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The dual simplex method

Given the following LP problem:

max z = 5x1 + 8x2

x1 + x2 ≤ 6

5x1 + 9x2 ≤ 45

x1, x2 ≥ 0

1. solve it and write the tableau corresponding to the optimal basic solution;

2. add to the problem constraint −1/4x3 − 3/4x4 ≤ −1/4, where x3 and
x4 are the slack variables of the two original constraints, and determine
whether the previous optimal solution is still feasible; if not, compute the
new optimal solution with the dual simplex method;

3. add to the problem constraint −1/3x3 − 2/3x5 ≤ −1/3 and reoptimize;

4. add to the problem constraint −1/2x3 − 1/2x6 ≤ −1/2 and reoptimize.

Solution

Let us solve the problem graphically. Figure 1 shows the result: the optimal point
is (9/4, 15/4), which corresponds to the optimal solution x1 = 9/4, x2 = 15/4,
x3 = x4 = 0.
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Figura 1: Graphical solution

In order to obtain the full tableau, either we apply the algebraic method,
inverting the basic submatrix B, or (equivalently) we apply the simplex method,
which yields in two iterations the following result:
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41 + 1/4 0 0 5/4 3/4
9/4 1 0 9/4 -1/4
15/4 0 1 -5/4 1/4

The dual simplex method

The dual simplex method allows to start from a basic solution with nonnegati-
ve reduced costs (in general, unfeasible) to a basic optimal solution, visiting a
sequence of basic solutions with nonnegative reduced costs and decreasing (or
at least nonincreasing) unfeasibility. In other words, while the primal simplex
method preserves solution feasibility and gradually approaches the optimality
condition c̄ ≥ 0, the dual simplex method preserves the optimality condition
(also called dual feasibility) and gradually approaches feasibility.

The dual simplex method provides a much simpler alternative to the two-
phase method for the cases in which the starting solution is unfeasible. However,
while the two-phase method can always be applied, the dual simplex method
can be applied only when all reduced costs are nonnegative. The most common
practical cases in which this occurs are:

• when new regulations or unexpected events introduce an additional con-
straint or make an existing constraint tighter for an LP problem whose
optimal solution has already been computed, so as to make that solution
unfeasible;

• when the continuous relaxation of an ILP problem has been solved and the
relaxed solution is fractionary (hence, unfeasible for the original problem);
in this case, several techniques allow to introduce into the problem one or
more constraints (named cutting planes or cuts), which forbid the relaxed
solution, without removing any integer one.

The dual simplex method consists in applying pivot operations, just as in the
primal simplex, but selecting the pivot element with different rules:

1. the pivot row is any row with a negative right-hand-side (in general, one
selects the most negative one)

2. the pivot element is the negative element aij < 0 with the minimum absolute
ratio between the column cost and the element: minj:aij<0 cj/|aij| (notice
the absolute value operator applied to aij)

The rule is clearly “dual” with respect to the one used in the primal simplex:
the element is negative instead of positive; the row is chosen first, instead of the
column; the ratios considered concern columns, instead of rows. The element
chosen is still the one with the minimum ratio, and the heuristic rule for the first
choice still prefers the most negative value.
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An operational explanation of the method is the following one: the pivot

operation concerns a negative element so that the right-hand-side, divided by
aij , will become positive; the choice of the column is made so as to guarantee
that no reduced cost will become negative.

There is, however, a deeper relation to duality. Consider a primal problem in
basic canonical form:

min z = cN xN

N xN + xB = b

xN , xB ≥ 0

where B and N are the basic and nonbasic submatrix, respectively. The problem
can be equivalently written as:

max z = −cN xN

N xN ≤ b

xN ≥ 0

and its dual is

minw = bN yN

NT yN ≥ −c

yN ≥ 0

which can be written, replacing N ′yN − yB = −c with −N ′yN + yB = c, as

minw = bN yN

−NT yN + yB = c

yN , yB ≥ 0

This shows that the tableau can be seen as a simultaneous representation
of the primal and the dual problem. This holds for all pairs of basic solutions
(primal and dual) which correspond to each other through the complementary
slackness conditions.

Now, a pivot operation on the primal problem modifies the primal basis, but
correspondingly also the dual basis. Conversely, a pivot operation on the dual
problem modifies the dual basis, but also the primal one. Now, the dual simplex
method rule simply corresponds to switching to the dual problem, applying to it
the standard pivot rule, and switching back to the primal problem:

• the negative elements of the primal correspond to the positive ones of the
dual;

• the negative right-hand-sides of the primal correspond to the negative re-
duced costs of the dual;
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• the minimum ratio minj:aij<0 cj/|aij | of the primal corresponds to the mi-
nimum ratio between right-hand-side and pivot element of the dual.

The pivot operation, however, is always the same, working on the rows of the
problem (not on the columns), because we are working on the primal problem
and visiting primal basic solution: the tableau of the dual is used only as a
guide: we are performing on the primal problem a move which makes the dual
solution approach its optimum. The method works because approaching the dual
optimum means approaching also the primal optimum.

41 + 1/4 0 0 5/4 3/4
9/4 1 0 9/4 -1/4
15/4 0 1 -5/4 1/4
0 1 0
0 0 1

First additional constraint

Constraint −1/4x3 − 3/4x4 ≤ −1/4 turns into −1/4x3 − 3/4x4 + x5 = −1/4 in
order to keep the problem in standard form. This requires to add a new column
and row to the original tableau.

41 + 1/4 0 0 5/4 3/4 0
9/4 1 0 9/4 -1/4 0
15/4 0 1 -5/4 1/4 0
-1/4 0 0 -1/4 -3/4© 1

The dual simplex method requires to select a pivot element. The pivot row is
row 3, since it is the only one with a negative right-hand-side. Column 4 is the
one with minimum ratio cj/|a3j| among those with a3j < 0. So, the pivot element
is a34.

41 0 0 1 0 1
7/3 1 0 7/3 0 -1/3
11/3 0 1 -4/3 0 1/3
1/3 0 0 1/3 1 -4/3

The new optimal solution is x1 = 7/3, x2 = 11/3, x3 = x5 = 0 and x4 = 1/3.
The objective value is obviously worse due to the new constraint; it increased
from −41 − 1/4 to −41.

Second additional constraint

Constraint −1/3x3 − 2/3x5 ≤ −1/3 turns into −1/3x3 − 2/3x5 + x6 = −1/3 in
order to keep the problem in standard form. This requires to add a new column
and row to the original tableau.
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41 0 0 1 0 1 0
7/3 1 0 7/3 0 -1/3 0
11/3 0 1 -4/3 0 1/3 0
1/3 0 0 1/3 1 -4/3 0
-1/3 0 0 -1/3 0 -2/3© 1

Performing a pivot operation on element a45, one obtains

40 + 1/2 0 0 1/2 0 0 3/2
5/2 1 0 5/2 0 0 -1/2
7/2 0 1 -3/2 0 0 1/2
1 0 0 1 1 0 -2
1/2 0 0 1/2 0 1 -3/2

Third additional constraint

Finally, constraint −1/2x3 − 1/2x6 ≤ −1/2 turns into −1/2x3 − 1/2x6 + x7 =
−1/2.

40 + 1/2 0 0 1/2 0 0 3/2 0
5/2 1 0 5/2 0 0 -1/2 0
7/2 0 1 -3/2 0 0 1/2 0
1 0 0 1 1 0 -2 0
1/2 0 0 1/2 0 1 -3/2 0
-1/2 0 0 -1/2© 0 0 -1/2 1

from which, performing a pivot operation on a53:

40 0 0 0 0 0 1 1
0 1 0 0 0 0 3 5
5 0 1 0 0 0 2 -3
0 0 0 0 1 0 -3 2
0 0 0 0 0 1 -2 1
1 0 0 1 0 0 1 -2

Any further constraint can be treated in the same way. Notice that in all three
examples a single pivot operation was always sufficient to achieve feasibility (and
optimality). This is not true in general.

As well, in all three examples, the additional constraint could be introduced
almost directly in the problem producing a basic canonical form, though an un-
feasible one. This is not true in general: the new constraint could actually require
the application of further pivot operations to introduce the basic canonical form,
and this could destroy the optimality condition c̄ ≥ 0, thus forbidding the use of
the dual simplex method. In the special case of cutting planes, however, the new
constraints usually respect the canonical form, and the dual simplex method can
be directly applied.
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