
Testing Heuristics: We Have It All WrongJ. N. HookerGraduate School of Industrial AdministrationCarnegie Mellon UniversityPittsburgh, PA 15213 USAMay 1995AbstractThe competitive nature of most algorithmic experimentation is asource of problems that are all too familiar to the research community.It is hard to make fair comparisons between algorithms and to assemblerealistic test problems. Competitive testing tells us which algorithm isfaster but not why. Because it requires polished code, it consumes timeand energy that could be spent doing more experiments. This paperargues that a more scienti�c approach of controlled experimentation,similar to that used in other empirical sciences, avoids or alleviatesthese problems. We have confused research and development; compet-itive testing is suited only for the latter.Most experimental studies of heuristic algorithms resemble track meetsmore than scienti�c endeavors.Typically an investigator has a bright idea for a new algorithm andwants to show that it works better, in some sense, than known algorithms.This requires computational tests, perhaps on a standard set of benchmarkproblems. If the new algorithm wins, the work is submitted for publication.Otherwise it is written o� as a failure. In short, the whole a�air is organizedaround an algorithmic race whose outcome determines the fame and fate ofthe contestants.This modus operandi spawns a host of evils that have become depress-ingly familiar to the algorithmic research community. They are so many andpervasive that even a brief summary requires an entire section of this paper.Two, however, are particularly insidious. The emphasis on competition isfundamentally anti-intellectual and does not build the sort of insight that in1

the long run conduces to more e�ective algorithms. It tells us which algo-rithms are better but not why. The understanding we do accrue generallyderives from initial tinkering that takes place in the design stages of thealgorithm. Because only the results of the formal competition are exposedto the light of publication, the observations that are richest in informationare too often conducted in an informal, uncontrolled manner.Second, competition diverts time and resources from productive investi-gation. Countless hours are spent crafting the fastest possible code and �nd-ing the best possible parameter settings in order to obtain results that aresuitable for publication. This is particularly unfortunate because it squan-ders a natural advantage of empirical algorithmic work. Most empirical workin other sciences tends to be slow and expensive, requiring well-appointedlaboratories, massive equipment or carefully selected subjects. By contrast,much empirical work on algorithms can be carried out on a work station by asingle investigator. This advantage should be exploited by conducting moreexperiments, rather than by implementing each one in the fastest possiblecode.There is an alternative to competitive testing, one that has been prac-ticed in empirical sciences at least since the days of Francis Bacon. It iscontrolled experimentation. Based on one's insight into an algorithm, forinstance, one might expect good performance to depend on a certain problemcharacteristic. How to �nd out? Design a controlled experiment that checkshow the presence or absence of this characteristic a�ects performance. Evenbetter, build an explanatory mathematical model that captures the insight,as in done routinely in other empirical sciences, and deduce from it preciseconsequences that can be put to the test. I will give this sort of experi-mentation the deliberately honori�c name `scienti�c testing' to distinguishit from competitive testing.I discuss elsewhere [9] how empirical models might be constructed anddefend them as a viable and necessary alternative to a purely deductivescience of algorithms. My main object in this paper is to show that scienti�ctesting can avoid or substantially alleviate many of the evils that now stemfrom competitive testing.This paper is written primarily with heuristic algorithms in mind, be-cause it is for them that empirical investigation is generally most urgent, dueto the frequent failure of purely analytical methods to predict performance.But its points apply equally well to exact algorithms that are tested exper-imentally. In fact a `heuristic' algorithm may be more broadly conceivedas any sort of search algorithm, as suggested by the historical sense of the2

word, rather than in its popular connotation of an algorithm that cannotbe proved to �nd the right answer. The fact that some search algorithmswill eventually explore the entire solution space and thereby �nd the rightanswer does not change their fundamentally heuristic nature.I begin in the �rst section below with a description of the current stateof a�airs in computational testing. The description is a bit stark to makea point, and I hasten to acknowledge that the algorithmic community isalready beginning to move in the direction I recommend in the two sec-tions that follow. Perhaps a forthright indictment of the old way, however,can hasten our progress. The �nal section recounts how a more scienti�capproach to experimentation avoids the evils of competitive testing.1 The Evils of Competitive TestingThe most obvious di�culty of competitive testing is making the competitionfair. Di�erences between machines �rst come to mind, but they actuallypresent the least serious impediment. They can be largely overcome bytesting on identical machines or adjusting for machine speed. More di�cultto defeat are di�erences in coding skill, tuning and e�ort invested.With respect to coding skill, one might argue that competitive testinglevels the playing �eld by its very competitiveness. If investigators are highlymotivated to win the competition, they will go to great lengths to learn anduse the best available coding techniques and will therefore use roughly thesame techniques. But it is often unclear what coding technique is best fora given algorithm. In any event, one can scarcely imagine a more expensiveand wasteful mechanism to ensure controlled testing|more on this later.A particularly delicate issue is the degree to which one tunes one's imple-mentation. Generally it is possible to adjust parameters so that an algorithmis more e�ective on a given set of problems. How much adjustment is legit-imate? Should one also adjust the competing code? If so, how much tuningof the competing code can be regarded as commensurate with the tuningapplied to the new code? One might fancy that these problems could beavoided if every algorithm developer provided a `vanilla' version of the codewith general-purpose parameter settings. But when a new code is written,one must decide what is `vanilla' for it. No developer will see any rationalefor deliberately picking parameter settings that result in poor performanceon the currently accepted benchmark problems. So the question of howmuch tuning is legitimate recurs, with no answer in sight.3

A related obstacle to fair testing is that a new implementation mustoften face o� against established codes on which enormous labor has beeninvested, such as simplex codes for linear programming. Literally decadesof development may be reposited in a commercial code, perhaps involvingclever uses of registers, memory caches, and assembly language. A certainamount of incumbent advantage is probably acceptable or desirable. Butpublication and funding decisions are rather sensitive to initial computa-tional results, and the technology of commercial codes can discourage thedevelopment of new approaches. Lustig, Marsten and Shanno [13] suggest,for example, that if interior point methods had come along a couple of yearslater than they did|after the recent upswing in simplex technology nowembodied in such codes as CPLEX|they might have been judged too un-promising to pursue.A second cluster of evils concern the choice of test problems, whichare generally obtained in two ways. One is to generate a random sampleof problems. There is no need to dwell on the well-known pitfalls of thisapproach, the most obvious of which is that that random problems generallydo not resemble real problems.The dangers of using benchmark problems are equally grave but perhapsless appreciated. Consider �rst how problems are collected. Generally they�rst appear in publications that report the performance of a new algorithmthat is applied to them. But these publications would not have appearedunless the algorithm performed well on most of the problems introduced.Problems that existing algorithms are adept at solving therefore have aselective advantage.A similar process leads to a biased evolution of algorithms as well asproblems. Once a set of canonical problems has become accepted, newmethods that have strengths complementary to those of the old ones areat a disadvantage on the accepted problem sets. They are less likely tobe judged successful by their authors and less likely to be published. Soalgorithms that excel on the canon have a selective advantage. The tailwags the dog as problems begin to design algorithms.There is not to impugn in the slightest the integrity of those who collectand use benchmark problems. Rather, we are all victims of a double-edgedevolutionary process that favors a narrow selection of problems and algo-rithms.Even if this tendency could be corrected, other di�culties would remain.Nearly every problem set inspires complaints about its bias and limitedscope. Problems from certain applications are always favored and others4

are always neglected. Worse than this, it is unclear that we would even beable to recognize a representative problem set if we had one. It is rare thatanyone has the range of access to problems, many of which are proprietary,that is necessary to make such a judgment, and new problems constantlyemerge.Perhaps the most damaging outcome of competitive testing was men-tioned at the outset: its failure to yield insight into the performance ofalgorithms. When algorithms compete, they are packed with the cleverestdevices their authors can concoct and therefore di�er in many respects. Itis usually impossible to discern which of these devices are responsible fordi�erences in performance.The problem is compounded when one compares performance with acommercial code, which is often necessary if one is to convince the researchcommunity of the viability of a new method. The commercial package maycontain any number of features that improve performance, some of which aretypically kept secret by the vendor. The scienti�c value of such comparisonsis practically nil.As already noted, the most informative testing usually takes place duringthe algorithm's initial design phase. There tend to be a number of imple-mentation decisions that are not determined by analysis and must be madeon an empirical basis. A few trial runs are made to decide the issue. If thesetrials were conducted with the same care as the competitive trials (which,admittedly, are themselves often inadequate), much more would be learned.Finally, competitive testing diverts time and energy from more produc-tive experimentation. Writing e�cient code requires a substantial time in-vestment because a low-level language such as C must be used, time pro�lesmust repeatedly be run to identify ine�ciencies, and the code must be pol-ished again and again to root them out. The investigator must also trainhimself in the art of e�cient coding or else spend his research money onassistants who know the art.Not only does competitive testing sacri�ce what would otherwise be therelative ease of algorithmic experimentation, it surrenders its potential inde-pendence. Experimental projects in other �elds must typically await fundingand therefore approval from funding agencies or industry sources. A loneexperimenter in algorithms, by contrast, can try out his ideas at night on awork station when their value is evident only to him or her. This opens thedoor to a greater variety of creative investigation, provided of course thatthese nights are not spent shaving o� machine cycles.5

2 A More Scienti�c AlternativeNone of the foregoing is meant to suggest that e�cient code should not bewritten. On the contrary, fast code is one of the goals of computationaltesting. But this goal is better served if tests are �rst designed to developthe kind of knowledge that permits e�ective code to be engineered. It wouldbe absurd to ground structural engineering, for instance, solely on a seriesof competitions in which, say, entire bridges are built, each incorporatingeverything the designer knows about how to obtain the strongest bridge forthe least cost. This would allow for only a few experiments a year, and itwould be hard to extract useful knowledge from the experiments. But thisis not unlike the current situation in algorithmic experimentation. Struc-tural engineers must rely at least partly on knowledge that is obtained incontrolled laboratory experiments (regarding properties of materials, etc.),and it is no di�erent with software engineers.Scienti�c testing of algorithms can be illustrated by some recent work onthe satis�ability problem of propositional logic. The satis�ability problemasks, for a given set of logical formulas, whether truth values can be assignedto the variables in them so as to make all of the formulas true. For instance,the set of formulas x1 or x2x1 or not-x2not-x1 or x2not-x1 or not-x2is not satis�able, because one of them is false no matter what truth valuesare assigned to the variables x1 and x2. (We assume that all formulas havethe form shown; i.e., they consist of variables or their negations joined byor's.)At the moment some of the most e�ective algorithms for checking sat-is�ability use a simple branching scheme [2, 8, 16]. A variable xj is set totrue and then to false to create subproblems at two successor nodes of theroot node of a search tree. When the truth value of xj is �xed, the problemcan normally be simpli�ed. For instance, if xj is set to true, formulas con-taining the term xj are deleted because they are satis�ed, and occurrencesof not-xj are deleted from the remaining formulas. This may create single-term formulas that again �x variables, and if so the process is repeated. Ifthe last term is removed from a formula, the formula is falsi�ed and thesearch must backtrack. If all formulas are satis�ed, the search stops with asolution. Otherwise the search branches on another variable and continues6

in depth-�rst fashion.A key to the success of this algorithm appears to be the branching ruleit uses|that is, the rule that selects which variable xj to branch on at anode, and which branch to explore �rst. This is a hypothesis that can betested empirically.The most prevalent style of experimentation on satis�ability algorithms,however, does not test this or any other hypothesis in a de�nitive manner.The style is essentially competitive, perhaps best exempli�ed by an outrightcompetition held in 1992 [2]. More typical are activities like the SecondDIMACS Challenge [16], which invited participants to submit satis�abilityand other codes to be tested on a suite of problems. The DIMACS challengeshave been highly bene�cial, not least because they have stimulated interestin responsible computational testing and helped to bring about some of theimprovements we are beginning to see in this area. But the codes thatare compared in this sort of activity di�er in many respects, because eachparticipant incorporates his or her own best ideas. Again it is hard to inferwhy some are better than others, and doubts about the benchmark problemsfurther cloud the results.The proper way to test the branching rule hypothesis is to test algo-rithms that are the same except for the branching rule, as was done to alimited extent in [8]. This raises the further question, however, as to whysome branching rules are better than others. A later study [11] consid-ered two hypotheses: a) that better branching rules try to maximize theprobability that subproblems are satis�able, and b) that better branchingrules simplify the subproblems as much as possible (by deleting formulasand terms). Two models were constructed to estimate the probability ofsatis�ability for hypothesis (a). Neither issued in theorems but predictedthat certain rules would perform better than others. The predictions weresoundly refuted by experiment, and hypothesis (a) was rejected. A Markovchain model was built for hypothesis (b) to estimate the degree to whichbranching on a given variable would simplify the subproblem, and its pre-dictions were consistent with experiment. This exercise seems to take a �rststep toward understanding why good branching rules work.By conventional norms, this study makes no contribution, because itsbest computation times for branching rules are less than some reported in theliterature. But this assessment misses the point. The rules were deliberatelyimplemented in plain satis�ability codes so as to isolate their e�ect. Codesreported in the literature contain a number of devices that accelerate theirperformance but obscure the impact of branching rules. Beyond this, the7

study was not intended to put forward a state-of-the-art branching rule anddemonstrate its superiority to others in the literature; it was intended todeepen our understanding of branching rule behavior in a way that mightultimately lead to better rules.To illustrate the construction of a controlled experiment, suppose thatwe wish to investigate how problem characteristics inuence the behaviorof branching rules (an issue not addressed in [11]). Benchmark problemsare inadequate, because they di�er in so many respects that it is rarelyevident why some are harder than others, and they may yet fail to varyover parameters that are key determinants of performance. It is better togenerate problems in a controlled fashion.One type of experimental design (a \factorial design") begins with a listof n factors that could a�ect performance|perhaps problem size, density,existence of a solution, closeness to `renamable Horn' [1, 3, 4], etc. Eachfactor i has several levels ki = 1; : : : ; mi, corresponding to di�erent problemsizes, densities, etc. The levels need not correspond to values on a scale,as for instance if the factor is `problem structure' and the `levels' denotevarious types of structure. A sizable problem set is generated for each cell(k1; : : : ; kn) of an n-dimensional array, and average performance is measuredfor each set. Statistical analysis (such as analysis of variance or nonpara-metric tests) can now check whether factor 1, for instance, has a signi�cante�ect on performance when the remaining factors are held constant at anygiven set of levels (k2; : : : ; kn). It is also possible to measure interactionsamong factors. See [11, 14] for details.This scheme requires random generation of problems, but it bears scantresemblance to traditional random generation. The goal is not to gener-ate realistic problems, which random generation cannot do, but to generateseveral problem sets, each of which is homogeneous with respect to charac-teristics that are likely to a�ect performance.This principle is again illustrated by recent work on the satis�abilityproblem. Several investigators have noted that random problems tend to behard when the ratio of the number of formulas to the number of variablesis close to a critical value ([5, 6, 7, 10, 12, 15], etc.). But this observationscarcely implies that one can predict the di�culty of a given problem bycomputing the ratio of formulas to variables. Random problems with agiven ratio may di�er along other dimensions that determine di�culty inpractice.This example has an additional subtlety that teaches an important les-son. In many experiments, nearly all problems that have the critical ratio8

are hard. This may suggest that other factors are unimportant and thatthere is no need to control for them. But some of the problem structuresthat occur in practice, and that substantially a�ect performance, may occuronly with very low probability among random problems. This in fact seemsto be the case, because practical problems with the same formula/variableratio vary wildly in di�culty. It is therefore doubly important to generateproblem sets that control for characteristics other than a high or low for-mula/variable ratio|not only to ensure that their e�ect is noticed, but evento ensure that they occur in the problems generated.How can one tell which factors are important? There is no easy answerto this question. Much of the creativity of empirical scientists is manifestedin hunches or intuition as to what explains a phenomenon. Insight mayemerge from theoretical analysis or examination of experimental data forpatterns. McGeoch [14] discusses some techniques for doing the latter in analgorithmic context.3 What To MeasureMost computational experiments measure solution quality or running time.The former is unproblematic. The latter, however, is better suited to com-petitive than scienti�c testing.Consider the satis�ability algorithms discussed earlier. Two theorieswere proposed to explain the e�ect of branching rules on the performance ofbranching algorithms. Both theories were based on predictions of the searchtree size. So if one is interested in con�rming or refuting the theories, asone should be in a scienti�c context, it makes sense to count the nodes inthe tree, not to measure physical running time.It is true that the ultimate goal is to minimize running time. But ifthe connection between branching rules and tree size is understood, onecan combine this with estimates of the amount of processing at each nodeto predict the running time. The latter estimates can be based on furtherempirical work.One might object that the tree size and running time per node maybe related. It is possible, for instance, that more time is spent at eachnode when the tree size is small (other things equal) in order to carry outthe greater degree of problem simpli�cation at each node that is necessaryto produce a small tree. This might suggest that one should measure totalrunning time to capture the combined e�ect. But if the goal is to explain the9

combined e�ect of tree size and per-node computation, one should formulateand test models that explain this combined e�ect! Then one should measurewhat is predicted by the models, which is more likely to be the number ofterms and formulas deleted rather than computation time. Computationtime can then predicted on the basis of the average time required to delete aterm or a formula, which naturally depends on the data structure, machine,etc.|factors that can be investigated independently of the branching rule.The principle is simple: measure what is predicted by the model, andnothing more. McGeoch [14] proposes an interesting framework for thinkingabout how to do this. She suggests that an algorithm be viewed as anabstraction of a code, rather than viewing a code as an implementation ofan algorithm. In other words, the code is the phenomenon, and an algorithmis a simpli�ed model of what happens in the code. It may omit any mentionof data structures and machine architecture, for instance.McGeoch goes on to suggest that an algorithm be simulated to exploreits behavior. The code that simulates the algorithm is entirely distinct fromthe polished code (perhaps yet to be developed) that the algorithm models.For instance, if one is interested in a node count for satis�ability algorithms,one need only write enough code to generate the nodes of a search tree. Thedata structure, machine, etc., are irrelevant so long as they do not a�ect thenode count. In particular, they may be slow and ine�cient.If I may elaborate somewhat on McGeoch's idea, it is reminiscent of anastronomer's simulation of, say, galactic evolution. The astronomer maybelieve that initial conditions A give rise to spiral galaxies, and initial con-ditions B give rise to spherical galaxies. One way to check this empiricallyis to simulate the motions of the stars that result from initial conditions Aor B and gravitational attraction. The algorithm simulated is an abstrac-tion or a simpli�ed model of the phenomenon, because it omits the e�ectof interstellar matter, etc. Nonetheless it improves our understanding. Theastronomer is hardly bothered by the fact that the running time is di�erentfrom that of the real phenomenon!In the algorithmic context, one simulates only as much detail as thealgorithmic model speci�es. If one really has a model that predicts physicalrunning time and therefore needs to measure it, then one would simulatethe machine itself and count machine cycles. Even in this case it makes nosense to measure the actual running time of the simulation, which mightrun on any number of machines, fast and slow.In practice, one would begin with a high-level algorithm in which theoperation of various subroutines is left unspeci�ed. A simulation might10

measure only the number of subroutine calls. This would provide only acrude prediction of a how a �nished code would behave. Then one wouldbegin to esh out the subroutines. Whenever possible, a subroutine shouldbe modeled independently of the calling routine. As one approaches the levelof data structures, the models predict more accurately the performance of a�nished code. Furthermore, the insight gained along the way permits one towrite better algorithms for the subroutines and eventually a fast commercialcode.4 The Bene�ts of Scienti�c TestingScienti�c testing solves or alleviates all of the problems associated withcompetitive testing that were mentioned earlier.Consider the issue of fair comparison of algorithms. To begin with, ma-chine speeds are completely irrelevant. If one simulates what is to be mea-sured, as recommended above, the results are machine independent. Like-wise it makes no di�erence which data structure is used, unless of course themodel being tested actually speci�es the data structure, so that its operationis explicitly simulated. In the latter case one would simply implement thedata structure speci�ed. Coding skill is irrelevant|provided one has enoughskill to simulate the algorithm correctly! The issue of how much to tune analgorithm becomes moot, because the parameter settings are among thefactors one would investigate experimentally. That is, rather than agonizeover what are the best parameter settings, one runs controlled experimentsin which many di�erent parameter settings are used, precisely in order tounderstand their e�ect on performance. Finally, established algorithms im-plemented in highly developed codes have no advantage. The polished codeis not even used. Instead one simulates the relevant aspects of the algorithmin a rough-and-ready implementation, perhaps using a high-level languagesuch as Prolog, Mathematica, Maple, or a simulation language. In short,the problem of fair comparison becomes a nonproblem.As already discussed, the issue of how to choose problem sets is com-pletely transformed. Rather than try to assemble problems that are repre-sentative of reality, one concocts problems so as to control for parametersthat may a�ect performance. The problems are not only likely to be atypicalbut deliberately so, in order to isolate the e�ect of various characteristics.Admittedly, the choice of which factors to control for is far from trivial andmay demand considerable insight as well as trial and error. But it is a11

problem that creative scientists deal with successfully in other disciplines,whereas the task of choosing representative benchmark problems seems toconfound all e�orts. Furthermore, it is a problem that algorithmists oughtto struggle with, because it goes to the heart of what empirical science is allabout.Once the necessity of relying on benchmark problems is obviated, theaccompanying evils evaporate, including the unhealthy symbiosis betweenproblems and algorithms described earlier. Benchmarks will continue to playa role; the temptation to match a �nished algorithm against the benchmarkswill be irresistible. But they should play precisely this benchmarking rolefor �nished products and not an experimental role in the scienti�c studyof algorithms. It is a matter of distinguishing research and development:benchmarks are appropriate for development, but controlled experimenta-tion is needed for research.This emphasis on scienti�c testing requires a new set of norms for re-search. It asks that experimental results be evaluated on the basis of whetherthey contribute to our understanding, rather than whether they show thatthe author's algorithm can win a race with the state of the art. It asksscholarly journals to publish studies of algorithms that are miserable fail-ures when their failure enlightens us.If this seems inappropriate, it is perhaps because we have in fact con-fused research and development. We have saddled algorithmic researcherswith the burden of exhibiting faster and better algorithms in each paper, acharge more suited to software houses, while expecting them to advance ourknowledge of algorithms at the same time. I believe that when researchersare relieved of this dual responsibility and freed to conduct experiments forthe sake of science, research and development alike will bene�t.References[1] Aspvall, B., Recognizing disguised NR(1) instances of the satis�abilityproblem, Journal of Algorithms 1 (1980) 97-103.[2] B�ohm, H., Report on a SAT competition, Technical report no. 110,Universit�at Paderborn, Germany (1992).[3] Chandru, V., C. R. Coullard, P. L. Hammer, M. Montanez and X.Sun, On renamable Horn and generalized Horn functions. In Annals12

of Mathematics and Arti�cial Intelligence 1. J. C. Baltzer AG, Basel(1990).[4] Chandru, V., and J. N. Hooker, Detecting extended Horn structure inpropositional logic, Information Processing Letters 42 (1992) 109-111.[5] Cheeseman, P., B. Kanefsky and W. M. Taylor, Where the really hardproblems are. In Proceedings of the International Joint Conference onArti�cial Intelligence, ICAI91 (1991) 331-337.[6] Crawford, J. M., and L. D. Auton, Experimental results on the crossoverpoint in satis�ability problems. In Proceedings of the Eleventh NationalConference on Arti�cial Intelligence, AAAI93 (1993) 21-27.[7] Gent, I. P., and T. Walsh, The SAT phase transition. In A. G. Cohn,ed., Proceedings of the Eleventh European Conference on Arti�cial In-telligence, ECAI94, Wiley (1994) 105-109.[8] Harche, F., J. N. Hooker and G. L. Thompson, A computational studyof satis�ability algorithms for propositional logic, to appear in ORSAJournal on Computing.[9] Hooker, J. N., Needed: An empirical science of algorithms, OperationsResearch 42 (1994) 201-212.[10] Hooker, J. N., and C. Fedjki, Branch-and-cut solution of inference prob-lems in propositional logic, Annals of Mathematics and Arti�cial Intel-ligence 1 (1990) 123-139.[11] Hooker, J. N., and V. Vinay, Branching rules for satis�ability, to appearin Journal of Automated Reasoning.[12] Larrabee, T., and Y. Tsujii, Evidence for a satis�ability threshold forrandom 3cnf formulas. In Hirsh et al., eds., Proceedings of the SpringSymposium on Arti�cial Intelligence and NP-Hard Problems, Stanford,CA (1993) 112-118.[13] Lustig, I. J., R. E. Marsten and D. F. Shanno, Interior point methodsfor linear programming: Computational state of the art, ORSA Journalon Computing 6 (1994) 1-14.[14] McGeoch, C. C., Toward an experimental method for algorithm simu-lation, to appear in ORSA Journal on Computing.13

[15] Mitchell, D., B. Selman and H. Levesque, Hard and easy distributions ofSAT problems. In Proceedings, Tenth National Conference on Arti�cialIntelligence, AAAI92, MIT Press (1992) 459-465.[16] Trick, M., and D. S. Johnson, eds., Second DIMACS Challenge:Cliques, Coloring and Satis�ability, Series in Discrete Mathematics andTheoretical Computer Science, American Mathematical Society (1995).

14

