, as explained above. In general, however,
this need not be so, in which case H(j) can be viewed as a convenient cost-to-go approximation that is derived
from the base heuristic. Still, the rollout algorithm RH may improve on the cost of the base heuristic (e.g.,
when H is sequentially improving, cf. Prop. 2).

3. APPLICATIONS IN DISCRETE OPTIMIZATION

Finally, to provide some perspective on the rollout methodology, let us explore the connections with some
important discrete optimization problems and methods. In particular, let us consider the generic discrete
optimization problem of minimizing a cost function g(x) over a finite set X of feasible solutions. This
problem will be reformulated as a graph search problem. It may be noted that several reformulations are
possible, and di↵erent choices of the underlying graph give rise to di↵erent rollout algorithms. Thus, it is
important to select a reformulation that matches the type of rollout algorithm one wishes to develop. Some
reformulations and corresponding rollout algorithms will be discussed in what follows, and these algorithms
will be related to some general computational methods.

Suppose that each solution x has N components; that is, it has the form x = (x1, . . . , xN), where N is
a positive integer. For example, in a 0-1 integer programming problem, each component xk may correspond
to a single variable that can take the values 0 or 1, or alternatively it may correspond to a multidimensional
vector involving several variables each taking the values 0 or 1. In a network optimization problem, each
component xk may correspond to a vector involving the flows of several arcs of the network. One way to
reformulate the problem

minimize g(x)
subject to x 2 X

into the framework of the search problem is to introduce an acyclic graph involving an artificial origin node
s and N subsets of nodes I1, . . . , IN . In particular, for each feasible solution x 2 X and each k = 1, . . . , N ,
the node set Ik contains a node (x(k), k), where x(k) consists of the first k components of x [two feasible
solutions x, x0 2 X whose first k components are identical are mapped onto the same node (x(k), k) of Ik].
Each node (x(N), N) 2 IN is viewed as a destination node of the graph and has cost g(x), where x is the
feasible solution mapping onto x(N). The origin node is connected with an arc to each node (x(1), 1) 2 I1.
Furthermore, for every k = 1, . . . , N � 1, each node (x(k), k) 2 Ik is connected with an arc to each node
(x(k +1), k +1) 2 Ik+1 such that the components x1, . . . , xk of x(k) and the first k components x(k +1) are
identical. A few observations may be made:

(a) Selecting one neighbor out of the set of neighbors of the origin node amounts to selecting the 1st
component x1 of x, while selecting one neighbor out of the set of neighbors of a node (x(k), k) 2 Ik

amounts to selecting the (k + 1)st component xk+1 of x.

(b) Choosing a path that starts at s and ends at a destination node (x(N), N) amounts to a sequential
choice of the components of x: the 1st component is chosen when the arc connecting s to a node
(x(1), 1) 2 I1 is selected, and the kth component is chosen (k = 2, . . . , N) when the arc connecting a
node (x(k� 1), k� 1) 2 Ik�1 to a node (x(k), k) 2 Ik is selected. For each k = 2, . . . , N , the first k� 1
components of x(k � 1) and x(k) are identical.

15

(c) Any base heuristic that starts at node s amounts to a sequential choice of the components xk, k =
1, . . . , N , so that the final result (x1, . . . , xN) is feasible (belongs to X). Any base heuristic that
starts at a non-destination node (x(k), k) 2 Ik, amounts to a sequential choice of the components
xk+1, . . . , xN , so that after they are added to the k components x1, . . . , xk specified by x(k), the final
result (x1, . . . , xN) is feasible.

Given a base heuristic H, as described in (c) above, the kth step of the rollout algorithm RH mini-
mizes g with respect to the kth component xk, while keeping the preceding components x1, . . . , xk�1 at the
values selected at the preceding steps, and using the base heuristic H to supply the remaining components
xk+1, . . . , xN .

Here is an example where the base heuristic is trivial, and the rollout algorithm leads to a well-known
method.

Example 6: (Coordinate Descent)

Assume that the set X has the (Cartesian product) form

�
(x1, . . . , xN) | xk 2 Xk, k = 1, . . . , N

, (3.1)

where Xk, k = 1, . . . , N , are some given finite sets. In principle, there is no loss of generality in this assumption
since sets Xk such that the set (3.1) contains X can always be found, and the cost g(x) can be set to a very high
value for every x /2 X that belongs to the set (3.1).

Let x be some given feasible solution. Consider the base heuristic that operates as follows:

(a) Starting from the origin s, it generates the solution x.

(b) Starting from (x(k), k) 2 Ik, k = 1, . . . , N1, it generates the solution that has the first k components equal
to the corresponding k components of x(k), and the last N � k components equal to the corresponding last
N � k components of x.

Then, it can be seen that the rollout algorithm is equivalent to a coordinate descent method that starts from x,
and yields (x̃1, . . . , x̃N) according to

x̃1 2 arg min
x12X1

g(x1, x2, . . . , xN),

x̃k 2 arg min
xk2Xk

g(x̃1, . . . , x̃k�1, xk, xk+1, . . . , xN), k = 2, . . . , N.

Note that a more general version of coordinate descent is obtained by using a base heuristic similarly defined
by multiple solutions x1, . . . , xm in place of x. Then the preceding equation are replaced by

x̃1 2 arg min
x12X1

min
�
g(x1, x

1
2, . . . , x

1
N), . . . , g(x1, x

m
2 , . . . , xm

N)

,

x̃k 2 arg min
xk2Xk

min
�
g(x̃1, . . . , x̃k�1, xk, x1

k+1, . . . , x
1
N), . . . , g(x̃1, . . . , x̃k�1, xk, xm

k+1, . . . , x
m
N)

, k = 2, . . . , N.

The preceding example provides a baseline. It shows what can be achieved in a coordinate-based
formulation of the rollout algorithm, even with a very trivial base heuristic. One can expect much better
performance with more sophisticated base heuristics.

There are interesting variations of the coordinate-based reformulation of the generic discrete optimiza-
tion problem into a graph search problem. In particular, the problem has been reformulated so that the
components of x1, . . . , xN are selected in a specific order. Alternative orders are possible, and in fact an
attempt to optimize the choice of order may be e↵ected through the rollout algorithm. This can be done by
introducing the index of the component of x as part of the specification of a node. In particular, the nodes

16

in the “layer” Ik of the graph may have the form (x(k), k, n) where n specifies the next component to be
chosen by the rollout algorithm.

Let us also explore the relation between rollout algorithms and local search methods, which are a broad
and important class of heuristics for the generic discrete optimization problem of minimizing g(x) over the
finite set X. A local search method uses the notion of a neighborhood N(x) of a feasible solution x 2 X,
which is a (usually small) subset of X, containing solutions that are “close” to x in some sense.

In particular, given a solution x, the method selects among the solutions in the neighborhood N(x)
a successor solution x0, according to some rule. The process is then repeated with x0 replacing x (or stops
when some termination criterion is met). Thus a local search method is characterized by:

(a) The method for choosing a starting solution.

(b) The definition of the neighborhood N(x) of a solution x.

(c) The rule for selecting a successor solution from within N(x).

(d) The termination criterion.

The definition of a neighborhood often involves intricate calculations and suboptimizations that aim
to bring to consideration promising neighbors. While the definition of neighborhood is typically problem-
dependent, some general classes of procedures for generating neighborhoods have been developed. An ex-
ample of such a class is the well-known genetic algorithms.

The criterion for selecting a solution from within a neighborhood is usually the cost of the solution,
so that a neighbor of minimum cost is selected. Then, by assuming that each x 2 X belongs to its own
neighborhood N(x), the local search is cost improving, and e↵ectively stops at a local minimum, that is, a
solution that is no worse than all other solutions within its neighborhood. Attention will be restricted to
such methods, but there are important alternatives, such as in the methods of tabu search and simulated
annealing, which will not be discussed here.

Consider a cost improving local search method, as described above, and let N(x) and x be the neigh-
borhood definition and the starting point of the method, respectively. Let us assume that there is a given
limit M to the number of iterations, so that the method terminates when it reaches this limit (if it encoun-
ters a local minimum before M iterations are performed, it may be assumed that it simply repeats the local
minimum, until the limit M is reached). We will provide a reformulation of the problem into the framework
of the search problem of the preceding section, so that the rollout algorithm becomes identical to the local
search method described above.

To this end, an acyclic graph is introduced, which consists of an origin node that corresponds to the
starting solution x, and M subsets of nodes I1, I2, . . . , IM , which may be viewed as replicas of the feasible
set X. In particular, for each feasible solution x 2 X and each k = 1, . . . ,M , the node set Ik contains a node
(x, k). Each node (x,M) 2 IM is viewed as a destination node of the graph and has cost g(x). The origin
node is connected with an arc to each node (x, 1) such that x 2 N(x), while for every k = 1, . . . ,M �1, each
node (x, k) 2 Ik is connected with an arc to each node (x0, k + 1) 2 Ik+1 such that x0 2 N(x).

Consider now the base heuristic that starting from a node (x, k) 2 Ik, generates the destination (x,N)
with cost g(x). Then, it can be seen that the rollout algorithm reduces to the local search method. In
particular, the rollout algorithm, given x after k steps [i.e., when at node (x, k)], it considers all x0 in the
neighborhood N(x), and runs the base heuristic starting at x0 and yielding the cost g(x0). It then selects
x0 2 N(x) that yields the minimum cost. This is exactly what the local search method also does.

The preceding reformulation suggests that rollout algorithms can provide an additional dimension
to local search methods, whereby intermediate infeasible solutions may be generated, and these solutions
are evaluated through their projections, which are obtained through a base heuristic. Thus, while local
search methods rely on a single construct, namely neighborhoods, for selecting successive solutions, rollout
algorithms bring to bear two independent constructs, neighborhoods and base heuristics. It should be
mentioned also that rollout algorithms embody some additional important methodological ideas, namely

17

DP and policy iteration. For this reason, rollout algorithms admit natural extensions to stochastic control
problems, for which there is no known analog of a local search method.

4. NOTES AND SOURCES

The main idea of rollout algorithms, obtaining an improved policy starting from some other suboptimal
policy using a one-time policy improvement, has appeared in several DP application contexts. In the context
of game-playing computer programs, it has been proposed by Abramson [1] and by Tesauro and Galperin
[24]. The name “rollout” was coined by Tesauro in specific reference to rolling the dice in the game of
backgammon. In Tesauro’s proposal, a given backgammon position is evaluated by “rolling out” many
games starting from that position, using a simulator, and the results are averaged to provide a “score” for
the position. The internet contains a lot of material on computer backgammon and the use of rollout, in
some cases in conjunction with multistep lookahead and cost-to-go approximation.

The application of rollout algorithms to discrete optimization problems has its origin in the neuro-
dynamic programming work of the author and J. Tsitsiklis [6]. The formalization as a path construction
algorithm, including the notions of sequential consistency, sequential improvement, fortified and parallel
rollout, was given in the paper by Bertsekas, Tsitsiklis, and Wu [2]. The subsequent paper by Bertsekas
and Castanon [3] considered its application to stochastic DP and stochastic scheduling. The analysis of the
breakthrough problem (Example 1) is given in the DP book by Bertsekas [8], and is based on unpublished
work by Bertsekas, Castanon, and Tsitsiklis. An analysis of the optimal policy and some suboptimal policies
for this problem is given by Pearl [18]. A discussion of rollout algorithms as applied to network optimization
problems may be found in the author’s network optimization book [7].

For applications of rollout algorithms, see Christodouleas [11], Duin and Voss [12], Secomandi [21],
[22], [23], Ferris and Voelker [13], [14], McGovern, Moss, and Barto [16], Savagaonkar, Givan, and Chong
[19], Bertsimas and Popescu [5], Guerriero and Mancini [15], Tu and Pattipati [25], Wu, Chong, and Givan
[26], Chang, Givan, and Chong [10], Meloni, Pacciarelli, and Pranzo [17], Yan, Diaconis, Rusmevichientong,
and Van Roy [27], Besse and Chaib-draa [4], and Sun, Zhao, Lun, and Tomastik [20]. These works discuss a
broad variety of applications and case studies, and generally report positive computational experience. The
survey [9] discusses rollout algorithms from a control theory point of view, and explores its close connection
with model predictive control (MPC).

5. REFERENCES

[1] Abramson, B., 1990. “Expected-Outcome: A General Model of Static Evaluation,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, Vol. 12, pp. 182-193.

[2] Bertsekas, D. P., Tsitsiklis, J. N., and Wu, C., 1997. “Rollout Algorithms for Combinatorial Optimiza-
tion,” Heuristics, Vol. 3, pp. 245-262.

[3] Bertsekas, D. P., and Castanon, D. A., 1999. “Rollout Algorithms for Stochastic Scheduling Problems,”
Heuristics, Vol. 5, pp. 89-108.

[4] Besse, C., and Chaib-draa, B., 2008. “Parallel Rollout for Online Solution of DEC-POMDPs,” Proc. of
21st International FLAIRS Conference, pp. 619-624.

[5] Bertsimas, D., and Popescu, I., 2003. “Revenue Management in a Dynamic Network Environment,”Tran-
sportation Science, Vol. 37, pp. 257-277.

[6] Bertsekas, D. P., and Tsitsiklis, J. N., 1996. Neuro-Dynamic Programming, Athena Scientific, Belmont,
MA.

18

[7] Bertsekas, D. P., 1998. Network Optimization: Continuous and Discrete Models, Athena Scientific, Bel-
mont, MA.

[8] Bertsekas, D. P., 2005. Dynamic Programming and Optimal Control, Vol. I, Athena Scientific, Belmont,
MA.

[9] Bertsekas, D. P., 2005. “Dynamic Programming and Suboptimal Control: A Survey from ADP to MPC,”
in Fundamental Issues in Control, European J. of Control, Vol. 11, Nos. 4-5.

[10] Chang, H. S., Givan, R. L., and Chong, E. K. P., 2004. “Parallel Rollout for Online Solution of Partially
Observable Markov Decision Processes,” Discrete Event Dynamic Systems, Vol. 14, pp. 309-341.

[11] Christodouleas, J. D., 1997. “Solution Methods for Multiprocessor Network Scheduling Problems with
Application to Railroad Operations,” Ph.D. Thesis, Operations Research Center, Massachusetts Institute of
Technology.

[12] Duin, C., and Voss, S., 1999. “The Pilot Method: A Strategy for Heuristic Repetition with Application
to the Steiner Problem in Graphs,” Networks, Vol. 34, pp. 181191.

[13] Ferris, M. C., and Voelker, M. M., 2002. “Neuro-Dynamic Programming for Radiation Treatment Plan-
ning,” Numerical Analysis Group Research Report NA-02/06, Oxford University Computing Laboratory,
Oxford University.

[14] Ferris, M. C., and Voelker, M. M., 2004. “Fractionation in Radiation Treatment Planning,” Mathematical
Programming B, Vol. 102, pp. 387-413.

[15] Guerriero, F., and Mancini, M., 2003. “A Cooperative Parallel Rollout Algorithm for the Sequential
Ordering Problem,” Parallel Computing, Vol. 29, pp. 663-677.

[16] McGovern, A., Moss, E., and Barto, A., 2002. “Building a Basic Building Block Scheduler Using Rein-
forcement Learning and Rollouts,” Machine Learning, Vol. 49, pp. 141-160.

[17] Meloni, C., Pacciarelli, D., and Pranzo, M., 2004. “A Rollout Metaheuristic for Job Shop Scheduling
Problems,” Annals of Operations Research, Vol. 131, pp. 215-235.

[18] Pearl, J., 1984. Heuristics, Addison-Wesley, Reading, MA.

[19] Savagaonkar, U., Givan, R., and Chong, E. K. P., 2002. “Sampling Techniques for Zero-Sum, Discounted
Markov Games,” in Proc. 40th Allerton Conference on Communication, Control and Computing, Monticello,
Ill.

[20] Sun, T., Zhao, Q., Lun, P., and Tomastik, R., 2008. “Optimization of Joint Replacement Policies for
Multipart Systems by a Rollout Framework, IEEE Transactions on Automation Science and Engineering,
Vol. 5, pp. 609619.

[21] Secomandi, N., 2000. “Comparing Neuro-Dynamic Programming Algorithms for the Vehicle Routing
Problem with Stochastic Demands,” Computers and Operations Research, Vol. 27, pp. 1201-1225.

[22] Secomandi, N., 2001. “A Rollout Policy for the Vehicle Routing Problem with Stochastic Demands,”
Operations Research, Vol. 49, pp. 796-802.

[23] Secomandi, N., 2003. “Analysis of a Rollout Approach to Sequencing Problems with Stochastic Routing
Applications,” J. of Heuristics, Vol. 9, pp. 321-352.

[24] Tesauro, G., and Galperin, G. R., 1996. “On-Line Policy Improvement Using Monte Carlo Search,”
presented at the 1996 Neural Information Processing Systems Conference, Denver, CO; also in M. Mozer et
al. (eds.), Advances in Neural Information Processing Systems 9, MIT Press (1997).

19

[25] Tu, F., and Pattipati, K. R., 2003. “Rollout Strategies for Sequential Fault Diagnosis,” IEEE Trans. on
Systems, Man and Cybernetics, Part A, pp. 86-99.

[26] Wu, G., Chong, E. K. P., and Givan, R. L., 2003. “Congestion Control Using Policy Rollout,” Proc. 2nd
IEEE CDC, Maui, Hawaii, pp. 4825-4830.

[27] Yan, X., Diaconis, P., Rusmevichientong, P., and Van Roy, B., 2005. “Solitaire: Man Versus Machine,”
Advances in Neural Information Processing Systems, Vol. 17, to appear.

20

