## Foundations of Operations Research

## Master of Science in Computer Engineering

Roberto Cordone<br>roberto.cordone@unimi.it

Tuesday 13.15-15.15
Thursday 10.15-13.15
http://homes.di.unimi.it/~cordone/courses/2014-for/2014-for.html


## Integer Linear Programming

$$
\begin{align*}
\min z & =c x+d  \tag{П}\\
A x & =b \\
x & \geq 0 \\
x & \in \mathbb{Z}^{n}
\end{align*}
$$



It is a family of nonlinear problems: $x \in \mathbb{Z}^{n} \Leftrightarrow \sum_{j=1}^{n} \sin ^{2}\left(\pi x_{j}\right)=0$
Except for (relevant) particular cases, there is no polynomial algorithm

- to solve П
- to decide whether $\Pi$ admits feasible solutions
... So, what can be done?


## Explicit enumeration

We assume that the continuous relaxation has a bounded feasible region (for the sake of simplicity: most conclusions hold anyway)

$$
P=\left\{x \in \mathbb{R}^{n}: A x \leq b, x \geq 0\right\} \text { bounded } \Leftrightarrow x_{j} \in\left\{0, \ldots, K_{j}\right\} \subset \mathbb{N}
$$

Therefore, the feasible region $X=P \cap \mathbb{Z}^{n}$ is finite
One can apply the exhaustive algorithm:

- set the best known value $\tilde{z}$ to $+\infty$ (minimization problem)
- subsequently generate each vector $x$ such that $x_{j} \in\left\{0, \ldots, K_{j}\right\}$
- if the current $x$ is feasible, compare $z(x)$ with $\tilde{z}$ :
save in $\tilde{z}$ the minimum of the two
Unluckily, the number of vectors $x$ to be tested is exponential
The exhaustive method is not practical!


## Divide et impera

Notice that, if $X=\bigcup_{\ell=1}^{r} X_{\ell}=X_{1} \bigcup \ldots \bigcup X_{r}$

$$
x_{i}^{*}=\arg \min _{x \in X} z(x)=\arg \min _{\ell=1, \ldots, r}\left[\min _{x \in X_{\ell}} z(x)\right]
$$

Therefore, one can solve $\Pi$ by solving $r$ smaller problems $\Pi_{1}, \ldots, \Pi_{r}$ $\min z=c x+d$

$$
\begin{align*}
& \min z=-3 x_{1}+x_{2} \quad(\Pi) \\
& x_{1}+x_{2} \leq 9 \\
& 6 x_{1}+7 x_{2} \leq 39 \\
& 2 x_{1}-x_{2} \leq 8 \\
& x \in \mathbb{N}^{n} \\
& z^{*}=\min \left[\min _{x \in X_{1}} z(x), \min _{x \in X_{2}} z(x)\right]=\min [z(4,0), z(4,1)]=\min (-12,-11)=-12 \tag{П}
\end{align*}
$$

## A recursive approach

Why is it better to solve several subproblems $\Pi_{\ell}(\ell=1, \ldots, r)$ instead of $\Pi$ ?

- base case: $\Pi_{\ell}$ could be a problem with:
- no feasible solution: $X_{\ell}=\emptyset$
- a single feasible solution: $X_{\ell}=\left\{x_{\ell}\right\} \Rightarrow z_{\ell}^{*}=\min _{x \in X_{\ell}} z(x)=z\left(x_{\ell}\right)$
- a polynomial solving algorithm
- recursive case: the decomposition can be repeated on each subproblem $\Pi_{\ell}$

To apply the scheme recursively, we generate the subproblems by adding affine branching constraints $\hat{A}^{(\ell)} x \leq \hat{b}^{(\ell)}$, so that the subproblems are ILP problems

$$
\begin{aligned}
X_{\ell} & =X \cap\left\{x \in \mathbb{R}^{n}: \hat{A}^{(\ell)} x \leq \hat{b}^{(\ell)}\right\}= \\
& =P \cap \mathbb{Z}^{n} \cap\left\{x \in \mathbb{R}^{n}: \hat{A}^{(\ell)} x \leq \hat{b}^{(\ell)}\right\}= \\
& =P_{\ell} \cap \mathbb{Z}^{n}
\end{aligned}
$$

where $P_{\ell}=P \cap\left\{x \in \mathbb{R}^{n}: \hat{A}^{(\ell)} x \leq \hat{b}^{(\ell)}\right\}$
The constraints of the previous page were nonaffine, the subproblems not ILP
Branching rule is the procedure to build the branching constraints $\left(\hat{A}^{(\ell)}, \hat{b}^{(\ell)}\right)$

## Parallel branching constraints

Parallel constraints: $\hat{a} \in \mathbb{Z}^{n}$ and $\hat{b}_{\ell} \in \mathbb{Z}$ for $\ell=1, \ldots, r-1$
(1) $\hat{a} x \leq \hat{b}_{1}$
(e. g., $x_{1}+x_{2} \leq 2$ )
(2) $\hat{b}_{2}+1 \leq \hat{a} x \leq \hat{b}_{3}$
(e. g., $3 \leq x_{1}+x_{2} \leq 4$ )
(3)..
(4) $\hat{b}_{2 r-2}+1 \leq \hat{a} x$
(e. g., $x_{1}+x_{2} \geq 5$ )

$$
\begin{align*}
\min z & =-3 x_{1}+x_{2}  \tag{1}\\
x_{1}+x_{2} & \leq 9 \\
6 x_{1}+7 x_{2} & \leq 39 \\
2 x_{1}-x_{2} & \leq 8 \\
x_{1}+x_{2} & \leq 2 \\
x & \in \mathbb{N}^{n}
\end{align*}
$$



## Parallel branching constraints

Parallel constraints: $\hat{a} \in \mathbb{Z}^{n}$ and $\hat{b}_{\ell} \in \mathbb{Z}$ for $\ell=1, \ldots, r-1$
(1) $\hat{a} x \leq \hat{b}_{1}$
(e. g., $x_{1}+x_{2} \leq 2$ )
(2) $\hat{b}_{2}+1 \leq \hat{a} x \leq \hat{b}_{3}$
(e. g., $3 \leq x_{1}+x_{2} \leq 4$ )
(3)..
(4) $\hat{b}_{2 r-2}+1 \leq \hat{a} x$
(e. g., $x_{1}+x_{2} \geq 5$ )

$$
\begin{align*}
\min z & =-3 x_{1}+x_{2}  \tag{2}\\
x_{1}+x_{2} & \leq 9 \\
6 x_{1}+7 x_{2} & \leq 39 \\
2 x_{1}-x_{2} & \leq 8 \\
3 \leq x_{1}+x_{2} & \leq 4 \\
x & \in \mathbb{N}^{n}
\end{align*}
$$



## Parallel branching constraints

Parallel constraints: $\hat{a} \in \mathbb{Z}^{n}$ and $\hat{b}_{\ell} \in \mathbb{Z}$ for $\ell=1, \ldots, r-1$
(1) $\hat{a} x \leq \hat{b}_{1}$
(e. g., $x_{1}+x_{2} \leq 2$ )
(2) $\hat{b}_{2}+1 \leq \hat{a} x \leq \hat{b}_{3}$
(e. g., $3 \leq x_{1}+x_{2} \leq 4$ )
(3)..
(4) $\hat{b}_{2 r-2}+1 \leq \hat{a} x$
(e. g., $x_{1}+x_{2} \geq 5$ )

$$
\begin{align*}
\min z & =-3 x_{1}+x_{2}  \tag{3}\\
x_{1}+x_{2} & \leq 9 \\
6 x_{1}+7 x_{2} & \leq 39 \\
2 x_{1}-x_{2} & \leq 8 \\
x_{1}+x_{2} & \geq 5 \\
x & \in \mathbb{N}^{n}
\end{align*}
$$



## A standard rule

The most common branching rule (by far) consists in selecting a branching variable $x_{j^{*}}$ an integer threshold $b \in \mathbb{Z}$, and setting

- $x_{j^{*}} \leq b$ in $\Pi_{1}$
- $x_{j^{*}} \geq b+1$ in $\Pi_{2}$

(e. g., $x_{2} \leq 1$ )
(e. g., $x_{2} \geq 2$ )


For binary variables, $x_{j^{*}}=0$ and $x_{j^{*}}=1$

## Hierarchical branching constraints

Hierarchical constraints: $\hat{a}^{(i)} \in \mathbb{Z}^{n}$ and $\hat{b}^{(i)} \in \mathbb{Z}$ for $i=1, \ldots, r-1$
(1) $\hat{a}^{(1)} x \leq \hat{b}^{(1)}$

$$
\left(x_{1}+x_{2} \leq 2\right)
$$

(2) $\hat{a}^{(1)} x \geq \hat{b}^{(1)}+1$ and $\hat{a}^{(2)} x \leq \hat{b}^{(2)}$

$$
\left(x_{1}+x_{2} \geq 3, x_{2}-x_{1} \leq 0\right)
$$

(3)..
(4) $\hat{a}^{(1)} x \geq \hat{b}^{(1)}+1, \ldots$ and $\hat{a}^{(r-1)} x \geq \hat{b}^{(r-1)}+1 \quad\left(x_{1}+x_{2} \geq 3, x_{2}-x_{1} \geq 1\right)$

$$
\begin{align*}
\min z & =-3 x_{1}+x_{2}  \tag{п}\\
x_{1}+x_{2} & \leq 9 \\
6 x_{1}+7 x_{2} & \leq 39 \\
2 x_{1}-x_{2} & \leq 8 \\
x_{1}+x_{2} & \leq 2 \\
x & \in \mathbb{N}^{n}
\end{align*}
$$



## Hierarchical branching constraints

Hierarchical constraints: $\hat{a}^{(i)} \in \mathbb{Z}^{n}$ and $\hat{b}^{(i)} \in \mathbb{Z}$ for $i=1, \ldots, r-1$
(1) $\hat{a}^{(1)} x \leq \hat{b}^{(1)}$
$\left(x_{1}+x_{2} \leq 2\right)$
(2) $\hat{a}^{(1)} x \geq \hat{b}^{(1)}+1$ and $\hat{a}^{(2)} x \leq \hat{b}^{(2)}$
$\left(x_{1}+x_{2} \geq 3, x_{2}-x_{1} \leq 0\right)$
(3) $\ldots$
(4) $\hat{a}^{(1)} x \geq \hat{b}^{(1)}+1, \ldots$ and $\hat{a}^{(r-1)} x \geq \hat{b}^{(r-1)}+1 \quad\left(x_{1}+x_{2} \geq 3, x_{2}-x_{1} \geq 1\right)$

$$
\begin{align*}
\min z & =-3 x_{1}+x_{2}  \tag{П}\\
x_{1}+x_{2} & \leq 9 \\
6 x_{1}+7 x_{2} & \leq 39 \\
2 x_{1}-x_{2} & \leq 8 \\
x_{1}+x_{2} & \geq 3 \\
-x_{1}+x_{2} & \leq 0 \\
x & \in \mathbb{N}^{n}
\end{align*}
$$



## Hierarchical branching constraints

Hierarchical constraints: $\hat{a}^{(i)} \in \mathbb{Z}^{n}$ and $\hat{b}^{(i)} \in \mathbb{Z}$ for $i=1, \ldots, r-1$
(1) $\hat{a}^{(1)} x \leq \hat{b}^{(1)}$
$\left(x_{1}+x_{2} \leq 2\right)$
(2) $\hat{a}^{(1)} x \geq \hat{b}^{(1)}+1$ and $\hat{a}^{(2)} x \leq \hat{b}^{(2)}$
$\left(x_{1}+x_{2} \geq 3, x_{2}-x_{1} \leq 0\right)$
(3) $\ldots$
(4) $\hat{a}^{(1)} x \geq \hat{b}^{(1)}+1, \ldots$ and $\hat{a}^{(r-1)} x \geq \hat{b}^{(r-1)}+1 \quad\left(x_{1}+x_{2} \geq 3, x_{2}-x_{1} \geq 1\right)$

$$
\begin{align*}
\min z & =-3 x_{1}+x_{2}  \tag{П}\\
x_{1}+x_{2} & \leq 9 \\
6 x_{1}+7 x_{2} & \leq 39 \\
2 x_{1}-x_{2} & \leq 8 \\
x_{1}+x_{2} & \geq 3 \\
-x_{1}+x_{2} & \geq 1 \\
x & \in \mathbb{N}^{n}
\end{align*}
$$



## A standard rule

It is possible to focus on a subset of branching variables $x_{1}, \ldots, x_{r-1}$, define integer thresholds $b_{1}, \ldots, b_{r-1}$, and impose
(1) $x_{1} \leq b_{1}$
(2) $x_{1} \geq b_{1}+1$ and $x_{2} \leq b_{2}$
(3) $\cdots$
(4) $x_{1} \geq b_{1}+1, \ldots, x_{r-2} \geq b_{r-2}+1$ and $x_{r-1} \leq b_{r-1}$
(5) $x_{1} \geq b_{1}+1, \ldots, x_{r-2} \geq b_{r-2}+1$ and $x_{r-1} \geq b_{r-1}+1$

This rule, however, is not common when dealing with general variables It is common on binary variables $x_{1}, x_{2}, \ldots, x_{r-1}$ :
(1) $x_{1}=0$
(2) $x_{1}=1$ and $x_{2}=0$
(3)..
(4) $x_{1}=1, \ldots, x_{r-2}=1$ and $x_{r-1}=0$
(5) $x_{1}=1, \ldots, x_{r-2}=1$ and $x_{r-1}=1$

## Branching tree

A branch-and-bound algorithm produces a branching tree, that is a tree with nodes associated to subsets of the feasible region $X$ (subproblems)

- the root node is associated to $X$
- each node is associated to the union of the sets associated to its children
- the leaf nodes are associated to subsets with zero or one solution


Number of nodes $\geq$ Number of leaves $\geq$ Number of (subproblems) (easy subproblems) solutions
$\Rightarrow$ The branching tree has exponential size
So, what is the advantage?

## Drawbacks associated to the base cases

Given a branch-and-bound algorithm on an ILP problem

- the base cases are exponentially many
- the base cases are not trivial (it is $\mathcal{N P}$-complete to decide whether $X_{\ell}=\emptyset$ )

The solution is to use additional information to
(1) remove subproblems without solving them
(2) solve the remaining subproblems efficiently (if possible)

Implicit enumeration: examining whole subsets of solutions at a time
Instead of computing the optimal solution of all subproblems, one can compute a bound, or superoptimal estimate, i. e. a value better than the optimum

If for a subset of solutions $X_{\ell}$ the bound is worse than a known solution $\tilde{x}$, that subset cannot provide any improvement

Theorem: Let $\Pi$ be an ILP problem and $\tilde{x}$ one of its feasible solutions. Let $\Pi_{\ell}$ be a subproblem of $\Pi$ with a subset of feasible solutions $X_{\ell} \subseteq X$, and $L B_{\ell}$ be a lower bound on the value of the objective function $z$ in $X_{\ell}$. If $L B_{\ell} \geq z(\tilde{x})$, then at least one optimal solution of $\Pi$ belongs to $X \backslash X_{\ell}$

$$
\left\{\begin{array}{l}
\tilde{x} \in X \\
L B_{\ell} \leq z(x), \forall x \in X_{\ell} \quad \Rightarrow \exists x^{*} \in X \backslash X_{\ell} \text { such that } z\left(x^{*}\right) \leq z(x), \forall x \in X \\
L B_{\ell} \geq z(\tilde{x})
\end{array}\right.
$$

In such a situation $\Pi_{\ell}$ can be removed without solving it!

## An example of dominance

$$
\begin{align*}
\min z & =-3 x_{1}+x_{2}  \tag{П}\\
x_{1}+x_{2} & \leq 9 \\
6 x_{1}+7 x_{2} & \leq 39 \\
2 x_{1}-x_{2} & \leq 8 \\
x_{1}+x_{2} & \geq 3 \\
-x_{1}+x_{2} & \geq 1 \\
x & \in \mathbb{N}^{n}
\end{align*}
$$



Suppose that we know $\tilde{x}=(4,0) \in X$, with $z(\tilde{x})=-12$
From the lesson on duality, notice that

$$
\begin{gathered}
\left\{\begin{array}{l}
-x_{1}+x_{2} \geq 1 \\
-x_{1}-x_{2} \geq-9
\end{array} \quad \text { for all } x \in X_{3} \Rightarrow\right. \\
\Rightarrow 2\left(-x_{1}+x_{2}\right)+\left(-x_{1}-x_{2}\right) \geq 2(1)+(-9) \text { for all } x \in X_{3} \Rightarrow \\
\Rightarrow z(x)=-3 x_{1}+x_{2} \geq-7 \text { for all } x \in X_{3}
\end{gathered}
$$

Since $\tilde{x}$ is (strictly) better than all solutions of $X_{3}$ and the optimal solutions will not be worse than $\tilde{x}$, they will be out of $X_{3}$

## Other two ingredients

In order to apply this condition, one needs
(1) a heuristic solution $\tilde{x} \in X$, determined with algorithms that do not guarantee optimality, whose value is a suboptimal estimate
(2) a bound $L B_{\ell}$ or superoptimal estimate of $z(x)$ for $x \in X_{i}$

Notice that

- the suboptimal estimate is global (worse than the optimum of $X$ )
- the superoptimal estimate is local (better than the optimum of $X_{\ell}$ )

A good heuristic solution (small $z(x)$ ) and a good bound (large $L B_{\ell}$ ) remove several subproblems $\Pi_{i} \Rightarrow$ they accelerate the algorithm
... How to find a good heuristic solution and a good bound?

## Relaxations

A relaxation of a given problem $\Pi$ is any problem $\Pi^{\prime}$

$$
\left\{\begin{array} { l } 
{ \operatorname { m i n } z = f ( x ) } \\
{ x \in X }
\end{array} \quad \left\{\begin{array}{l}
\min z=f^{\prime}(x) \\
x \in X^{\prime}
\end{array}\right.\right.
$$

such that the following two properties hold
(1) $X^{\prime} \supseteq X$
(2) $f^{\prime}(x) \leq f(x)$ for all $x \in X$

Given the optimal solutions $x^{*}$ of $\Pi$ and $x^{\prime *}$ of $\Pi^{\prime}$

$$
f^{\prime}\left(x^{\prime *}\right) \leq f^{\prime}\left(x^{*}\right) \leq f\left(x^{*}\right) \leq f(x) \text { for all } x \in X
$$

The optimum of any relaxation of $\Pi$ is a bound on the optimum of $\Pi$
Usually, one looks for easy relaxations of hard problems
In rare cases, the relaxation yields the optimal solution of the problem: if $x^{\prime *}=x^{*}$ and $f^{\prime}\left(x^{*}\right)=f\left(x^{*}\right)$, then $x^{\prime *}$ is an optimal solution of $\Pi$

## Continuous relaxation

The continuous relaxation adopts $f^{\prime}(x)=f(x)$ and $X^{\prime}=P$

$$
\begin{aligned}
\min z & =c x+d \\
A x & \leq b \\
x & \geq 0 \\
x & \in X
\end{aligned}
$$



$$
x^{*}=(4,0) \Rightarrow z\left(x^{*}\right)=-12
$$

$$
\begin{aligned}
\min z & =c x+d \\
A x & \leq b \\
x & \geq 0
\end{aligned}
$$


$x^{*}=(4.75,1.5) \Rightarrow z\left(x^{*}\right)=-12.75$
Another (weaker, but faster) way to compute bounds is to find dual feasible solutions

## Computation of heuristic solutions

Heuristic solutions provide suboptimal estimation $z(\tilde{x}) \geq z^{*}$, which are compared to the local bound of each subproblem $L B_{\ell} \leq z_{\ell}^{*}$ in an attempt to remove the subproblem

They can be computed
(1) with a heuristic algorithm run before the branch-and-bound method
(2) with a heuristic algorithm run at each node, based on auxiliary information produced by the processing of the associated subproblem (e. g., rounding or Lagrangean heuristics)
(3) solving exactly one of the subproblems (when possible) As the method proceeds, new heuristic solutions are discovered, and the best known one is updated, improving the suboptimal estimate

## Branching tree visit

As we cannot process simultaneously several nodes of the branching tree, the open ones must be sorted

Visit strategy of the branching tree is the order in which the open branching nodes are processed

- depth-first: process the last node generated
- few nodes are open (reduced memory consumption)
- tends to reduce subproblems (quickly providing heuristic solutions)
- best-first: process the most "promising" open node according to some criterium (usually the one with minimum bound)
- tends to quickly provide better heuristic solutions
- hybrid methods: the strategy changes over time

Obviously, children nodes are visited

- only after the parent node (they do not exist before)
- only if the parent nodes does not represent a base case (they are not generated in that case)

A branch-and-bound algorithm is defined by
(1) a branching rule
(2) a procedure to compute a heuristic solution
(3) a procedure to compute a bound
(4) a tree visit strategy

These four elements have a crucial influence on the efficiency, since every choice reflects exponentially on the number of subproblems and consequently on the computational time

## Branch-and-bound

Algorithm Branch-and-Bound(П)
$\tilde{x}:=$ Heuristic(П);
$x_{\Pi}:=$ Relaxation( $\Pi$ );
If $\operatorname{Optimal}\left(x_{\Pi}, \Pi\right)$ then $\tilde{x}:=x_{\Pi}$;
Insert( $\left.\Pi, x_{\square}, Q\right)$;
While $\operatorname{NotEmpty}(Q)$ do
$\left(\Pi, x_{\Pi}\right):=\operatorname{Extract}(Q)$;
If $z\left(x_{\Pi}\right)<z(\tilde{x})$ then
$\left(\Pi_{1}, \ldots, \Pi_{r}\right):=$ Branching( $\Pi$ );
For $\ell:=1$ to $r$ do
If Feasible $\left(\Pi_{\ell}\right)$ then
$x_{\Pi_{\ell}}:=$ Relaxation $\left(\Pi_{i}\right)$;
If Optimal $\left(x_{\Pi_{\ell}}, \Pi_{\ell}\right)$ and $z\left(x_{\Pi_{\ell}}\right)<z(\tilde{x})$ then $\tilde{x}:=x_{\Pi_{\ell}}$ else $\operatorname{Insert}\left(\Pi_{\ell}, x_{\Pi_{\ell}}, Q\right)$;
Return $\tilde{x}$;

## Example

This example applies the branch-and-bound obtained applying

- visit strategy: depth-first, so that $Q$ is a stack
- heuristic: no auxiliary algorithm; start with $\tilde{z}=+\infty$, and replace it as new better solutions are found
- bound: continuous relaxation
- branching rule: standard rule, choosing as branching variable the most fractionary variable $x_{j^{*}}$ in the relaxed optimal solution (the fractional part of $x_{j *}$ is closest to 0.5 )


## Example

$$
\begin{align*}
\min z & =-3 x_{1}+x_{2}  \tag{П}\\
x_{1}+x_{2} & \leq 9 \\
6 x_{1}+7 x_{2} & \leq 39 \\
2 x_{1}-x_{2} & \leq 8
\end{align*}
$$

No feasible solution known: set $\tilde{z}=+\infty$
The continuous relaxation provides


$$
\tilde{\mathrm{Z}}=+\infty
$$

$x_{\Pi}=(4.75,1.5)$ and $L B=z\left(x_{\Pi}\right)=-12.75$
It is a bound, not a feasible optimal solution

$$
\mathrm{LB}=-12.75 \bigcirc^{\Pi}
$$

As $-12.75=L B<\tilde{z}=+\infty$,
$\Pi$ enters $Q$, and is immediately extracted
As $-12.75=L B<\tilde{z}=+\infty$,
branch on the most fractionary variable

- $\Pi_{1}: x_{2} \leq\left\lfloor\xi_{2}^{*}\right\rfloor=1$
- $\Pi_{2}: x_{2} \geq\left\lfloor\xi_{2}^{*}\right\rfloor+1=2$


## Example

Let us process $\Pi_{1}$

$$
\begin{align*}
\min z & =-3 x_{1}+x_{2}  \tag{1}\\
x_{1}+x_{2} & \leq 9 \\
6 x_{1}+7 x_{2} & \leq 39 \\
2 x_{1}-x_{2} & \leq 8 \\
x_{2} & \leq 1
\end{align*}
$$



$$
\tilde{\mathrm{Z}}=+\infty
$$

The continuous relaxation of $\Pi_{1}$ provides
$x_{\Pi_{1}}=(4.5,1)$ and $L B_{1}=z\left(x_{\Pi_{1}}\right)=-12.5$
It is a bound, not a feasible optimal solution The suboptimal estimate remains $\tilde{z}=+\infty$

As $-12.5=z\left(x_{\Pi_{1}}\right)<\tilde{z}=+\infty, \Pi_{1}$ enters $Q$
$Q=\left(\Pi_{1}\right)$


## Example

Let us process $\Pi_{2}$

$$
\begin{align*}
\min z & =-3 x_{1}+x_{2}  \tag{2}\\
x_{1}+x_{2} & \leq 9 \\
6 x_{1}+7 x_{2} & \leq 39 \\
2 x_{1}-x_{2} & \leq 8 \\
x_{2} & \geq 2
\end{align*}
$$



$$
\tilde{z}=+\infty
$$

The continuous relaxation of $\Pi_{2}$ provides
$x_{\Pi_{1}}=(4.1 \overline{6}, 2)$ and $L B_{2}=z\left(x_{\Pi_{2}}\right)=-10.5$
It is a bound, not a feasible optimal solution The suboptimal estimate remains $\tilde{z}=+\infty$

As $-10.5<L B_{2}<\tilde{z}=+\infty, \Pi_{2}$ enters $Q$

$Q=\left(\Pi_{2}, \Pi_{1}\right)$

## Example

Extract $\Pi_{2}$ from the top of stack $Q$

$$
\begin{align*}
\min z & =-3 x_{1}+x_{2}  \tag{2}\\
x_{1}+x_{2} & \leq 9 \\
6 x_{1}+7 x_{2} & \leq 39 \\
2 x_{1}-x_{2} & \leq 8 \\
x_{2} & \geq 2
\end{align*}
$$



$$
\tilde{\mathrm{z}}=+\infty
$$

We know that $x_{\Pi_{2}}=(4.1 \overline{6}, 2)$ and $L B_{2}=-10.5$

As $L B_{2}=-10.5<\tilde{z}=+\infty$,
branch on the most fractionary variable

- $\Pi_{2,1}: x_{1} \leq\left\lfloor x_{1}^{*}\right\rfloor=4$
- $\Pi_{2,2}: x_{1} \geq\left\lfloor x_{1}^{*}\right\rfloor+1=5$



## Example

Let us process $\Pi_{2,1}$

$$
\begin{aligned}
\min z & =-3 x_{1}+x_{2} \quad\left(\Pi_{2,1}\right) \\
x_{1}+x_{2} & \leq 9 \\
6 x_{1}+7 x_{2} & \leq 39 \\
2 x_{1}-x_{2} & \leq 8 \\
x_{2} & \geq 2 \\
x_{1} & \leq 4
\end{aligned}
$$



The continuous relaxation of $\Pi_{2,1}$ provides
$x_{\Pi_{2,1}}=(4,2)$ and $L B_{2,1}=z\left(x_{\Pi_{2,1}}\right)=-10$

It is an optimal solution of $\Pi_{2,1}$ :
$\tilde{z}$ is updated to -10
As $L B_{2,1}=-10 \geq \tilde{z}=-10$,
$\Pi_{2,1}$ is closed
$Q=\left(\Pi_{1}\right)$

## Example

Let us process $\Pi_{2,2}$

$$
\begin{aligned}
\min z & =-3 x_{1}+x_{2} \quad\left(\Pi_{2,2}\right) \\
x_{1}+x_{2} & \leq 9 \\
6 x_{1}+7 x_{2} & \leq 39 \\
2 x_{1}-x_{2} & \leq 8 \\
x_{2} & \geq 2 \\
x_{1} & \geq 5
\end{aligned}
$$



$$
\tilde{z}=-10
$$

As the continuous relaxation of $\Pi_{2,2}$ is unfeasible, also $\Pi_{2,2}$ is unfeasible
$\Pi_{2,2}$ is closed
$\tilde{z}=-10$
$Q=\left(\Pi_{1}\right)$

## Example

Extract $\Pi_{1}$ from the top of stack $Q$

$$
\begin{align*}
\min z & =-3 x_{1}+x_{2}  \tag{1}\\
x_{1}+x_{2} & \leq 9 \\
6 x_{1}+7 x_{2} & \leq 39 \\
2 x_{1}-x_{2} & \leq 8 \\
x_{2} & \leq 1
\end{align*}
$$



$$
\tilde{z}=-10
$$

We know that $x_{\Pi_{1}}=(4.5,1)$ and $L B_{1}=-12.5$
As $L B_{1}=-12.5<\tilde{z}=-10$,
branch on the most fractionary variable

- $\Pi_{1,1}: x_{1} \leq\left\lfloor\xi_{1}^{*}\right\rfloor=4$
- $\Pi_{1,2}: x_{1} \geq\left\lfloor\xi_{1}^{*}\right\rfloor+1=5$



## Example

Let us process $\Pi_{1,1}$

$$
\begin{aligned}
\min z & =-3 x_{1}+x_{2} \quad\left(\Pi_{1,1}\right) \\
x_{1}+x_{2} & \leq 9 \\
6 x_{1}+7 x_{2} & \leq 39 \\
2 x_{1}-x_{2} & \leq 8 \\
x_{2} & \leq 1 \\
x_{1} & \leq 4
\end{aligned}
$$

The continuous relaxation of $\Pi_{1,1}$ provides $x_{\Pi_{1,1}}=(4,0)$ and $L B_{1,1}=z\left(x_{\Pi_{1,1}}\right)=-12$

It is an optimal solution of $\Pi_{1,1}$ : $\tilde{z}$ is updated to -12

As $L B_{1,1}=-12 \geq \tilde{z}=-12$,
$\Pi_{1,1}$ is closed
$Q=\emptyset$


$$
\tilde{z}=-12
$$



## Example

Let us process $\Pi_{1,2}$

$$
\begin{aligned}
\min z & =-3 x_{1}+x_{2} \quad\left(\Pi_{1,2}\right) \\
x_{1}+x_{2} & \leq 9 \\
6 x_{1}+7 x_{2} & \leq 39 \\
2 x_{1}-x_{2} & \leq 8 \\
x_{2} & \leq 1 \\
x_{1} & \geq 5
\end{aligned}
$$



$$
\tilde{z}=-12
$$



