Foundations of Operations Research

Master of Science in Computer Engineering

Roberto Cordone
roberto.cordone@unimi.it

Tuesday 13.15-15.15
Thursday 10.15-13.15
http://homes.di.unimi.it/~cordone/courses/2014-for/2014-for.html

Integer Linear Programming

Actually, different ILP formulations can identify the same ILP problem

$$
\begin{aligned}
\min f=-3 x_{1}+x_{2} & \\
-x_{1}+x_{2} & \leq 1 \\
x_{1}+x_{2} & \leq 2 \\
x_{1}-x_{2} & \leq 1 \\
& \subset
\end{aligned}
$$

$$
\begin{aligned}
\min f=-3 x_{1}+x_{2} & \\
-2 x_{1}+x_{2} & \leq 1 \\
x_{1}+2 x_{2} & \leq 3 \\
2 x_{1}-x_{2} & \leq 2 \\
x & \in \mathbb{N}^{n}
\end{aligned}
$$

$$
\begin{aligned}
\min f=-3 x_{1}+x_{2} & \\
x_{1} & \leq 1 \\
x_{2} & \leq 1 \\
x & \in \mathbb{N}^{n}
\end{aligned}
$$

The continuous relaxations are different:

- the relaxed optimal solutions are substantially different
- the bounds (relaxed optima) are substantially different

Ideal formulation

Assume that $P=\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}$ is a bounded (polytope) for the sake of simplicity: the feasible region is $X=P \cap Z^{n}$
The convex hull of $X(\operatorname{conv}(X))$ is the smallest convex set including X

- the vertices of $\operatorname{conv}(X)$ have integer coordinates
- their number is finite and their convex hull is a polytope
- the corresponding formulation is valid for the ILP problem
- all basic solutions of its continuous relaxation are integer

The continuous relaxation provided by $\operatorname{conv}(X)$ is the tightest one

- its optimal solution is the optimal solution of the ILP problem

It is denoted as ideal formulation

An algorithm?

Then, in theory, one could solve any ILP problem as follows
(1) build the ideal formulation
(2) solve its continuous relaxation
$L P \Rightarrow$ polynomial time!
But ILP is $\mathcal{N P}$-complete, whereas $L P$ is polynomial!
Where is the contradiction?
There is no contradiction: the problem is hidden in the first step

- the ideal formulation consists of an exponential system of constraints (in general) with respect to the original natural formulation
Therefore, this algorithm requires polynomial time with respect to an exponential function of the original size

Moreover, finding the ideal formulation is not trivial
For most problems, the ideal formulation is unknown

A useful remark

It is actually redundant to identify the whole ideal formulation: only the active constraints in the optimal solution are required

This improves the algorithm

- it is simpler to find the correct formulation
- the number of constraints of the final formulation is smaller

But it is still not trivial to identify the required constraints

Cutting planes

Assume that the optimal relaxed solution $x_{L P}^{*}$ is fractionary (otherwise, the problem is already solved)
A cutting plane, in short cut, is an additional constraint $\hat{a} x \leq \hat{b}$

- satisfied by all feasible integer solutions

$$
\hat{a} x \leq \hat{b} \quad \text { for all } x \in X
$$

- violated by the optimal relaxed solution $x_{L P}^{*}$

$$
\hat{a} x_{L P}^{*}>\hat{b}
$$

Formulation X_{1} admits cutting plane $x_{1} \leq 5 / 4$
Adding a cutting plane to the formulation

- modifies the optimal relaxed solution (the current one becomes unfeasible) $(3 / 2,1 / 2)=x_{L P}^{*} \neq x_{\hat{L P}}^{*}=(5 / 4,1 / 4)$
- in general, improves the bound (it is not looser, hopefully tighter)

$$
-4=f_{L P}^{*} \leq f_{\hat{L P}}^{*}=-3.5
$$

Cutting plane algorithm

This suggests a modified cutting plane algorithm:
(1) start from the natural formulation
(2) solve the continuous relaxation of the current formulation computing its optimal solution $x_{L P}^{*}$
(3) if $x_{L P}^{*}$ is integer, return it and terminate;
otherwise, find a cutting plane $\hat{a} x \leq \hat{b}$, introduce it in the current formulation and go to step 2

Now the problems are
(1) is it always possible to find a cutting plane at each step?
(2) how does one find a cutting plane?
(3) is the procedure guaranteed to terminate?

In 1958, Ralph Gomory found a general way to produce cutting planes for all ILP problems, and proved that his method always terminates

Gomory cuts (1)

Given an ILP problem P and its continuous relaxation $P_{L P}$, let

$$
x_{b_{r}}+\sum_{j \in N} \bar{a}_{r j} x_{j}=\bar{b}_{r} \quad r=1, \ldots, m
$$

be the constraints of the optimal basic canonical form of $P_{L P}$, where

- N is the set of indices of the nonbasic variables
- b_{r} is the index of the basic variable occurring in row $r=1, \ldots, m$

If \bar{b}_{r} is fractionary, a cutting plane for P is given by

$$
x_{b_{r}}+\sum_{j \in N}\left\lfloor\bar{a}_{r j}\right\rfloor x_{j} \leq\left\lfloor\bar{b}_{r}\right\rfloor
$$

Proof: The proof follows a nice two-step process. First, since $x \geq 0$, rounding down the left-hand-side coefficients $\bar{a}_{r j}$ yields a relaxation of constraint r

$$
x_{b_{r}}+\sum_{j \in N}\left\lfloor\bar{a}_{r j}\right\rfloor x_{j} \leq \bar{b}_{r} \quad r=1, \ldots, m
$$

where $\left\lfloor\bar{a}_{r j}\right\rfloor$ is the largest integer not larger than $\bar{a}_{r j}$

Gomory cuts (2)

Second, for all solutions x with integer components, the left-hand-side is a combination of integer values, and hence integer.
So, the constraint can be tightened rounding down its right-hand-side

$$
x_{b_{r}}+\sum_{j \in N}\left\lfloor\bar{a}_{r j}\right\rfloor x_{j} \leq\left\lfloor\bar{b}_{r}\right\rfloor \quad r=1, \ldots, m
$$

All integer nonnegative solutions of $P_{L P}$ satisfy this constraint Now consider the optimal solution of $P_{L P}$, denoted as x^{*}

$$
\left\{\begin{array}{l}
x_{b_{r}}^{*}=\bar{b}_{r} \\
x_{j}^{*}=0 \text { for all } j \in N
\end{array} \quad \Rightarrow x_{b_{r}}^{*}+\sum_{j \in N}\left\lfloor\bar{a}_{r j}\right\rfloor x_{j}^{*}=\bar{b}_{r}>\left\lfloor\bar{b}_{r}\right\rfloor\right.
$$

Therefore, x^{*} violates the cutting plane
Example:

$$
\begin{aligned}
x_{2}+1.3 x_{4}-3.2 x_{5}+4 x_{6} & =6.7 \Rightarrow \\
\Rightarrow & x_{2}+1 \quad x_{4}-4 \quad x_{5}+4 x_{6} \\
\Rightarrow & \leq 6.7 \Rightarrow \\
x_{2}+1 & x_{4}-4 \quad x_{5}+4 x_{6}
\end{aligned}
$$

Integer and fractional form (1)

It is possible to obtain an alternative equivalent form of the Gomory cut by subtracting the cut from the original constraint

Original constraint

$$
\begin{aligned}
x_{b_{r}}^{*}+\sum_{j \in N} \bar{a}_{r j} x_{j}^{*} & =\bar{b}_{r} \\
x_{b_{r}}^{*}+\sum_{j \in N}\left\lfloor\bar{a}_{r j}\right\rfloor x_{j}^{*} & \leq\left\lfloor\bar{b}_{r}\right\rfloor \\
\sum_{j \in N}\left(\bar{a}_{r j}-\left\lfloor\bar{a}_{r j}\right\rfloor\right) x_{j}^{*} & \geq \bar{b}_{r}-\left\lfloor\bar{b}_{r}\right\rfloor
\end{aligned}
$$

Integer Gomory cut:
Fractional Gomory cut:

Example:

$$
\begin{array}{cl}
x_{2}+1.3 x_{4}-3.2 x_{5}+4 x_{6} & =6.7 \\
x_{2}+1 x_{4}-4 x_{5}+4 x_{6} & \leq 6 \\
0.3 x_{4}+0.8 x_{5} & \geq 0.7
\end{array}
$$

The fractional form makes the cutting plane algorithm more efficient Therefore, it is the one more commonly used

Integer and fractional form (2)

$$
\begin{aligned}
\max z=8 x_{1}+5 x_{2} & \\
x_{1}+x_{2} & \leq 6 \\
9 x_{1}+5 x_{2} & \leq 45 \\
x_{1}, x_{2} & \in \mathbb{N}
\end{aligned}
$$

The continuous relaxation has the following optimal tableau

$41+1 / 4$	0	0	$5 / 4$	$3 / 4$
$15 / 4$	1	0	$-5 / 4$	$1 / 4$
$9 / 4$	0	1	$9 / 4$	$-1 / 4$

The optimal relaxed solution is fractionary: $x^{*}=(15 / 4,9 / 4)=(3.75,2.25)$
Both components are fractionary; both rows could provide a Gomory cut Focus on the first row, and consider two alternative approaches

- add to the tableau the integer cut

$$
x_{1}-2 x_{3} \leq 3 \Leftrightarrow x_{1}-2 x_{3}+x_{5}=3
$$

- add to the tableau the fractional cut

$$
3 / 4 x_{3}+1 / 4 x_{4} \geq 3 / 4 \Leftrightarrow-3 / 4 x_{3}-1 / 4 x_{4}+x_{5}=-3 / 4
$$

Integer and fractional form (3)

The two approaches are equivalent from a geometric point of view Let us consider the graphical representation in plane (x_{1}, x_{2}); since

$$
\left\{\begin{array}{l}
x_{3}=6-x_{1}-x_{2} \\
x_{4}=45-9 x_{1}-5 x_{2}
\end{array}\right.
$$

- the cut in integer form is

$$
x_{1}-2 x_{3} \leq 3 \Leftrightarrow x_{1}-2\left(6-x_{1}-x_{2}\right) \leq 3 \Leftrightarrow 3 x_{1}+2 x_{2} \leq 15
$$

- the cut in fractional form is

$$
\begin{array}{r}
\frac{3}{4} x_{3}+\frac{1}{4} x_{4} \geq \frac{3}{4} \Leftrightarrow \frac{3}{4}\left(6-x_{1}-x_{2}\right)+\frac{1}{4}\left(45-9 x_{1}-5 x_{2}\right) \geq \frac{3}{4} \Leftrightarrow \\
\Leftrightarrow-3 x_{1}-2 x_{2} \geq-15 \\
\text { They are (obviously!) the same constraint }
\end{array}
$$

Integer and fractional form (4)

In this case, reoptimization leads to an integer solution $(5,0)$, which is optimal for the original ILP problem, with $f^{*}=40$

In general, the resulting solution is still fractional, and other cuts must be introduced; at each step:

- the previous optimal solution is removed
- the lower bound improves

Integer and fractional form (5)

The two forms are equivalent, but their use has a very different impact
(1) while the integer cut destroys the canonical form (column A_{1} has two 1 s) the fractional cut keeps the canonical form
(2) though the basic solution becomes unfeasible (x^{*} violates the added cut!), it has nonnegative reduced costs

$$
b_{m+1}<0 \text { but } c_{j} \geq 0 \text { for all } j
$$

(3) it is not necessary to resort to the two-phase method to regain feasibility

Feasibility can be regained with the dual simplex algorithm which

- improves feasibility while keeping superoptimality $(c \geq 0)$
- exactly as the second phase of the simplex algorithm improves the objective while keeping feasibility
- the only difference is the rule to choose the pivot element

So, using fractional cuts is much more efficient than using integer ones

Dual simplex algorithm

The dual simplex algorithm can be used only when the current basic solution is superoptimal ($c_{j} \geq 0$ for all j)
The pivot element is selected guaranteeing that
(1) the feasibility improves: always choose a pivot row with negative right-hand-side

$$
b_{i}<0
$$

(2) the new basic variable is feasible: always choose a negative pivot element

$$
a_{i j}<0
$$

(3) the reduced costs keep nonnegative: always choose the pivot column with minimum $c_{k} /\left|a_{i k}\right|$ among those with $a_{i k}<0$

$$
j:=\arg \min _{k: a_{i k}<0} \frac{c_{k}}{\left|a_{i k}\right|}
$$

There is a relation with duality, not discussed here: the dual pivot rule actually
(1) builds the dual problem corresponding to the current tableau: its basic solution corresponds to the primal one through complementary slackness
(2) applies the standard pivot rule, obtaining a modified dual basic solution
(3) retrieves the corresponding primal basic solution through complementary slackness

Example

Consider the tableau introduced above, with the additional Gomory cut

$41+1 / 4$	0	0	$5 / 4$	$3 / 4$	0
$15 / 4$	1	0	$-5 / 4$	$1 / 4$	0
$9 / 4$	0	1	$9 / 4$	$-1 / 4$	0
$-3 / 4$	0	0	$-3 / 4$	$-1 / 4$	1

- The pivot row is obvious: only the additional row has a negative right-hand-side
- Two elements are negative: $a_{33}=-3 / 4$ and $a_{34}=-1 / 4$
- The first one has the minimum ratio $c_{k} / a_{i k}$

The pivot element is a_{33}

40	0	0	0	$1 / 3$	$5 / 3$
5	1	0	0	$2 / 3$	$-5 / 3$
0	0	1	0	-1	3
1	0	0	1	$1 / 3$	$-4 / 3$

The current basic solution is not only superoptimal, but also feasible
Therefore, it is optimal: $x^{*}=(5,0,1,0,0)$ with $z^{*}=40$
The algorithm terminates

If an ILP problem admits a finite optimal solution, the Gomory cutting plane method provides such a solution after adding a finite number of Gomory cuts

This is a very good news!
But was not ILP $\mathcal{N} \mathcal{P}$-complete?
No contradiction: in the worst case, the number of Gomory cuts which must be added to obtain the optimal integer solution is exponential with respect to the size of the original problem

In practice, the phenomenon known as tailing off occurs:

- the first cuts improve the lower bound
- the following ones become weaker and weaker

General cuts and specific cuts

There are many other types of cutting planes, besides Gomory cuts:

- general cuts can be applied to any ILP problem
- specific cuts can be applied only to special families of ILP problems Indeed, the specific cuts (for the Travelling Salesman Problem) were discovered some years before Gomory cuts
The strongest cuts are the facets of $\operatorname{conv}(X)$; much research aims to
- characterize classes of facets for different families of problems
- find efficient procedures to generate such facets

The best algorithms for ILP combine cutting planes and branch-and-bound

- cutting planes aim to improve the bound for the branch-and-bound subproblems and to find integer solutions
- branching operations interrupt the generation of cuts when tailing off begins

