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Integer Linear Programming

Actually, different ILP formulations can identify the same ILP problem

min f = −3 x1 + x2

−x1 + x2 ≤ 1

x1 + x2 ≤ 2

x1 − x2 ≤ 1

x ∈ Nn

min f = −3 x1 + x2

−2 x1 + x2 ≤ 1

x1 + 2 x2 ≤ 3

2 x1 − x2 ≤ 2

x ∈ Nn

min f = −3 x1 + x2

x1 ≤ 1

x2 ≤ 1

x ∈ Nn

The continuous relaxations are different:

• the relaxed optimal solutions are substantially different

• the bounds (relaxed optima) are substantially different
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Ideal formulation

Assume that P = {x ∈ Rn : Ax ≤ b} is a bounded (polytope) for the
sake of simplicity: the feasible region is X = P ∩ Z n

The convex hull of X (conv(X )) is the smallest convex set including X

• the vertices of conv(X ) have integer coordinates

• their number is finite and their convex hull is a polytope

• the corresponding formulation is valid for the ILP problem

• all basic solutions of its continuous relaxation are integer

The continuous relaxation provided by conv(X ) is the tightest one

• its optimal solution is the optimal solution of the ILP problem

It is denoted as ideal formulation
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An algorithm?

Then, in theory, one could solve any ILP problem as follows

1 build the ideal formulation How?

2 solve its continuous relaxation LP ⇒ polynomial time!

But ILP is NP-complete, whereas LP is polynomial!
Where is the contradiction?

There is no contradiction: the problem is hidden in the first step

• the ideal formulation consists of an exponential system of constraints
(in general) with respect to the original natural formulation

Therefore, this algorithm requires polynomial time with respect to an
exponential function of the original size

Moreover, finding the ideal formulation is not trivial

For most problems, the ideal formulation is unknown
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A useful remark

It is actually redundant to identify the whole ideal formulation:
only the active constraints in the optimal solution are required

This improves the algorithm

• it is simpler to find the correct formulation

• the number of constraints of the final formulation is smaller

But it is still not trivial to identify the required constraints
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Cutting planes

Assume that the optimal relaxed solution x∗LP is fractionary
(otherwise, the problem is already solved)

A cutting plane, in short cut, is an additional constraint â x ≤ b̂
• satisfied by all feasible integer solutions

â x ≤ b̂ for all x ∈ X

• violated by the optimal relaxed solution x∗LP

â x∗LP > b̂

Formulation X1 admits cutting plane x1 ≤ 5/4

Adding a cutting plane to the formulation

• modifies the optimal relaxed solution
(the current one becomes unfeasible)
(3/2, 1/2) = x∗LP 6= x∗

L̂P
= (5/4, 1/4)

• in general, improves the bound
(it is not looser, hopefully tighter)
−4 = f ∗LP ≤ f ∗

L̂P
= −3.5
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Cutting plane algorithm

This suggests a modified cutting plane algorithm:

1 start from the natural formulation

2 solve the continuous relaxation of the current formulation computing
its optimal solution x∗LP

3 if x∗LP is integer, return it and terminate;

otherwise, find a cutting plane â x ≤ b̂,
introduce it in the current formulation and go to step 2

Now the problems are

1 is it always possible to find a cutting plane at each step?

2 how does one find a cutting plane?

3 is the procedure guaranteed to terminate?

In 1958, Ralph Gomory found a general way to produce cutting planes for
all ILP problems, and proved that his method always terminates
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Gomory cuts (1)

Given an ILP problem P and its continuous relaxation PLP , let

xbr +
∑
j∈N

ārjxj = b̄r r = 1, . . . ,m

be the constraints of the optimal basic canonical form of PLP , where

• N is the set of indices of the nonbasic variables

• br is the index of the basic variable occurring in row r = 1, . . . ,m

If b̄r is fractionary, a cutting plane for P is given by

xbr +
∑
j∈N

bārjc xj ≤
⌊
b̄r
⌋

Proof: The proof follows a nice two-step process. First, since x ≥ 0, rounding
down the left-hand-side coefficients ārj yields a relaxation of constraint r

xbr +
∑
j∈N

bārjc xj ≤ b̄r r = 1, . . . ,m

where bārjc is the largest integer not larger than ārj
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Gomory cuts (2)

Second, for all solutions x with integer components, the left-hand-side is a
combination of integer values, and hence integer.
So, the constraint can be tightened rounding down its right-hand-side

xbr +
∑
j∈N

bārjc xj ≤
⌊
b̄r
⌋

r = 1, . . . ,m

All integer nonnegative solutions of PLP satisfy this constraint
Now consider the optimal solution of PLP , denoted as x∗{

x∗br = b̄r

x∗j = 0 for all j ∈ N
⇒ x∗br +

∑
j∈N

bārjc x∗j = b̄r >
⌊
b̄r
⌋

Therefore, x∗ violates the cutting plane

Example:

x2 + 1.3 x4 − 3.2 x5 + 4 x6 = 6.7⇒
⇒ x2 + 1 x4 − 4 x5 + 4 x6 ≤ 6.7⇒
⇒ x2 + 1 x4 − 4 x5 + 4 x6 ≤ 6
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Integer and fractional form (1)

It is possible to obtain an alternative equivalent form of the Gomory cut
by subtracting the cut from the original constraint

Original constraint x∗br +
∑
j∈N

ārjx
∗
j = b̄r

Integer Gomory cut: x∗br +
∑
j∈N
bārjc x∗j ≤

⌊
b̄r
⌋

Fractional Gomory cut:
∑
j∈N

(ārj − bārjc) x∗j ≥ b̄r −
⌊
b̄r
⌋

Example:

x2 + 1.3 x4 − 3.2 x5 + 4 x6 = 6.7

x2 + 1 x4 − 4 x5 + 4 x6 ≤ 6

0.3 x4 + 0.8 x5 ≥ 0.7

The fractional form makes the cutting plane algorithm more efficient

Therefore, it is the one more commonly used
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Integer and fractional form (2)

max z = 8 x1 + 5 x2

x1 + x2 ≤ 6

9 x1 + 5 x2 ≤ 45

x1, x2 ∈ N
The continuous relaxation has the following optimal tableau

41 + 1/4 0 0 5/4 3/4

15/4 1 0 -5/4 1/4
9/4 0 1 9/4 -1/4

The optimal relaxed solution is fractionary: x∗ = (15/4, 9/4) = (3.75, 2.25)

Both components are fractionary; both rows could provide a Gomory cut
Focus on the first row, and consider two alternative approaches

• add to the tableau the integer cut

x1 − 2x3 ≤ 3⇔ x1 − 2x3 + x5 = 3

• add to the tableau the fractional cut

3/4x3 + 1/4x4 ≥ 3/4⇔ −3/4x3 − 1/4x4 + x5 = −3/4
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Integer and fractional form (3)

The two approaches are equivalent from a geometric point of view
Let us consider the graphical representation in plane (x1, x2); since{

x3 = 6− x1 − x2

x4 = 45− 9 x1 − 5 x2

• the cut in integer form is

x1 − 2x3 ≤ 3⇔ x1 − 2 (6− x1 − x2) ≤ 3⇔ 3x1 + 2x2 ≤ 15

• the cut in fractional form is

3

4
x3 +

1

4
x4 ≥

3

4
⇔ 3

4
(6− x1 − x2) +

1

4
(45− 9 x1 − 5 x2) ≥ 3

4
⇔

⇔ −3x1 − 2x2 ≥ −15

They are (obviously!) the same constraint
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Integer and fractional form (4)

In this case, reoptimization leads to an integer solution (5, 0), which is
optimal for the original ILP problem, with f ∗ = 40

In general, the resulting solution is still fractional, and other cuts must be
introduced; at each step:

• the previous optimal solution is removed

• the lower bound improves
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Integer and fractional form (5)

The two forms are equivalent, but their use has a very different impact

1 while the integer cut destroys the canonical form (column A1 has two 1s)
the fractional cut keeps the canonical form

2 though the basic solution becomes unfeasible (x∗ violates the added cut!),
it has nonnegative reduced costs

bm+1 < 0 but cj ≥ 0 for all j

3 it is not necessary to resort to the two-phase method to regain feasibility

Feasibility can be regained with the dual simplex algorithm which

• improves feasibility while keeping superoptimality (c ≥ 0)

• exactly as the second phase of the simplex algorithm improves the
objective while keeping feasibility

• the only difference is the rule to choose the pivot element

So, using fractional cuts is much more efficient than using integer ones
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Dual simplex algorithm

The dual simplex algorithm can be used only when the current basic solution is
superoptimal (cj ≥ 0 for all j)

The pivot element is selected guaranteeing that

1 the feasibility improves: always choose a pivot row with negative
right-hand-side

bi < 0

2 the new basic variable is feasible: always choose a negative pivot element

aij < 0

3 the reduced costs keep nonnegative: always choose the pivot column with
minimum ck/ |aik | among those with aik < 0

j := arg min
k:aik<0

ck
|aik |

There is a relation with duality, not discussed here: the dual pivot rule actually

1 builds the dual problem corresponding to the current tableau: its basic
solution corresponds to the primal one through complementary slackness

2 applies the standard pivot rule, obtaining a modified dual basic solution

3 retrieves the corresponding primal basic solution through complementary
slackness
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Example

Consider the tableau introduced above, with the additional Gomory cut

41 + 1/4 0 0 5/4 3/4 0
15/4 1 0 -5/4 1/4 0
9/4 0 1 9/4 -1/4 0
-3/4 0 0 -3/4 -1/4 1

• The pivot row is obvious: only the additional row has a negative
right-hand-side

• Two elements are negative: a33 = −3/4 and a34 = −1/4
• The first one has the minimum ratio ck/aik

The pivot element is a33

40 0 0 0 1/3 5/3
5 1 0 0 2/3 -5/3
0 0 1 0 -1 3
1 0 0 1 1/3 -4/3

The current basic solution is not only superoptimal, but also feasible
Therefore, it is optimal: x∗ = (5, 0, 1, 0, 0) with z∗ = 40

The algorithm terminates
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Termination

If an ILP problem admits a finite optimal solution, the Gomory cutting
plane method provides such a solution after adding a finite number of
Gomory cuts

This is a very good news!
But was not ILP NP-complete?

No contradiction: in the worst case, the number of Gomory cuts which
must be added to obtain the optimal integer solution is exponential with
respect to the size of the original problem

In practice, the phenomenon known as tailing off occurs:

• the first cuts improve the lower bound

• the following ones become weaker and weaker

17 / 18



General cuts and specific cuts

There are many other types of cutting planes, besides Gomory cuts:

• general cuts can be applied to any ILP problem

• specific cuts can be applied only to special families of ILP problems

Indeed, the specific cuts (for the Travelling Salesman Problem) were
discovered some years before Gomory cuts

The strongest cuts are the facets of conv(X ); much research aims to

• characterize classes of facets for different families of problems

• find efficient procedures to generate such facets

The best algorithms for ILP combine cutting planes and
branch-and-bound

• cutting planes aim to improve the bound for the branch-and-bound
subproblems and to find integer solutions

• branching operations interrupt the generation of cuts when tailing
off begins
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