
Chapter 2Set cover and its application toshortest superstringUnderstanding the area of approximation algorithms involves identifying cornerstone problems:problems whose study leads to discovering techniques that become general principles in the area,and problems that are general enough that other problems can be reduced to them. Problems suchas matching, maximum ow, shortest path and minimum spanning tree are cornerstone problemsin the design of exact algorithms. In approximation algorithms, the picture is less clear at present.Even so, problems such as minimum set cover and minimum Steiner tree can already be said tooccupy this position.In this chapter, we will �rst analyse a natural greedy algorithm for the minimum set coverproblem. We will then show an unexpected use of set cover to solve the minimum superstringproblem. An algorithm with a much better approximation guarantee will be presented in Chapter7 for the latter problem; the point here is to illustrate the wide applicability of the set cover problem.Minimum set coverProblem 2.1 (Minimum set cover) Given a universe U of n elements and a collection ofsubsets of U , S1; : : :Sk, with non-negative costs speci�ed, the minimum set cover problem asks fora minimum cost collection of sets whose union is U .Perhaps the �rst algorithm that comes to mind for this problem is one based on the greedystrategy of iteratively picking the most cost-e�ective set and removing the covered elements, untilall elements are covered. Let C be the set of elements already covered at the beginning of aniteration. During this iteration, de�ne the cost-e�ectiveness of a set S to be the average cost atwhich it covers new elements, i.e., cost(S)jS\Cj: De�ne the price of an element to be the average cost atwhich it is covered. Equivalently, when a set S is picked, we can think of its cost being distributedequally among the new elements covered, to set their prices.11



12 Set cover and its application to shortest superstringAlgorithm 2.2 (Greedy set cover algorithm)1. C  ;2. while C 6= U doFind the most cost-e�ective set in the current iteration, say S.Let � = cost(S)jS\Cj , i.e., the cost-e�ectiveness of S.Pick S, and for each e 2 S � C, price(e) �.3. Output the picked sets.Number the elements of U in the order in which they were covered by the algorithm, resolvingties arbitrarily. Let e1; : : :en be this numbering.Lemma 2.3 For each k 2 f1; : : : ; ng, price(ek) � OPTn�k+1 .Proof : In any iteration, the left over sets of the optimal solution can cover the remainingelements at a cost of at most OPT. Therefore, there must be a set having cost-e�ectiveness at mostOPTjCj . In the iteration in which element ek was covered, C contained at least n � k + 1 elements.Since ek was covered by the most cost-e�ective set in this iteration, it follows thatprice(ek) � OPTjCj � OPTn� k + 1 : 2From Lemma 2.3, we immediately obtain:Theorem 2.4 The greedy algorithm is an Hn factor approximation algorithm for the minimum setcover problem, where Hn = 1 + 12 + � � �+ 1n .Proof : Since the cost of each set picked is distributed among the new elements covered, thetotal cost of the set cover picked is equal to Pnk=1 price(ek). By Lemma 2.3, this is at most�1 + 12 + � � �+ 1n� �OPT. 2Example 2.5 Following is a tight example:
...

1/n 1/(n-1) 1

1+εThe greedy algorithm outputs the cover consisting of the n singleton sets, since in each iterationsome singleton is the most cost-e�ective set. So, the algorithm outputs a cover of cost1n + 1n � 1 + � � �+ 1 = Hn:On the other hand, the optimal cover has a cost of 1 + �. 2



13Surprisingly enough, the obvious algorithm given above is essentially the best one can hope forfor the minimum set cover problem: it is known that an approximation guarantee better than ln nis not possible, assuming P 6= NP.In Chapter 1 we pointed out that �nding a good lower bound on OPT is a basic starting pointin the design of an approximation algorithm for a minimization problem. At this point, the readermay be wondering whether there is any truth to this claim. We will show in Chapter 12 that thecorrect way to view the greedy set cover algorithm is in the setting of LP-duality theory { thiswill not only provide the lower bound on which this algorithm is based, but will also help obtainalgorithms for several generalizations of this problem.Exercise 2.6 Themaximum coverage problem is the following: Given a universe U of n elements,with non-negative weights speci�ed, a collection of subsets of U , S1; : : : ; Sl, and an integer k, pick ksets so as to maximize the weight of elements covered. Show that the obvious algorithm, of greedilypicking the best set in each iteration until k sets are picked, achieves an approximation factor of(1� (1� 1k )k) > (1� 1e ):Solving shortest superstring via set coverLet us motivate the shortest superstring problem. The human DNA can be viewed as a verylong string over a four letter alphabet. Scientists are attempting to decipher this string. Since itis very long, several overlapping short segments of this string are �rst sequenced. Of course, thelocations of these segments on the original DNA are not known. It is hypothesised that the shorteststring which contains these segments as substrings is a good approximation to the original DNAstring.Problem 2.7 (Shortest superstring) Given a �nite alphabet �, and a set of n strings,S = fs1; : : : ; sng � ��, �nd a shortest string s that contains each si as a substring. Without lossof generality, we may assume that no string si is a substring of another string sj , j 6= i.This problem is NP-hard. Perhaps the �rst algorithm that comes to mind for �nding a shortsuperstring is the following greedy algorithm. De�ne the overlap of two strings s; t 2 �� as themaximum length of a su�x of s that is also a pre�x of t. The algorithm maintains a set of stringsT ; initially T = S. At each step, the algorithm selects from T two strings that have maximumoverlap and replaces them with the string obtained by overlapping them as much as possible. Aftern � 1 steps, T will contain a single string. Clearly, this string contains each si as a substring.This algorithm is conjectured to have an approximation factor of 2. To see that the approximationfactor of this algorithm is no better than 2, consider an input consisting of 3 strings: abk, bkc, andbk+1. If the �rst two strings are selected in the �rst iteration, the greedy algorithm produces thestring abkcbk+1. This is almost twice as long as the shortest superstring, abk+1c.We will obtain a 2 �Hn factor approximation algorithm by a reduction to the minimum set coverproblem. The set cover instance, denoted by S, is constructed as follows. For si; sj 2 S and k > 0,if the last k symbols of si are the same as the �rst k symbols of sj , let �ijk be the string obtainedby overlapping these k positions of si and sj . Let I contain the strings �ijk for all valid choices ofi; j; k. The set cover instance S consists of S as the universal set. The speci�ed subsets of S are:for each string � 2 S [ I , de�ne set(�) = fsj s 2 S, s is a substring of �g. The cost of this set is


