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Branch-and-bound algorithm based on the conti-

nuous relaxation

Given the following problem

min z = −2x1 − 3x2

x1 + 2x2 ≤ 9

6x1 + 7x2 ≤ 39

2x1 − x2 ≤ 8

x1, x2 ∈ N

a) solve it with the branch-and-bound algorithm based on the continuous rela-
xation solved graphically;

b) replace the objective function z with z′ = x1 − 2x2 and solve again;

c) do the same with objective function z′′ = −3x1 + x2.

The branch-and-bound-algorithm

The branch-and-bound-algorithm is a general technique to enumerate solutions
implicitly. In other words, it evaluates all solutions of the problem, taking them
into account not one by one but in subsets, for which it is easy to determine the
optimal solution, or to prove that they contain no optimal solution.

It is a divide et impera (divide and conquer) method: the given problem (and
its feasible region) is divided into subproblems (and subregions) which are separa-
tely tackled. One maintains a list P of open subproblems, that is subproblems not
yet processed, from which one problem P (r) at a time is extracted and processed.

• If P (r) has no feasible solution, it is closed, or pruned.

• If P (r) can be solved to optimality, it is closed, and its optimal solution is
compared to the best known solution possibly replacing it (if better); the
value z∗

E
of the best known solution is a suboptimal estimate of the global

optimum. Other estimates can derive from the application of heuristic
algorithms combined with the branch-and-bound mechanism. As long as
no solution is known, z∗

E
= +∞ in minimization problem and z∗

E
= −∞ in

maximization problem.

• If it can be proved that P (r) contains no solution strictly better than the
best known one, Pr is closed. Such a proof can be obtained computing a
superoptimal estimate z

(r)
B

of the best solution of Pr (local optimum). Such
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an estimate is usually obtained solving a relaxation of Pr, i. e. an auxiliary
problem whose optimal solution is certainly better than that of the given
one. If the estimate z

(r)
B

is not strictly better than z∗
E
, all solutions of P (r)

are dominated by the best known solution, and therefore it is unnecessary
to solve Pr exactly. Notice that z

(r)
B

is a superoptimal estimate only for
subproblem P (r), while z∗

E
is a suboptimal estimate for the whole problem

P .

• If the three previous cases are not verified, P (r) is split into subproblems,
which are introduced in the list of open problems P.

The algorithm terminates when the list is empty; at that point, the best solution
found is certainly optimal.

The process can be modelled on one side as the partition of the feasible region
S into subsets Sr subsequently processed and removed, on the other side as the
creation and visit of a tree, denoted as branching tree, whose nodes correspond
to the subproblems subsequently processed. In particular, the leaves correspond
to the closed problems (see Figure 1).
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Figura 1: Scheme of the branch-and-bound algorithm

2



This is a general scheme, that includes very different branch-and-bound algo-
rithms. The elements that characterize a specific branch-and-bound algorithm:

• the visit strategy of the branching tree, that is the criterium to select from
P the subproblem P to be processed;

• the bounding technique, that is the procedure to evaluate the superoptimal
estimate z

(r)
B
;

• the auxiliary heuristic, that is the procedure to evaluate the suboptimal
estimate zE : this can be a true heuristic, or simply consist in saving the
solutions of the subproblems solved to optimality;

• the branching rule, that is the way to split the current problem P (r) into
reduced subproblems.

In the following, we refer to the following version of the branch-and-bound
general framework:

• the tree is visited with the depth-first strategy, which always visits the
subproblem generated most recently, so as to work on strongly constrained
subproblems and to get rapidly to an integer solution;

• the bounding technique is the continuous relaxation (xi ∈ N → xi ≥ 0);

• the auxiliary heuristic reduces to keeping track of the best integer solution
generated so far by the continuous relaxations (at first, the suboptimal
estimate, or upper bound, UB is set to +∞);

• the branching rule consists in selecting a fractionary variable (typically the

most fractionary one, that is the variable xi whose fractionary part xi−⌊xi⌋
is closest to 0.5) and generate two subproblems, setting xi ≤ ⌊x∗

i
⌋ in one

and xi ≥ ⌊x∗

i
⌋ + 1 in the other.
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Solution with the first objective function

The problem is a minimization problem. Therefore, the superoptimal estimate
z
(0)
B

obtained with the continuous relaxation is a lower bound on the optimum,
whereas the value z∗

E
of the best heuristic solution found during the process is

an upper bound. The continuous relaxation of the problem is obtained replacing
constraints x1 ∈ N and x2 ∈ N with x1 ≥ 0 and x2 ≥ 0.

min z = −2x1 − 3x2

x1 + 2x2 ≤ 9

6x1 + 7x2 ≤ 39

2x1 − x2 ≤ 8

x1, x2 ≥ 0
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Figura 2: Graphical solution of the continuous relaxation of P = P (0) with the
first objective function

Figure 2 reports the graphical resolution of the continuous relaxation of pro-
blem P (0). Its optimal solution is x∗(0) = A = (3, 3). This provides a lower bound

z
(0)
B

= −15 of the optimum of P = P (0). In this case, however, the solution is also
feasible for the integrality constraint, though the latter has been relaxed. Con-
sequently, the current problem P (0) is solved to optimality. We update the best
known heuristic solution, setting z∗

E
= −15. As there is no other open problem,

we have determined the optimal solution x∗ = (3, 3) and the optimum z∗ = −15
of the whole problem.
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Solution with the second objective function

Problem P (0): Figure 3 reports the graphical resolution of the continuous
relaxation of P (0). Its optimal solution is x∗(0) = B = (0, 9/2), from which we

derive a lower bound z
(0)
B

= −9. Since the solution is fractionary, neither has
the problem been solved, nor can we update the suboptimal estimate z∗

E
, which

remains +∞. This is clearly worse than z
(0)
B
, so that we are forced to decompose

the problem into subproblems with a branching operation. Given that the only
fractionary component of x∗(0) is x2, we decompose the problem with respect to
the branching variable x

∗(0)
2 :

• P (1): add to P (0) constraint x2 ≤ ⌊x∗

2⌋ = 4

• P (2): add to P (0) constraint x2 ≥ ⌊x∗

2⌋+ 1 = 5
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Figura 3: Graphical resolution of the continuous relaxation of P = P (0) with the
second objective function

Problem P(1):

min z′ = x1 − 2x2

x1 + 2x2 ≤ 9

6x1 + 7x2 ≤ 39

2x1 − x2 ≤ 8

x2 ≤ 4

x1, x2 ∈ N

Figure 4 reports the graphical resolution of the continuous relaxation of P (1):
its optimal solution is x∗(1) = C = (0, 4), and its value is z

(1)
B

= −8. This is an
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Figura 4: Graphical resolution of the continuous relaxation of P (1) with the
second objective function

integer solution, so that the problem is solved. Moreover, it provides a heuristic
integer solution, which improves the suboptimal estimate z∗

E
from +∞ to −8.

As an exercise, one can solve this problem with the simplex method, instead
of graphically. The tableau is identical to that of the parent node P (0), with
an additional row associated to the branching constraint. If one starts from the
optimal tableau of problem P (0) and adds the new row, it is first of all necessary
to get back to a basic canonical form with a simple pivot operation that concerns
only the new row. Then, the reduced costs remain nonnegative, but the right-
hand-side of the new constraint is negative, because the new constraint is violated
by the current optimal solution of the continuous relaxation. Thus, it is licit (and
profitable) to apply the dual simplex method, and to reoptimiza the solution
without starting from scratch or using the two-phase method.

Problem P(2): Let us consider the following subproblem in the list, that is
P (2).

min z′ = x1 − 2x2

x1 + 2x2 ≤ 9

6x1 + 7x2 ≤ 39

2x1 − x2 ≤ 8

x2 ≥ 5

x1, x2 ∈ N

This problem has no feasible solution. If one applies the simplex method,
after adding the new row and getting back to a basic canonical form, one obtains
a row with all positive coefficients and with a negative right-hand-side. This is an
obvious unfeasibility condition, so the problem is closed. Notice that, since the
reduced costs are nonnegative, the corresponding dual problem is unbounded.
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Since there are no more subproblems to solve, we have obtained the optimum:
the optimal solution is the best heuristic solution found during the process, that
is x∗ = (0, 4), with z∗ = −8.

Solution with the third objective function

min z′′ = −3x1 + x2

x1 + 2x2 ≤ 9

6x1 + 7x2 ≤ 39

2x1 − x2 ≤ 8

x1, x2 ∈ N

Figure 5 reports the graphical resolution of the continuous relaxation: its
optimal solution is x∗(0) = D = (19/4, 3/2), that is fractionary. Consequently,

it provides a lower bound on the optimum z
(0)
B

= −51/4 = −12.75 and suggests
to use x1 as a branching variable. The value of x∗

1 is 19/4 and its distance from
the middle point between 4 and 5 is 1/4, whereas the value of x∗

2 is 3/2, which
is exactly the middle point between 1 and 2. Therefore, the problem is branched
with respect to x2:

• P (1): add to the formulation of P (0) constraint x2 ≤ ⌊x∗

2⌋ = 1

• P (2): add to the formulation of P (0) constraint x2 ≥ ⌊x∗

2⌋ + 1 = 2
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Figura 5: Graphical resolution of the continuous relaxation of P = P (0) with the
third objective function
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Problem P(1):

min z′′ = −3x1 + x2

x1 + 2x2 ≤ 9

6x1 + 7x2 ≤ 39

2x1 − x2 ≤ 8

x2 ≤ 1

x1, x2 ∈ N

The optimal solution of the continuous relaxation of P (1) is x∗(1) = E =
(9/2, 1), which provides a lower bound equal to z

(1)
B

= −25/2 = −12.5 (see
Figure 6).
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Figura 6: Risoluzione grafica del rilassamento lineare di P (1)

The solution is fractionary, but only with respect to x1, so we must decompose
the problem branching on x1:

• P (3): add to the formulation of P (1) constraint x1 ≤ ⌊x∗

1⌋ = 4

• P (4): add to the formulation of P (1) constraint x1 ≥ ⌊x∗

1⌋ + 1 = 5

Problem P(3): The following problem in the list is P (3).

min z′′ = −3x1 + x2

x1 + 2x2 ≤ 9

6x1 + 7x2 ≤ 39

2x1 − x2 ≤ 8

x2 ≤ 1

x1 ≤ 4

x1, x2 ∈ N
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The optimal solution of its continuous relaxation is x∗(3) = F = (4, 0), which

provides a lower bound equal to z
(1)
B

= −12 (see Figure 7). Being an integer
solution, the superoptimal estimate is actually optimal: the problem is closed and
the best known heuristic solution is updated, together with the corresponding
suboptimal estimate z∗

E
. This was +∞, since we had not yet determined any

integer solution, and now becomes z∗
E
= −12.
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Figura 7: Graphical resolution of the continuous relaxation of P (3) with the third
objective function

Problema P(4): Let us consider problem P (4).

min z′′ = −3x1 + x2

x1 + 2x2 ≤ 9

6x1 + 7x2 ≤ 39

2x1 − x2 ≤ 8

x2 ≤ 1

x1 ≥ 5

x1, x2 ∈ N

Its continuous relaxation is unfeasible. The original problem, which is tighter,
is necessarily also unfeasible. So, it is closed. Some authors use to say, informally,
that both the suboptimal and the superoptimal estimate are equal to +∞: this
has no rigorous meaning, but allows to say that the problem does not improve
the best known heuristic solution and that it must be closed. Moreover, it ex-
tends to unfeasible nodes the general property that the superoptimal estimate is
always getting worse as one goes down the branching tree (due to the additional
constraints).

9



Problem P(2):

min z′′ = −3x1 + x2

x1 + 2x2 ≤ 9

6x1 + 7x2 ≤ 39

2x1 − x2 ≤ 8

x2 ≥ 2

x1, x2 ∈ N

The optimal solution of the continuous relaxation is x∗(2) = G = (17/4, 2) (see
Figure 8) and provides a superoptimal estimate equal to z(2)B = −47/4 = −11.75,
which is worse than the best known suboptimal estimate z∗

E
= −12. Therefore,

the node is closed by dominance.
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Figura 8: Graphical resolution of the continuous relaxation of P (2) with the third
objective function

Problem P(3):

min z′′ = −3x1 + x2

x1 + 2x2 ≤ 9

6x1 + 7x2 ≤ 39

2x1 − x2 ≤ 8

x2 ≤ 1

x1 ≥ 5

x1, x2 ∈ N

The subproblem has no feasible solution, and it is therefore closed.
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Summary

Figure 9 sums up the process: notice that along each path going down from
the root to a leaf of the branching tree the value of the lower bound zB keeps
increasing (not decreasing, at least). This is a general property, deriving from
the fact that, as one goes down the tree, more and more branching constraints
are added to the original formulation.
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Figura 9: Branching tree with the third objective function
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