
Foundations of Operations Research
Master of Science in Computer Engineering

Roberto Cordone
roberto.cordone@unimi.it

Tuesday 13.15 - 15.15

Thursday 10.15 - 13.15

http://homes.di.unimi.it/~cordone/courses/2014-for/2014-for.html

Lesson 19: Branch-and-bound Como, Fall 2013

1 / 34

roberto.cordone@unimi.it
http://homes.di.unimi.it/~cordone/courses/2014-for/2014-for.html


Integer Linear Programming

min z = c x + d (Π)

Ax = b

x ≥ 0

x ∈ Zn

It is a family of nonlinear problems: x ∈ Zn ⇔
n∑

j=1

sin2 (πxj) = 0

Except for (relevant) particular cases, there is no polynomial algorithm

• to solve Π

• to decide whether Π admits feasible solutions

. . . So, what can be done?

2 / 34



Explicit enumeration

We assume that the continuous relaxation has a bounded feasible region
(for the sake of simplicity: most conclusions hold anyway)

P = {x ∈ Rn : Ax ≤ b, x ≥ 0} bounded⇔ xj ∈ {0, . . . ,Kj} ⊂ N

Therefore, the feasible region X = P ∩ Zn is finite

One can apply the exhaustive algorithm:

• set the best known value z̃ to +∞ (minimization problem)

• subsequently generate each vector x such that xj ∈ {0, . . . ,Kj}
• if the current x is feasible, compare z (x) with z̃ :

save in z̃ the minimum of the two

Unluckily, the number of vectors x to be tested is exponential

The exhaustive method is not practical!

3 / 34



Divide et impera

Notice that, if X =
r⋃

`=1

X` = X1

⋃
. . .
⋃
Xr

x∗i = arg min
x∈X

z (x) = arg min
`=1,...,r

[
min
x∈X`

z (x)

]
Therefore, one can solve Π by solving r smaller problems Π1, . . . ,Πr

min z = c x + d (Π`)

x ∈ X`

min z = −3x1 + x2 (Π)

x1 + x2 ≤ 9

6x1 + 7x2 ≤ 39

2x1 − x2 ≤ 8

x ∈ Nn

z∗ = min

[
min
x∈X1

z (x) , min
x∈X2

z (x)

]
= min [z (4, 0) , z (4, 1)] = min (−12,−11) = −12

4 / 34



A recursive approach

Why is it better to solve several subproblems Π` (` = 1, . . . , r) instead of Π?

• base case: Π` could be a problem with:

• no feasible solution: X` = ∅
• a single feasible solution: X` = {x`} ⇒ z∗` = min

x∈X`

z (x) = z (x`)

• a polynomial solving algorithm

• recursive case: the decomposition can be repeated on each subproblem Π`

To apply the scheme recursively, we generate the subproblems by adding affine
branching constraints Â(`)x ≤ b̂(`), so that the subproblems are ILP problems

X` = X ∩
{
x ∈ Rn : Â(`)x ≤ b̂(`)

}
=

= P ∩ Zn ∩
{
x ∈ Rn : Â(`)x ≤ b̂(`)

}
=

= P` ∩ Zn

where P` = P ∩
{
x ∈ Rn : Â(`)x ≤ b̂(`)

}
The constraints of the previous page were nonaffine, the subproblems not ILP

Branching rule is the procedure to build the branching constraints
(
Â(`), b̂(`)

)
5 / 34



Parallel branching constraints

Parallel constraints: â ∈ Zn and b̂` ∈ Z for ` = 1, . . . , r − 1

1 â x ≤ b̂1 (e. g., x1 + x2 ≤ 2)

2 b̂2 + 1 ≤ â x ≤ b̂3 (e. g., 3 ≤ x1 + x2 ≤ 4)

3 . . .

4 b̂2r−2 + 1 ≤ â x (e. g., x1 + x2 ≥ 5)

min z = −3x1 + x2 (Π1)

x1 + x2 ≤ 9

6x1 + 7x2 ≤ 39

2x1 − x2 ≤ 8

x1 + x2 ≤ 2

x ∈ Nn

6 / 34



Parallel branching constraints

Parallel constraints: â ∈ Zn and b̂` ∈ Z for ` = 1, . . . , r − 1

1 â x ≤ b̂1 (e. g., x1 + x2 ≤ 2)

2 b̂2 + 1 ≤ â x ≤ b̂3 (e. g., 3 ≤ x1 + x2 ≤ 4)

3 . . .

4 b̂2r−2 + 1 ≤ â x (e. g., x1 + x2 ≥ 5)

min z = −3x1 + x2 (Π2)

x1 + x2 ≤ 9

6x1 + 7x2 ≤ 39

2x1 − x2 ≤ 8

3 ≤ x1 + x2 ≤ 4

x ∈ Nn

7 / 34



Parallel branching constraints

Parallel constraints: â ∈ Zn and b̂` ∈ Z for ` = 1, . . . , r − 1

1 â x ≤ b̂1 (e. g., x1 + x2 ≤ 2)

2 b̂2 + 1 ≤ â x ≤ b̂3 (e. g., 3 ≤ x1 + x2 ≤ 4)

3 . . .

4 b̂2r−2 + 1 ≤ â x (e. g., x1 + x2 ≥ 5)

min z = −3x1 + x2 (Π3)

x1 + x2 ≤ 9

6x1 + 7x2 ≤ 39

2x1 − x2 ≤ 8

x1 + x2 ≥ 5

x ∈ Nn

8 / 34



A standard rule

The most common branching rule (by far) consists in
selecting a branching variable xj∗ an integer threshold b ∈ Z, and setting

• xj∗ ≤ b in Π1 (e. g., x2 ≤ 1)

• xj∗ ≥ b + 1 in Π2 (e. g., x2 ≥ 2)

For binary variables, xj∗ = 0 and xj∗ = 1

9 / 34



Hierarchical branching constraints

Hierarchical constraints: â(i) ∈ Zn and b̂(i) ∈ Z for i = 1, . . . , r − 1

1 â(1)x ≤ b̂(1) (x1 + x2 ≤ 2)

2 â(1)x ≥ b̂(1) + 1 and â(2)x ≤ b̂(2) (x1 + x2 ≥ 3, x2 − x1 ≤ 0)

3 . . .

4 â(1)x ≥ b̂(1) + 1, . . . and â(r−1)x ≥ b̂(r−1) + 1 (x1 + x2 ≥ 3, x2 − x1 ≥ 1)

min z = −3x1 + x2 (Π)

x1 + x2 ≤ 9

6x1 + 7x2 ≤ 39

2x1 − x2 ≤ 8

x1 + x2 ≤ 2

x ∈ Nn

10 / 34



Hierarchical branching constraints

Hierarchical constraints: â(i) ∈ Zn and b̂(i) ∈ Z for i = 1, . . . , r − 1

1 â(1)x ≤ b̂(1) (x1 + x2 ≤ 2)

2 â(1)x ≥ b̂(1) + 1 and â(2)x ≤ b̂(2) (x1 + x2 ≥ 3, x2 − x1 ≤ 0)

3 . . .

4 â(1)x ≥ b̂(1) + 1, . . . and â(r−1)x ≥ b̂(r−1) + 1 (x1 + x2 ≥ 3, x2 − x1 ≥ 1)

min z = −3x1 + x2 (Π)

x1 + x2 ≤ 9

6x1 + 7x2 ≤ 39

2x1 − x2 ≤ 8

x1 + x2 ≥ 3

−x1 + x2 ≤ 0

x ∈ Nn

11 / 34



Hierarchical branching constraints

Hierarchical constraints: â(i) ∈ Zn and b̂(i) ∈ Z for i = 1, . . . , r − 1

1 â(1)x ≤ b̂(1) (x1 + x2 ≤ 2)

2 â(1)x ≥ b̂(1) + 1 and â(2)x ≤ b̂(2) (x1 + x2 ≥ 3, x2 − x1 ≤ 0)

3 . . .

4 â(1)x ≥ b̂(1) + 1, . . . and â(r−1)x ≥ b̂(r−1) + 1 (x1 + x2 ≥ 3, x2 − x1 ≥ 1)

min z = −3x1 + x2 (Π)

x1 + x2 ≤ 9

6x1 + 7x2 ≤ 39

2x1 − x2 ≤ 8

x1 + x2 ≥ 3

−x1 + x2 ≥ 1

x ∈ Nn

12 / 34



A standard rule

It is possible to focus on a subset of branching variables x1, . . . , xr−1,
define integer thresholds b1, . . . , br−1, and impose

1 x1 ≤ b1

2 x1 ≥ b1 + 1 and x2 ≤ b2

3 . . .

4 x1 ≥ b1 + 1,. . . , xr−2 ≥ br−2 + 1 and xr−1 ≤ br−1

5 x1 ≥ b1 + 1,. . . , xr−2 ≥ br−2 + 1 and xr−1 ≥ br−1 + 1

This rule, however, is not common when dealing with general variables

It is common on binary variables x1, x2, . . . , xr−1:

1 x1 = 0

2 x1 = 1 and x2 = 0

3 . . .

4 x1 = 1,. . . , xr−2 = 1 and xr−1 = 0

5 x1 = 1,. . . , xr−2 = 1 and xr−1 = 1

13 / 34



Branching tree

A branch-and-bound algorithm produces a branching tree, that is a
tree with nodes associated to subsets of the feasible region X (subproblems)

• the root node is associated to X

• each node is associated to the union of the sets associated to its children

• the leaf nodes are associated to subsets with zero or one solution

Number of nodes ≥ Number of leaves ≥ Number of
(subproblems) (easy subproblems) solutions

⇒ The branching tree has exponential size

So, what is the advantage?
14 / 34



Drawbacks associated to the base cases

Given a branch-and-bound algorithm on an ILP problem

• the base cases are exponentially many

• the base cases are not trivial
(it is NP-complete to decide whether X` = ∅)

The solution is to use additional information to

1 remove subproblems without solving them

2 solve the remaining subproblems efficiently (if possible)

15 / 34



Dominance

Implicit enumeration: examining whole subsets of solutions at a time

Instead of computing the optimal solution of all subproblems, one can compute
a bound, or superoptimal estimate, i. e. a value better than the optimum

If for a subset of solutions X` the bound is worse than a known solution x̃ ,
that subset cannot provide any improvement

Theorem: Let Π be an ILP problem and x̃ one of its feasible solutions.
Let Π` be a subproblem of Π with a subset of feasible solutions X` ⊆ X ,
and LB` be a lower bound on the value of the objective function z in X`.

If LB` ≥ z (x̃), then at least one optimal solution of Π belongs to X \ X`
x̃ ∈ X

LB` ≤ z (x) , ∀x ∈ X`

LB` ≥ z (x̃)

⇒ ∃x∗ ∈ X \ X` such that z (x∗) ≤ z (x) , ∀x ∈ X

In such a situation Π` can be removed without solving it!

16 / 34



An example of dominance

min z = −3x1 + x2 (Π)

x1 + x2 ≤ 9

6x1 + 7x2 ≤ 39

2x1 − x2 ≤ 8

x1 + x2 ≥ 3

−x1 + x2 ≥ 1

x ∈ Nn

Suppose that we know x̃ = (4, 0) ∈ X , with z (x̃) = −12

From the lesson on duality, notice that{
−x1 + x2 ≥ 1

−x1 − x2 ≥ −9
for all x ∈ X3 ⇒

⇒ 2 (−x1 + x2) + (−x1 − x2) ≥ 2 (1) + (−9) for all x ∈ X3 ⇒
⇒ z (x) = −3x1 + x2 ≥ −7 for all x ∈ X3

Since x̃ is (strictly) better than all solutions of X3 and the optimal solutions
will not be worse than x̃ , they will be out of X3

X3 can be fully removed
17 / 34



Other two ingredients

In order to apply this condition, one needs

1 a heuristic solution x̃ ∈ X , determined with algorithms that do not
guarantee optimality, whose value is a suboptimal estimate

2 a bound LB` or superoptimal estimate of z (x) for x ∈ Xi

Notice that

• the suboptimal estimate is global (worse than the optimum of X )

• the superoptimal estimate is local (better than the optimum of X`)

A good heuristic solution (small z (x)) and a good bound (large LB`)
remove several subproblems Πi ⇒ they accelerate the algorithm

. . . How to find a good heuristic solution and a good bound?

18 / 34



Relaxations

A relaxation of a given problem Π is any problem Π′{
min z = f (x)

x ∈ X

{
min z = f ′ (x)

x ∈ X ′

such that the following two properties hold

1 X ′ ⊇ X

2 f ′ (x) ≤ f (x) for all x ∈ X

Given the optimal solutions x∗ of Π and x ′∗ of Π′

f ′ (x ′∗) ≤ f ′ (x∗) ≤ f (x∗)≤ f (x) for all x ∈ X

The optimum of any relaxation of Π is a bound on the optimum of Π

Usually, one looks for easy relaxations of hard problems

In rare cases, the relaxation yields the optimal solution of the problem:
if x ′∗ = x∗ and f ′ (x∗) = f (x∗), then x ′∗ is an optimal solution of Π

19 / 34



Continuous relaxation

The continuous relaxation adopts f ′ (x) = f (x) and X ′ = P

min z = cx + d

Ax ≤ b

x ≥ 0

x ∈ X

min z = cx + d

Ax ≤ b

x ≥ 0

Another (weaker, but faster) way to compute bounds is to find dual
feasible solutions

20 / 34



Computation of heuristic solutions

Heuristic solutions provide suboptimal estimation z (x̃) ≥ z∗, which are
compared to the local bound of each subproblem LB` ≤ z∗` in an attempt
to remove the subproblem

They can be computed

1 with a heuristic algorithm run before the branch-and-bound method

2 with a heuristic algorithm run at each node, based on auxiliary
information produced by the processing of the associated
subproblem (e. g., rounding or Lagrangean heuristics)

3 solving exactly one of the subproblems (when possible)

As the method proceeds, new heuristic solutions are discovered,
and the best known one is updated, improving the suboptimal estimate

21 / 34



Branching tree visit

As we cannot process simultaneously several nodes of the branching tree,
the open ones must be sorted

Visit strategy of the branching tree is the
order in which the open branching nodes are processed

• depth-first: process the last node generated
• few nodes are open (reduced memory consumption)
• tends to reduce subproblems

(quickly providing heuristic solutions)

• best-first: process the most “promising” open node according to
some criterium (usually the one with minimum bound)

• tends to quickly provide better heuristic solutions

• hybrid methods: the strategy changes over time

Obviously, children nodes are visited

• only after the parent node (they do not exist before)

• only if the parent nodes does not represent a base case
(they are not generated in that case)

22 / 34



Summary

A branch-and-bound algorithm is defined by

1 a branching rule

2 a procedure to compute a heuristic solution

3 a procedure to compute a bound

4 a tree visit strategy

These four elements have a crucial influence on the efficiency, since every
choice reflects exponentially on the number of subproblems and
consequently on the computational time

23 / 34



Branch-and-bound

Algorithm Branch-and-Bound(Π)

x̃ := Heuristic(Π);

xΠ :=Relaxation(Π);

If Optimal(xΠ,Π) then x̃ := xΠ;

Insert(Π, xΠ,Q);

While NotEmpty(Q) do

(Π, xΠ) := Extract(Q);
If z (xΠ) < z (x̃) then

(Π1, . . . ,Πr ) :=Branching(Π);
For ` := 1 to r do

If Feasible(Π`) then

xΠ`
:=Relaxation(Πi );

If Optimal(xΠ`
,Π`) and z (xΠ`

) < z (x̃)

then x̃ := xΠ`

else Insert(Π`, xΠ`
,Q);

Return x̃ ;

24 / 34



Example

This example applies the branch-and-bound obtained applying

• visit strategy: depth-first, so that Q is a stack

• heuristic: no auxiliary algorithm; start with z̃ = +∞,
and replace it as new better solutions are found

• bound: continuous relaxation

• branching rule: standard rule, choosing as branching variable
the most fractionary variable xj∗ in the relaxed optimal solution
(the fractional part of xj∗ is closest to 0.5)

25 / 34



Example

min z = −3x1 + x2 (Π)

x1 + x2 ≤ 9

6x1 + 7x2 ≤ 39

2x1 − x2 ≤ 8

No feasible solution known: set z̃ = +∞

The continuous relaxation provides
xΠ = (4.75, 1.5) and LB = z (xΠ) = −12.75
It is a bound, not a feasible optimal solution

As −12.75 = LB < z̃ = +∞,
Π enters Q, and is immediately extracted

As −12.75 = LB < z̃ = +∞,
branch on the most fractionary variable

• Π1: x2 ≤ bξ∗2 c = 1

• Π2: x2 ≥ bξ∗2 c+ 1 = 2

26 / 34



Example

Let us process Π1

min z = −3x1 + x2 (Π1)

x1 + x2 ≤ 9

6x1 + 7x2 ≤ 39

2x1 − x2 ≤ 8

x2 ≤ 1

The continuous relaxation of Π1 provides
xΠ1 = (4.5, 1) and LB1 = z (xΠ1 ) = −12.5

It is a bound, not a feasible optimal solution
The suboptimal estimate remains z̃ = +∞

As −12.5 = z (xΠ1 ) < z̃ = +∞, Π1 enters Q

Q = (Π1)

27 / 34



Example

Let us process Π2

min z = −3x1 + x2 (Π2)

x1 + x2 ≤ 9

6x1 + 7x2 ≤ 39

2x1 − x2 ≤ 8

x2 ≥ 2

The continuous relaxation of Π2 provides
xΠ1 =

(
4.16̄, 2

)
and LB2 = z (xΠ2 ) = −10.5

It is a bound, not a feasible optimal solution
The suboptimal estimate remains z̃ = +∞

As −10.5 < LB2 < z̃ = +∞, Π2 enters Q

Q = (Π2,Π1)

28 / 34



Example

Extract Π2 from the top of stack Q

min z = −3x1 + x2 (Π2)

x1 + x2 ≤ 9

6x1 + 7x2 ≤ 39

2x1 − x2 ≤ 8

x2 ≥ 2

We know that xΠ2 =
(
4.16̄, 2

)
and LB2 = −10.5

As LB2 = −10.5 < z̃ = +∞,
branch on the most fractionary variable

• Π2,1: x1 ≤ bx∗1 c = 4

• Π2,2: x1 ≥ bx∗1 c+ 1 = 5

29 / 34



Example

Let us process Π2,1

min z = −3x1 + x2 (Π2,1)

x1 + x2 ≤ 9

6x1 + 7x2 ≤ 39

2x1 − x2 ≤ 8

x2 ≥ 2

x1 ≤ 4

The continuous relaxation of Π2,1 provides
xΠ2,1 = (4, 2) and LB2,1 = z

(
xΠ2,1

)
= −10

It is an optimal solution of Π2,1:
z̃ is updated to −10

As LB2,1 = −10 ≥ z̃ = −10,
Π2,1 is closed

Q = (Π1)

30 / 34



Example

Let us process Π2,2

min z = −3x1 + x2 (Π2,2)

x1 + x2 ≤ 9

6x1 + 7x2 ≤ 39

2x1 − x2 ≤ 8

x2 ≥ 2

x1 ≥ 5

As the continuous relaxation of Π2,2 is unfeasible,
also Π2,2 is unfeasible

Π2,2 is closed

z̃ = −10

Q = (Π1)

31 / 34



Example

Extract Π1 from the top of stack Q

min z = −3x1 + x2 (Π1)

x1 + x2 ≤ 9

6x1 + 7x2 ≤ 39

2x1 − x2 ≤ 8

x2 ≤ 1

We know that xΠ1 = (4.5, 1) and LB1 = −12.5

As LB1 = −12.5 < z̃ = −10,
branch on the most fractionary variable

• Π1,1: x1 ≤ bξ∗1 c = 4

• Π1,2: x1 ≥ bξ∗1 c+ 1 = 5

32 / 34



Example

Let us process Π1,1

min z = −3x1 + x2 (Π1,1)

x1 + x2 ≤ 9

6x1 + 7x2 ≤ 39

2x1 − x2 ≤ 8

x2 ≤ 1

x1 ≤ 4

The continuous relaxation of Π1,1 provides
xΠ1,1 = (4, 0) and LB1,1 = z

(
xΠ1,1

)
= −12

It is an optimal solution of Π1,1:
z̃ is updated to −12

As LB1,1 = −12 ≥ z̃ = −12,
Π1,1 is closed

Q = ∅

33 / 34



Example

Let us process Π1,2

min z = −3x1 + x2 (Π1,2)

x1 + x2 ≤ 9

6x1 + 7x2 ≤ 39

2x1 − x2 ≤ 8

x2 ≤ 1

x1 ≥ 5

As the continuous relaxation of Π1,2 is unfeasible,
also Π1,2 is unfeasible

Π1,2 is closed

z̃ = −12

Q = ∅

As there are no more open subproblems,
the optimal solution is x̃ = (4, 0)
and the optimum is z̃ = −12

34 / 34


