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Abstract.

In this paper we propose a hybrid memory adaptive heuristic for solving the
Capacitated Minimum Spanning Tree (CMST) problem.  We augment the problem
formulation with additional non-redundant constraints via use of adaptive memory, to
improve upon the performance of an elementary heuristic (the Esau-Williams heuristic).
Our methodology is tested against many of the previously reported heuristics for the
CMST.  We conclude that our generalized procedure performs on par with the best of
these approaches in terms of solution quality, while expending a very modest amount of
computational effort.
________________________________________________________________________
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1.  INTRODUCTION

The capacitated spanning tree problem (CMST) is one of connecting a set of

demand nodes to a central node through a minimum-cost tree network.  This problem

plays an important role in the design of local access telecommunications networks, and is

known to be NP-complete (Papadimitriou, 1978).  The CMST has in the past been solved

using heuristics  (Esau & Williams, 1966; Kershenbaum & Chou, 1974; Karnaugh, 1976;

Kershenbaum et al., 1980; Gavish & Altinkemer, 1986; Amberg et al., 1996; Sharaiha et

al. 1997), cutting-plane methods (Gouveia & Martins, 1995; Hall, 1996), and integer

programming (Gavish, 1983).  The heuristic approaches are often faster than the cutting-

plane and integer programming approaches and thus suitable for solving larger problem

instances, but the quality of the solutions are typically not as good.

The goal of our research efforts is the development of an effective, problem

independent, heuristic procedure which produces high-quality solutions.  To accomplish

this, we develop the adaptive reasoning technique (ART). Let us define a solution path as

being the sequence of choices made by a greedy heuristic, which result in a feasible

solution to the problem.  The ART methodology is a generalized approach that externally

modifies the solution path of a greedy heuristic.  Thus, the greedy solution technique is

self-adaptive to specific problem instances by learning from the problem instance at

hand.  The main algorithm learns from information contained in the solutions found by

the greedy heuristic.  The modifications made by the ART methodology are external to

the greedy heuristic because the greedy heuristic remains unchanged.  Rather than

changing the greedy heuristic, additional constraints change the problem the greedy

heuristic is solving.  The ART methodology adds intelligence regarding the problem

instance to the knowledge already embedded in the greedy solution technique, and it adds

this knowledge by creating additional constraints which simply prohibit the use of
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particular decision variables.  By altering a single choice in the solution path, the

subsequent choices made by the greedy heuristic are altered.  The knowledge added by

the ART methodology, together with the problem knowledge embedded in the greedy

heuristic, create a very powerful solution technique.

This paper is structured as follows: in the next section we outline a formulation

for the CMST, and some of the previous heuristic solution methods are reviewed in

section 3.  We propose a memory based solution procedure in section 4.  Section 5

demonstrates the computational results, while our conclusions are summarized in section

6.

2.  PROBLEM FORMULATION

The Capacitated Minimum Spanning Tree problem is one of connecting a set of

demand nodes to a central node through a minimum-cost tree network.  Given a graph,

G(V, E), where V is the set of demand nodes (with the associated demand vector Dv), E is

the set of possible edges in the graph (with the associated arc cost vector Ce, and an arc

capacity K), and V* is a designated goal node, the objective is to find a minimum-cost

spanning tree that is rooted in node V* where each sub-tree branch from node V* does not

contain more than K nodes.  Various formulations have been proposed (Gavish, 1982 and

1983; Gouviea, 1993 and 1995).  Gavish (1983) has formulated the goal-directed

capacitated minimum spanning tree problem as follows:
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We here assume fixed capacity on each arc of K, fixed load requirements from each node

of 1 unit, and non-uniform arc costs of Cij for establishing a link between nodes i and j.

The objective function then minimizes the total cost of the communication arcs which are

used.  Unit flows originating at every node are sent to a single goal node.  Constraint set

(2) implies that the flow from every node is sent to only one other node.  In this

formulation, node 1 is designated as the goal node.  Constraint set (3) implies that the

cumulative flow coming out of every non-goal node is one more than the cumulative load

going into that node.  The average load for each node is set to one.  Constraint set (4)

implies that the flow coming out of any node on an activated (or used) arc will not exceed

the capacity (K) of that arc.  Constraint set (5) implies that flows on all arcs are non-

negative, and constraint set (6) implies that an arc is either used or is not used.  The cost

of using an arc is fixed regardless of the volume of flow on the arc.  The costs of opening

particular arcs in this problem are not identical.
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3.  PREVIOUS RESEARCH

One of the first, and best-known, heuristics for the CMST was proposed by Esau

and Williams in 1966 ( we refer to this heuristic as the EW algorithm).  This procedure

starts with an “empty” spanning tree (no arcs are used), and then adds arcs in a greedy

fashion based on a modified cost structure without violating the capacity constraint, until

it finds a feasible spanning tree.  The EW modifies the cost structure for an arc (i,j) to be

the arc cost (cij) less the minimum distance directly to the goal node (min { ciV*, cjV*}).

The time complexity of the EW heuristic is O(n2 log2n) (Amberg et al, 1996).

Gavish and Altinkemer (1986) and Altinkemer and Gavish (1988) proposed the

Parallel Savings Algorithm (PSA) method for solving the CMST.  The PSA is a solution

procedure which has been applied with various degrees of success.  Its' computational

complexity is of order O(n3 log2K) (Amberg et al., 1996).  Hall (1996) presents a cutting

plane algorithm that often produces good solutions, but typically requires excessive CPU

times.  Gouveia and Martins (1995) use a cutting plane algorithm with sub-tour

elimination constraints, but their method often requires extraordinarily long CPU times.

Given the limitations and shortcomings of the cutting-plane and heuristic solution

procedures, a meta-heuristic algorithm is a viable solution approach.  Sharaiha et al.

(1997) developed a tabu search (TS) procedure for solving the CMST.  This procedure

produced some good solutions (compared to the bounds) for some well-known CMST

instances, but the results were not formally compared to those of previously proposed,

high-quality, solution methods.  This algorithm is designed specifically for the CMST

problem, using techniques related to problem structure to improve on the solutions.

Amberg et al. (1996) provided an overview of past solution approaches to the

CMST.  They found that most of the past solution methods are focused on arcs when

generating or transforming a solution.  As a result of their findings, they proposed an
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algorithm that focuses on transformations of node partitions (rather than arc partitions).

Given the node assignments of a particular solution, they propose a local search

procedure based on node exchanges.  To enable the search to escape local optima, they

investigate the use of simulated annealing and tabu search as meta-heuristics.  In addition

to studying the effects of parameters for the various methods they proposed, our

interpretation of the results as related to well-known test problems leads us to believe that

their solution approach is a superior one in terms of solution quality (see section 5 below

for a discussion of solution quality).  Further, the computational complexity of their

approach is also very reasonable, being linear with problem size if changes in the cost

matrix are allowed to be stored.  The time complexity, as stated by the authors, is O(nK3)

if exchange moves are allowed between node sets, and O(nK2) when allowing for simple

moves (no exchanges) only.

Karnaugh (1976) proposed a second-order heuristic incorporating a modified EW

solution method for the multipoint network optimization problem.  The second-order

heuristic is somewhat related to the modern memory-based methods.  His technique

proposes two subroutines, Inhibit and Join, which when used within the framework of a

modified EW procedure produce high-quality solutions.  Either subroutine alone, or

applied successively, are used to rule arcs in (Join) or out (Inhibit) of a given solution.

The main idea behind Karnaugh's Inhibit procedure is to test what would happen

to the solution if a particular arc was ruled out of consideration (this can be

operationalized by selecting an arc, setting its cost high, and applying the EW heuristic.

This must be repeated for every arc).  After testing the status of making every chosen arc

inhibited, the inhibition yielding the lowest cost solution is made permanently inhibited

(or tabooed or prohibited).  This approach is intriguing, but rather inefficient from a

computational standpoint (approximately O(n4), Amberg et al., 1996).
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The Join procedure is a node inspection procedure which determines if a node

should be connected to its nearest neighbor, or to its nearest neighbor closer to the goal

node than the node itself (unless this is already the case in the current solution).   The

corresponding arc is then locked into the solution, and EW is run to find the new cost of

the solution.  The best Join is then made permanent, and the procedure is repeated.  The

complexity of the procedure is again approximately on the order of O(n4), (Amberg et al.,

1996).

Kershenbaum et al. (1980) proposed a second-order heuristic for the CMST which

attempts to improve upon the EW solution.  This algorithm forces inclusion of one or

more arcs found by solving the minimum spanning tree (MST) problem which the EW

solution of the CMST problem omitted.  The procedure iteratively solves the MST

problem and the EW algorithm for the CMST problem, compares the solutions, and then

forces arcs into the next iteration of the EW solution by modifying the arc costs.  The

time complexity is bounded above by O((n-1)3).  This is a worst-case analysis of the time

complexity where none of the arcs in the MST solution are present in the EW solution

and limiting the examined subsets of solutions to contain not more than 2 elements

(Amberg et al., 1996).

In creating a new heuristic for the CMST, we focused on addressing some of the

weaknesses of previously proposed heuristics, and at the same time construct a procedure

that would be easily generalizable to other problem domains.

4.  A SOLUTION APPROACH TO THE CMST

Many meta-heuristic solution approaches, and most adaptive memory

programming techniques, belong to the class of  “generate-and-test” search techniques.

In pure generate-and-test, a candidate solution is generated and then sent to an evaluator
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for testing.  If the candidate solution is not satisfactory, then the procedure is repeated.  In

a memory-based meta-heuristic, we retain some information regarding our past solutions,

and often prohibit the immediate re-use of certain elements of those past solutions by

creating a memory of used solution elements.  In addition, one can also ensure that

certain solution elements remain available, and are never prohibited.  Tabu search is one

such search technique, and is based on (human) memory functions (for a comprehensive

summary, see Glover, 1997).  In tabu search the generate and test procedure is typically

(but not always) applied to candidate solutions that are generated from a “neighborhood”

of previously tested solutions using certain tabu search memory functions.  The

transformation from one solution to a neighboring solution is known as a move.

In this paper, we propose the learning-based meta-heuristic ART which uses some

of the memory functions of tabu search, but conceptually deviates significantly from the

tabu methodology.  Primarily, we do not utilize the notion of solution neighborhoods and

move functions to traverse such neighborhoods.  Instead, we propose a constructive

procedure that is applied iteratively.  The basis of our proposed algorithm is to iteratively

solve the CMST by using the EW heuristic, and at each iteration modify a set of

additional constraints.  These constraints, which when applied to the simplistic EW

procedure, provide an efficient means of searching the problem space.  The conceptual

difference between our procedure and regular tabu search, is that we do not define search

neighborhoods and transition functions (moves).  Rather, we impose dynamic constraints

on a simple heuristic procedure.  One imposed constraint alone is enough to yield a

solution that may be entirely different from a solution found when no such constraint was

present.  We will use the CMST problem and the EW heuristic to demonstrate our

generalized learning and heuristic design rules in the next sections.

The Esau-Williams heuristic solution procedure for the CMST is deterministic,
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extremely modest in computational requirements, and always obtains a feasible solution.

However, computational experiments show that the weakness of the EW procedure is in

its greedy functionality:  that is, an arc that “looks good” (i.e., the arc is cheap) early on

in the arc selection process, may lead to later arc selections that result in a high-cost

solution.  Adding constraints to prohibit the selection of particular arcs may compensate

for biases which cause the EW heuristic to greedily make the “wrong” decision.  We

recognize that prohibited arcs may in fact be arcs that should be included in an optimal

solution.  The “expiration time” of the constraint prohibiting a particular arc will allow a

previously prohibited arc to be reconsidered later in the search, and possibly in the

context of a new set of additional arc constraints.  We use the prohibition of arcs as a

method of forcing the simplistic EW procedure to search other regions of the problem

space.

Terminology and Description of the Algorithm

The constraint memory is a list containing a time duration (a prohibition time

similar to a tabu time) during which selection of the decision variable is prohibited.  The

time duration is measured in number of iterations of executing the EW heuristic.  The

depth of learning is the length of commitment (in number of iterations) that a new

constraint prohibiting the use of a particular decision variable will endure.  We set the

depth of learning initially to 40 (which is a data dependent parameter setting) and reduce

the depth of learning by 10% at the end of each phase.  A phase is a complete cycle of

our algorithm with a single depth of learning (see Figure 1).  We execute a total of 25

phases.  The stored constraint memory associated with the best solution is used as the

starting constraint memory for each phase.  Forgetting is the process of removal of

constraints whose time durations have lapsed.  Shortening the constraint memory reduces
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the length (time duration) of current prohibitions on the use of decision variables.

Forgetting can be accelerated by dynamically shortening select elements of the constraint

memory.  In our experiments, a shortening function of 20% was used.  This means that

for 20% of the arcs, the length of prohibition was reduced proportionally based on a

random draw from a uniform distribution in the range [0,1] at the end of each phase.

Also, after each iteration of the EW heuristic, if a decision variable has been prohibited,

then there is a very small chance that the memory for this decision variable will be reset

to zero (the prohibition is removed).  The probability of prohibition removal is dynamic

and is equal to 
numberPhase 

1.0
.

The learning rate is the frequency with which you decide to make a decision

variable constrained (prohibited).  This frequency is measured in percent.  The learning

rate increase (LRI) is the stepwise increase in the learning rate over a specific time

frame.  Five (5) learning rate cycles are made within each phase, where LRI is increasing

over the cycles.  The learning rate is proportionally increased by the LRI as a function of

the cycles as follows:  Learning Rate=2*(1+LRI)(Cycle-1).  That is, the learning rate starts

out limited at 2%, and then increases by LRI% at each consecutive cycle. In our

experiments we chose LRI to be 80%, resulting in learning rates of 2%, 3.6%, 6.48%,

11.66%, and finally 20.99% at each cycle respectively.  In essence, as the learning rate

cycle increases, the more likely ART is to prohibit constraints.  This concept is one of

gaining confidence in the prohibition choices as time lapses.  The learning rates were

determined by trial and error, and found to be reasonably effective, although not terribly

sensitive.  As a guideline, we found that the learning rate itself was most effective when

started at some relatively small fraction (1-5%).  The key here was not to exclude arcs too

early in the search, and thus the low initial learning rate.  Further, the LRI was effective
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both at the 80% and 90% levels.  The key issue we found here was that we should be

more confident about prohibitions later in the search process.  For each learning rate, the

learning process continues until 15 consecutive iterations occur without an improvement

to the best feasible solution.  The best feasible solution is the lowest cost solution found

to that point in the algorithm.  The learning process consists of solving the CMST using

EW subject to additional arc constraints, then evaluate the solution, and create additional

constraints which are valid for a particular time duration.  Once you decide to add a

constraint (prohibit a decision variable), the time duration with which the constraint will

endure is based on the depth of learning, the cost of the arc, and a random probability (the

time duration will be discussed in detail below when Figure 4 is discussed).  Further rules

are added to increase the probability that certain arcs will be chosen to be constrained

(see below).

After having completed a reasonable number1 of iterations, a subset of best

solutions can be analyzed to determine the commonalities of their memories.  This

requires that the constraint memories associated with the best solutions are saved.  The

most fruitful analysis of the subset of “best memories” is to determine which decision

variables the best answers have all left unconstrained.  Once the algorithm has performed

200 iterations of the EW, we prohibit additional constraints on arcs which are not

constrained in the constraint memories associated with all of the ten (10) best solutions

found.  Intuitively, after 200 iterations of the EW procedure, the 10 best solutions contain

most of the worthwhile constraints.  By limiting the subsequent search to the constraints

contained in the top 10 “best memories”, we substantially improve the solutions by

focusing our search in a limited (and fruitful) search space.  As the constraint memory

expires, decision variables become available for use.  If any decision variable is
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unconstrained in all of the top 10 best solutions at any point subsequent to the 200th

iteration, then that decision variable can no longer be considered for prohibition.  In this

intensification process, the memory typically converges to a local minimum.  In the 100

node problems which we examined in detail (discussed in the next section), we typically

had about 30 decision variables (arcs) which were still allowed to be constrained at the

200th iteration mark.  The number of constrained decision variables converged to between

5 and 10 by the end of the algorithm, so that the best solutions actually had very few

constraints.  The learning rules were sufficient to hone in on a (local or global) minimum

point.  This lends credence to the idea that inappropriate constraints expired and the

appropriate decision variables were allowed to be used.  Further, this enables us to

propose an algorithm that does not use explicit local search.

Figures 1 through 4 depicts the flowcharts associated with the meta-heuristic

algorithm described above.  Figure 1 is an overview of the ART procedure.  Figure 2

depicts the process of dynamically creating and removing arc constraints, whereas Figure

3 depicts the process of adding arc constraints.

We label an arc “chosen” if it is included in the most recent EW solution.  Figure

4 depicts the probabilistic constraint establishment (PCE) for a chosen arc, and  explains

the probabilistic constraint establishment process noted in each process box of Figure 3.

Note that the Learning Rate varies from low to high within each phase, and only impacts

whether or not a particular constraint will be added.  If a constraint is to be added to

prohibit the selection of a particular arc, then the time duration for this additional

constraint must be selected.  The time duration is dependent on three variables: the depth

of learning, a multiplier selected randomly from a uniform distribution [0,1], and the cost

of the arc.  The allocation of additional time steps is further described in Figure 3:  one

                                                                                                                                           
1 The 200 iteration mark was selected empirically as a reasonable number of iterations.
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time step is added (to the constraint memory) if the PCE is applied to all arcs chosen by

this iteration of the EW heuristic; two (2) time steps are added if the PCE is applied to the

3% most costly arcs chosen by this iteration of the EW heuristic; five (5) time steps are

added if the PCE is applied to the highest cost arc on the longest CMST branch2 chosen

by this iteration of the EW heuristic; and five (5) time steps are added if the PCE is

applied to the highest cost chosen arc on every CMST branch.  Thus, a very costly chosen

arc may have 4 chances to be prohibited: once for being a chosen arc, twice for being

among the 3% of the most costly chosen arcs, three times for being the highest cost

chosen arc on the longest CMST branch, and four times for being the highest cost chosen

arc on this arc’s particular branch.  More expensive arcs are more likely to be chosen to

be prohibited, and because the time duration is dependent upon the cost of the arc and the

reason for the prohibition, their time duration is likely to be longer than for a cheaper arc.

The specific choices for the additional time steps were determined empirically.

Comparing the ART method to the second-order heuristics, ART uses the learning

rules and memory to establish additional constraints whereas the second-order heuristics

use exhaustive local search among all of the arcs chosen to find the best decision variable

to prohibit and require.  ART seems to be effective than the second-order heuristics at

finding a good set of additional constraints (see next section).  As evidenced by the

computational results in the next section, we believe that the particular ART learning

rules and memory which we have implemented for the CMST are more effective than the

second-order heuristic procedures.  However, the worst-case time complexity of ART is

less than that of the second-order heuristics.  The time complexity of ART for the CMST

problem is equal to that of the EW heuristic (O(n2 log2n) ) whereas the time complexity

of the Karnaugh second-order heuristic implemented for the CMST problem is O(n4) and

                                               
2 The longest CMST branch is the branch with the highest total cost.
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the worst-case time complexity of the Kershenbaum et al. second-order heuristic

implemented for the CMST problem is O((n-1)3).

The main advantage of the ART methodology is that the dynamic learning rule

and memory functions try different combinations of additional constraints on the decision

variables.  With ART, the prohibition of a particular decision variable can enter, be

removed, reenter, be removed again, and so on.  All the while, prohibitions on other

decision variables are being added and deleted.  The ART learning rules and memory

functions allow it to overcome its own early mistakes.  In comparison, after each iteration

of the constructive heuristic (in this case, EW), the second-order heuristics choose the

best single prohibition and/or inclusion given all of the previous prohibitions, and then

lock-in that constraint permanently.  This technique does not allow the second-order

heuristics to overcome a prohibition and/or inclusion that was greedily made but should

not have been.

5.  COMPUTATIONAL RESULTS

We obtained 20 well know problem sets from the OR-Library maintained by J.

Beasley at the WEB site http://mscmga.ms.ic.ac.uk/info.html.  The first ten problem

instances (tc40_i.txt and tc80_i.txt, i=1..5) have the goal node in the center of the graph,

whereas the other ten problem instances (te40_i.txt and te80_i.txt, i=1..5) have the goal

node at the end of the node scatter.  The problems consist of 40 nodes (te40_i and tc40_i)

and 80 nodes (te80_i and tc80_i) respectively.  The 40 node problems were solved using

arc capacities of 3, 5, and 10, whereas the 80 node problems were solved with arc

capacities of 5, 10, and 20.  Thus, a total of 60 known problem instances were solved.

The 60 problem instances are all fully connected graphs.  The ART heuristic for the OR

test bank problems was coded in Fortran 77, and executed on a 266MHz Pentium II-
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based personal computer with 96 MB of memory, running Windows 98.  All problems

were solved with unit demand data.

For the known problem sets (obtained from the OR-Library) we solved each

problem instance using the EW heuristic and our own heuristic memory adjusting

procedure (ART).  For ART, we report the best solution found from 100 runs, as well as

the average CPU time for each run.  The bounds were kindly provided to us by Luis

Gouveia (1995; and personal communication based on his research in progress).  We

further report results from Sharaiha (TS) et al. (1997) as reported in their paper.  The

actual results from Amberg (AMB) et al. (1996) do not explicitly appear in their paper,

and were provided to us by Luis Gouveia.  We also report the solutions from the

Karnaugh algorithm (KAR) (1976), the Kerschenbaum et al. algorithm (KBO) (1980),

and an improved version of the algorithm proposed by Gavish & Altinkemer (IPSA)

(1986) as implemented for the CMST problem3.

The results for the tc instances are reported in Table 1, and the results for the te

instances are reported in Table 2.  We see that for the tc problems, the average gap

between the bounds and the EW procedure was 4.44%, compared to 1.08% for TS,

0.32% for AMB, 1.09 % for KAR, 3.29% for KBO, 4.74% for IPSA, and 0.98% for

ART.  For the te problems, the gaps were 5.57% for EW, 3.8% for TS, 0.65% for AMB,

2.34% for KAR, 5.17% for KBO, 9.11% for IPSA, and 1.39% for ART.  Across both te

and tc, the gap results were 5.01% for EW, 2.44% for TS, 0.49% for AMB, 1.72% for

KAR, 4.23% for KBO, 6.93% for IPSA, and 1.18% for ART.   In conclusion, we see that

Amberg et al. (1996) had devised a problem specific tabu search procedure that delivers

very high quality solutions.  Surprisingly, Karnaugh's second order heuristic from 1976

produces solutions that are better than those of more recent algorithms, with the
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exception of AMB and ART.  We see a clear favor in using AMB and ART (over the

other approaches) for solving large problem instances where the goal (or root) node is an

end vertex.  We further refer to Hall (1996, p. 228), who states: "… we believe that by

placing the root node in the center we are effectively making the capacity constraints less

restrictive, compared to placing the root node in the corner; that is, there is an interplay

between the capacity and the location of the root node."   We agree with this assessment,

and conclude that both the AMB and ART method produces better solutions on average

than the other methods when the problem constraints are more restrictive.

While CPU comparisons between the different solutions approaches are not

directly available, it seems that the CPU times for the TS and ART procedures are fairly

similar.  AMB is limited to 600 seconds of CPU time on a fairly dated 66MHz 486 PC.

This may indicate that the AMB approach is the most computationally efficient of all of

the above approaches.  The remaining heuristics, KAR, KB and IPSA, have associated

computational complexities that are by far inferior to AMB and ART.

We verified that twelve of the known lower bounds for the 40 node tc problems

are indeed equal to the optimal solution.  For the te problems we also verified that six of

the known lower bounds are indeed equal to the optimal solution.  For all the test

problems with capacity 5 or higher, we were not able to improve on the solutions found

by Amberg et al. (1996), and thus we cannot claim that we have found any new best

solutions to the test problems with capacity higher than 5.  We have verified that the

bounds for test problems tc40_1 though tc40_5 with capacity 3 are indeed equal to the

optimal solutions.  Further, we verified that the bounds for test problems te40_1 and

te40_2 with capacity 3 are also equal to the optimal solutions.  Gouveia (1995) states that

the lower bounds for the tc40 and te40 problems with capacity 3 are in fact optimal.

                                                                                                                                           
3 These results were kindly provided to us by Luis Gouveia.
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To comparatively test our algorithm on graphs structurally different from the

known test problems, we generated three additional sets of graphs: 20 graphs with

Euclidean arc distances, 20 with random arc distances, and 20 with mixed Euclidean and

random arc distances (on the average, 50% Euclidean and 50% random arc distances).

The rationale for using the latter graph set is that most real-world problems exhibit some

mix of Euclidean and random arc distances.  The randomness, or non-Euclidean features,

are typically caused by physical obstacles, such as mountains, lakes, rivers, etc.  For each

of these graph types (Euclidean, Random, Mixed) we generated five problems with 50

nodes, 10 with 100 nodes, and 5 with 150 nodes.  The graphs were generated by

allocating random nodes with x and y integer coordinates taken from a uniform

distribution in the [0,100] range.  For the Euclidean problems, the Euclidean distances are

used as arc costs.  For the Random problems we use random costs on all arcs, drawn from

a uniform distribution in the [0,141] range (141 is approximately the length of the

diagonal in a 100x100 square).  For the Mixed problems we generated the arc costs by

using the Euclidean cost as a base, and adding a random component in the range [0,

Euclidean cost base of the arc].  All costs are symmetric for all graph types.

We use the origin as the goal node (or root node) for the total flows (the origin is

the corner node which is the lower left corner of the node scatter).  For each graph we

generated numerous problem instances by considering only subset of the total arcs in the

graphs.  These subsets were created by setting an arc density of “n”, by selecting only the

n cheapest arcs attached to each node from the complete graph.  We then created nine

problem instances by varying n from 5 to 45 for the 50 node graph; 19 problem instances

by varying n from 5 to 95 for the 100 node graph, and 29 problem instances by varying n

from 5 to 145 for the 150 node graph (for each of the two graph types).  Thus we

generated a total 45 problem instances with 50 nodes, 190 problem instances with 100
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nodes, and 145 problem instances with 150 nodes for each graph type (Euclidean,

Random, Mixed).  For each 50 node instance, we solved the problem set the arc capacity

to 4, and for the 150 node instances the arc capacity was 10.  For the 100 node problems,

we generated separate problem instances with arc capacities of 5 and 10.  Thus, we

generated a total 1710 problem instances.

In order to provide a basis for comparison for our proposed memory-adjusting

heuristic, in addition to coding our own heuristic, we obtained code for two popular

heuristics for solving the CMST:  Esau-Williams’ Heuristic (Esau and Williams, 1966)

and Gavish-Altinkemer’s Parallel Savings Algorithm (PSA) Heuristic (Gavish &

Altinkemer, 1986).  Note that PSA is the original implementation by Gavish and

Altinkemer (1986), rather than the improved version by Gouveia and Paixao (1991).  The

algorithms for these additional problems were coded in Fortran 77, and executed on a 133

MHz R4000 SGI Indigo.  All problems were solved with unit demand data.  Esau-

Williams’ heuristic procedure is extremely fast, but typically does not produce high-

quality solutions compared to the more recently developed algorithms.

We solved each of the Euclidean, Random, and Mixed problem instances once

(for each problem instance) using the EW, ART using only 10 life-cycle phases and a

simpler memory loss function, and the PSA methods.  In Table 3, we report the

percentage difference between average solution values from the PSA to EW and ART for

the Euclidean, Random, and Mixed graphs.  From Table 3 it is clear that the ART

heuristic on average provides better solutions than the PSA heuristic.  The average

improvement of ART over PSA is about 0.53% for Euclidean graphs, 11.58% for

Random graphs, and 6.52% for mixed graphs.  EW produces solutions that are on the

average 1.47% worse as compared to those of PSA for Euclidean graphs, 13.98% worse

for Random graphs, and 12.12% worse for Mixed graphs.
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The improvements of ART over EW range from a minimum of about 1%, to a

maximum of around 30%, with an average improvement of approximately 25% for the

graphs with Random arc costs and 2.5% for the graphs with Euclidean arc costs.  The

improvements over EW due to the ART procedure for the random arc weights are

approximately 25%!  The ART procedure was able to overcome the poor performance of

the embedded EW heuristic to significantly outperform the PSA.  This demonstrates the

ability of the ART procedure to significantly improve upon the performance of even the

most simplistic of heuristics.

In Table 3 we also report the average computational times for ART and PSA.  The

EW procedure’s CPU times are not reported, since this heuristic was found to have

negligible CPU requirements (much less than a second for most problem instances).

Note that the PSA heuristic is superior with respect to CPU needs to that of the ART,

requiring approximately 1/10 of the ART procedure, depending upon the number of

nodes in the problem.  However, we must note that the ART procedure is far superior to

the PSA in solution quality.  While testing a version of the ART algorithm with 4 life-

cycle phases (as opposed to 10) we found that we can reduce its CPU requirements by

60%.  This reduction comes at a price of lower solution quality: the average improvement

over PSA was now 0.26% and 8.8% for the Euclidean and Random graphs respectively

using 4 life-cycle phases.  The improvement of 8.8% (over PSA) for the random graphs is

still a considerable enhancement.

In Table 4 we depict a brief summary of the minimum solution value found for

EW and ART (compared to the minimum solution value found by PSA) for each of the

data sets we generated.  In light of this table, we see that the ART results are better than

the average results reported in Table 3.  For the Euclidean graphs the average minimum

improvement of ART over PSA is 0.6%, while the improvement is 10.15% for the mixed
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problems, and 14.54% for the random problems.

The computational complexity of the ART procedure is fully dependent on the

primary heuristic.  Since the EW heuristic has a time complexity of O(n2log2n), the

complexity of ART is bounded by this measure as well.  It is worth noting that the ART

heuristic does not use any form of local search to find local optima.  The reason for

omitting local search is two-fold:  first, the additional time complexity of most local

search procedures (at least O(n2) for performing a complete neighborhood search for the

CMST) causes the total complexity of the algorithm to increase significantly.  Secondly,

a local search procedure may not be easily generalizable across problem domains.  Note

from the results that the ART procedure seems remarkably good at finding the local

optima on its own!

6.  SUMMARY AND CONCLUSIONS

In this paper we have suggested a meta-heuristic based on memory adjustments

and learning for solving the CMST problem.  The contributions of our research are as

follows: we have proposed a new memory-adjusting heuristic solution procedure that

appears to be easily generalizable for solving many combinatorial optimization problems.

We demonstrated the memory-adjusting principles in a solution procedure for the CMST

problem, and concluded that our memory-adjusting procedure performs, on the average,

better than most other current heuristics with respect to solution quality.  The

computational effort expended by the ART heuristic is modest.

In summary, there has been much research in the past decade into the solution of

the CMST problem.  We have provided a comprehensive comparison of our proposed

method to other techniques in the same class of heuristic procedures.  Solution times for

several of these algorithms increase substantially with problem size (e.g. KAR, KBO, and
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IPSA).

Additionally, we have demonstrated that the performance results using

Euclidean–based costs for the CMST problem instances may differ from results using

random-based costs.  The ART method performs well compared to the EW and PSA

methods regardless of the underlying cost structure.

We postulate that the ART technique derives its success from being able to make

cuts in the problem space (the introduction of new constraints), and successfully learn

about the effectiveness of these cuts and the combinations of various cuts.  This type of

cut-and-learn technique could be useful for solving a wide range of problems.  In our

current research, we are indeed exploring the use of ART to other problems that are

structurally unrelated to the CMST, and we have seen evidence of success in applying

our methodology to scheduling problems (Rolland et al, 1998).

We are indebted to Luis Gouveia for providing us with the bounds for the tc and te test problems and

solution values for several solution methods to the tc and te test problems which were not available in the

literature.
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Figure 1.  The Memory Adaptive Reasoning Technique (ART)
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Figure 2.  Evaluate Solution: Create and Remove Additional Arc Constraints
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Figure 3.  An Algorithm for Addition of a Constraint on an Arc
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Figure 4.   Probabilistic Constraint Establishment for a Chosen Arc
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Problem ART Lower
ID Capacity EW TS AMB KAR KBO IPSA Solution Time1

Bound EW TS AMB KAR KBO IPSA2
ART

tc40_1 3 774 744 n/a n/a n/a n/a 742 11.25 742 4.31% 0.27% n/a n/a n/a n/a 0.00%
tc40_2 3 749 728 n/a n/a n/a n/a 717 11.11 717 4.46% 1.53% n/a n/a n/a n/a 0.00%
tc40_3 3 728 722 n/a n/a n/a n/a 716 11.06 716 1.68% 0.84% n/a n/a n/a n/a 0.00%
tc40_4 3 804 793 n/a n/a n/a n/a 775 11.05 775 3.74% 2.32% n/a n/a n/a n/a 0.00%
tc40_5 3 760 741 n/a n/a n/a n/a 741 11.1 741 2.56% 0.00% n/a n/a n/a n/a 0.00%
tc40_1 5 595 590 586 586 608 619 588 11.75 586 1.54% 0.68% 0.00% 0.00% 3.75% 5.63% 0.34%
tc40_2 5 588 585 578 583 603 608 583 11.69 578 1.73% 1.21% 0.00% 0.87% 4.33% 5.19% 0.87%
tc40_3 5 602 577 577 577 612 621 577 11.96 577 4.33% 0.00% 0.00% 0.00% 6.07% 7.63% 0.00%
tc40_4 5 645 618 617 617 566 650 617 11.87 617 4.54% 0.16% 0.00% 0.00% -8.27% 5.35% 0.00%
tc40_5 5 615 602 600 605 613 630 605 11.95 600 2.50% 0.33% 0.00% 0.83% 2.17% 5.00% 0.83%
tc40_1 10 516 500 498 498 519 506 498 12.06 498 3.61% 0.40% 0.00% 0.00% 4.22% 1.61% 0.00%
tc40_2 10 505 490 490 490 511 508 490 12.12 490 3.06% 0.00% 0.00% 0.00% 4.29% 3.67% 0.00%
tc40_3 10 517 500 500 508 512 520 500 12.29 500 3.40% 0.00% 0.00% 1.60% 2.40% 4.00% 0.00%
tc40_4 10 524 513 512 512 513 528 512 11.98 512 2.34% 0.20% 0.00% 0.00% 0.20% 3.13% 0.00%
tc40_5 10 540 504 504 504 520 536 504 12.42 504 7.14% 0.00% 0.00% 0.00% 3.17% 6.35% 0.00%

Average for tc40 : 611.0 11.7 3.40% 0.53% 0.00% 0.33% 2.23% 4.75% 0.14%

tc80_1 5 1182 1133 1099 1112 1159 1154 1120 85.24 1094 8.04% 3.56% 0.46% 1.65% 5.94% 5.48% 2.38%
tc80_2 5 1170 1124 1100 1115 1128 1147 1122 82.44 1090 7.34% 3.12% 0.92% 2.29% 3.49% 5.23% 2.94%
tc80_3 5 1131 1095 1073 1083 1110 1127 1080 80.12 1067 6.00% 2.62% 0.56% 1.50% 4.03% 5.62% 1.22%
tc80_4 5 1151 1108 1080 1098 1136 1137 1101 79.95 1070 7.57% 3.55% 0.93% 2.62% 6.17% 6.26% 2.90%
tc80_5 5 1338 1324 1287 1298 1325 1339 1293 97.12 1268 5.52% 4.42% 1.50% 2.37% 4.50% 5.60% 1.97%
tc80_1 10 920 901 888 907 920 910 896 86.45 878 4.78% 2.62% 1.14% 3.30% 4.78% 3.64% 2.05%
tc80_2 10 917 886 877 889 909 919 889 80.58 875 4.80% 1.26% 0.23% 1.60% 3.89% 5.03% 1.60%
tc80_3 10 916 880 880 892 904 914 888 80.62 869 5.41% 1.27% 1.27% 2.65% 4.03% 5.18% 2.19%
tc80_4 10 915 874 868 874 924 924 880 80.24 863 6.03% 1.27% 0.58% 1.27% 7.07% 7.07% 1.97%
tc80_5 10 1069 1005 1002 1020 1036 1084 1031 83.71 998 7.11% 0.70% 0.40% 2.20% 3.81% 8.62% 3.31%
tc80_1 20 856 834 834 838 858 852 842 84.2 834 2.64% 0.00% 0.00% 0.48% 2.88% 2.16% 0.96%
tc80_2 20 836 820 820 824 842 844 826 80.07 820 1.95% 0.00% 0.00% 0.49% 2.68% 2.93% 0.73%
tc80_3 20 856 828 828 832 832 842 832 80.78 828 3.38% 0.00% 0.00% 0.48% 0.48% 1.69% 0.48%
tc80_4 20 866 820 820 824 836 836 824 80.83 820 5.61% 0.00% 0.00% 0.49% 1.95% 1.95% 0.49%
tc80_5 20 971 916 916 922 955 958 937 91.66 916 6.00% 0.00% 0.00% 0.66% 4.26% 4.59% 2.29%

Average for tc80 :  83.6 5.48% 1.63% 0.53% 1.60% 4.00% 4.74% 1.83%
Average for tc :  47.7 4.44% 1.08% 0.32% 1.09% 3.29% 4.74% 0.98%
 

1 Measured in seconds on a 266 MHz Pentium II computer running Windows 98
2 This is the improved PSA algorithm

Previous solutions % Gap from lower bound
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Problem ART Lower

ID Capacity EW TS AMB KAR KBO IPSA Solution Time1
Bound EW TS AMB KAR KBO IPSA2

ART
te40_1 3 1215 1192 n/a n/a n/a n/a 1190 11.47 1190 2.10% 0.17% n/a n/a n/a n/a 0.00%
te40_2 3 1134 1117 n/a n/a n/a n/a 1103 11.17 1103 2.81% 1.27% n/a n/a n/a n/a 0.00%
te40_3 3 1146 1115 n/a n/a n/a n/a 1117 11.51 1115 2.78% 0.00% n/a n/a n/a n/a 0.18%
te40_4 3 1153 1144 n/a n/a n/a n/a 1134 11.22 1132 1.86% 1.06% n/a n/a n/a n/a 0.18%
te40_5 3 1147 1115 n/a n/a n/a n/a 1115 11.28 1104 3.89% 1.00% n/a n/a n/a n/a 1.00%
te40_1 5 857 875 830 847 859 905 835 12.66 830 3.25% 5.42% 0.00% 2.05% 3.49% 9.04% 0.60%
te40_2 5 839 812 792 796 822 880 794 12.02 792 5.93% 2.53% 0.00% 0.51% 3.79% 11.11% 0.25%
te40_3 5 820 822 797 797 838 881 797 12.54 797 2.89% 3.14% 0.00% 0.00% 5.14% 10.54% 0.00%
te40_4 5 854 835 814 820 853 893 815 12.21 814 4.91% 2.58% 0.00% 0.74% 4.79% 9.71% 0.12%
te40_5 5 816 796 784 789 848 842 797 12.08 784 4.08% 1.53% 0.00% 0.64% 8.16% 7.40% 1.66%
te40_1 10 658 614 596 602 636 653 608 14.35 596 10.40% 3.02% 0.00% 1.01% 6.71% 9.56% 2.01%
te40_2 10 632 591 573 577 611 645 573 12.41 573 10.30% 3.14% 0.00% 0.70% 6.63% 12.57% 0.00%
te40_3 10 596 591 568 572 592 652 572 12.33 568 4.93% 4.05% 0.00% 0.70% 4.23% 14.79% 0.70%
te40_4 10 638 608 596 598 609 676 596 12.5 596 7.05% 2.01% 0.00% 0.34% 2.18% 13.42% 0.00%
te40_5 10 597 572 572 574 612 647 572 12.44 572 4.37% 0.00% 0.00% 0.35% 6.99% 13.11% 0.00%

Average for te40 :  12.1 4.77% 2.06% 0.00% 0.70% 5.21% 11.12% 0.45%

te80_1 5 2604 2570 2544 2559 2577 2671 2555 81.2 2531 2.88% 1.54% 0.51% 1.11% 1.82% 5.53% 0.95%
te80_2 5 2633 2574 2551 2571 2586 2711 2564 82.64 2522 4.40% 2.06% 1.15% 1.94% 2.54% 7.49% 1.67%
te80_3 5 2723 2741 2612 2675 2640 2694 2644 82.75 2593 5.01% 5.71% 0.73% 3.16% 1.81% 3.90% 1.97%
te80_4 5 2624 2672 2558 2612 2612 2637 2574 82.11 2539 3.35% 5.24% 0.75% 2.88% 2.88% 3.86% 1.38%
te80_5 5 2593 2557 2469 2553 2489 2609 2475 82.59 2458 5.49% 4.03% 0.45% 3.86% 1.26% 6.14% 0.69%
te80_1 10 1746 1688 1631 1658 1708 1711 1672 84.12 1631 7.05% 3.49% 0.00% 1.66% 4.72% 4.90% 2.51%
te80_2 10 1748 1678 1643 1685 1713 1746 1659 85.5 1602 9.11% 4.74% 2.56% 5.18% 6.93% 8.99% 3.56%
te80_3 10 1828 1775 1688 1743 1736 1772 1719 82.33 1660 10.12% 6.93% 1.69% 5.00% 4.58% 6.75% 3.55%
te80_4 10 1685 1906 1629 1708 1732 1760 1655 83.17 1614 4.40% 18.09% 0.93% 5.82% 7.31% 9.05% 2.54%
te80_5 10 1712 1685 1603 1663 1660 1684 1631 88.39 1586 7.94% 6.24% 1.07% 4.85% 4.67% 6.18% 2.84%
te80_1 20 1330 1311 1275 1285 1301 1363 1293 83.4 1256 5.89% 4.38% 1.51% 2.31% 3.58% 8.52% 2.95%
te80_2 20 1289 1266 1225 1238 1317 1339 1248 83.58 1201 7.33% 5.41% 2.00% 3.08% 9.66% 11.49% 3.91%
te80_3 20 1340 1329 1267 1297 1344 1413 1280 87.16 1257 6.60% 5.73% 0.80% 3.18% 6.92% 12.41% 1.83%
te80_4 20 1343 1337 1265 1320 1370 1403 1289 84.68 1247 7.70% 7.22% 1.44% 5.85% 9.86% 12.51% 3.37%
te80_5 20 1334 1259 1240 1251 1336 1340 1245 87.13 1231 8.37% 2.27% 0.73% 1.62% 8.53% 8.85% 1.14%

Average for te80 :  84.05 6.38% 5.54% 1.09% 3.43% 5.14% 7.77% 2.32%
Average for te :  48.1 5.57% 3.80% 0.65% 2.34% 5.17% 9.11% 1.39%

Grand average for te  and tc  problems: 55.2 5.01% 2.44% 0.49% 1.72% 4.23% 6.93% 1.18%

1 Measured in seconds on a 266 MHz Pentium II computer running Windows 98
2 This is the improved PSA algorithm

Previous solutions % Gap from lower bound
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Euclidean Mixed Random Euclidean Mixed Random
NODES CAPACITY EW ART EW ART EW ART ART PSA ART PSA ART PSA

50 4 0.91% -0.40% 11.56% -5.66% 11.19% -9.04% 66.06 3.83 66.27 4.39 66.14 4.46
100 5 1.20% -0.21% 15.66% -6.46% 18.57% -10.83% 462.57 34.01 471.13 41.47 471.68 42.21
100 10 1.73% -1.23% 12.44% -6.31% 14.65% -11.79% 492.32 35.92 485.91 43.75 486.09 44.06
150 10 2.04% -0.27% 8.81% -7.65% 11.50% -14.67% 1504.60 126.99 1483.45 154.12 1482.20 154.72

Average: 1.47% -0.53% 12.12% -6.52% 13.98% -11.58% 631.39 50.19 626.69 60.93 626.53 61.36

These are the average percentages of the solution value for the average of each dataset above (below) PSA

Solution Values CPU Times
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Euclidean Mixed Random
NODES CAPACITY EW ART EW ART EW ART

50 4 0.92% -0.78% 11.01% -8.70% 10.85% -12.44%
100 5 1.01% -0.69% 18.00% -8.79% 21.83% -12.22%
100 10 3.25% -0.25% 12.67% -10.05% 16.16% -15.13%
150 10 2.41% -0.68% 8.76% -13.04% 14.35% -18.35%

Average: 1.90% -0.60% 12.61% -10.15% 15.80% -14.54%

Solutions reported are the average percentages of the minimum solution value over all 

graph densities for each dataset above (below) PSA


