## Foundations of Operations Research

Master of Science in Computer Engineering

### Roberto Cordone roberto.cordone@unimi.it

Tuesday 13.15 - 15.15 Thursday 10.15 - 13.15

http://homes.di.unimi.it/~cordone/courses/2014-for/2014-for.html



Lesson 17: Integer Linear Programming

Como, Fall 2013

1/1

## Integer Linear Programming

Integer Linear Programming (ILP) problems are characterized by

- **1** an affine objective function  $f = c^T x + d$
- 2 affine constraints  $a_i^T x \leq b_i$  (i = 1, ..., m)

**3** integer variables:  $x \ge 0$  and  $x \in \mathbb{Z}^n \Rightarrow x \in \mathbb{N}^n$ 



Contrary to the appearance, they are nonlinear problems This can be clarified by restating the integrality constraints:

 $x_j \in \mathbb{Z} \Leftrightarrow \sin(\pi x_j) = 0$ 

## Computational complexity

ILP can be

- generalized into Mixed Integer Linear Programming (*ILP*), where some variables are integer, but possibly not all: x<sub>j</sub> ∈ Z for j ∈ J' ⊆ J
- specialized into Binary Linear Programming (*BLP*), or 0 − 1 Linear Programming, where all variables are binary: x<sub>j</sub> ∈ {0,1} for all j ∈ J

The feasibility of *BLP* (hence, of *ILP* and *MILP*) is  $\mathcal{NP}$ -complete

Any SAT instance can be turned into a special BLP instance

• replace each Boolean variable with a binary one:

$$\xi_j 
ightarrow x_j$$
 and  $\bar{\xi_j} 
ightarrow 1 - x_j$ 

• replace each Boolean clause with an affine constraint

$$ig(\bigvee_{j\in J^+}\xi_jig)igVig(\bigvee_{j\in J^-}ar\xi_jig)
ightarrow \sum_{j\in J^+}x_j+\sum_{j\in J^-}ig(1-x_j)\ge 1$$

Truth assignments and feasible solutions correspond one-to-one

3/1

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

### Computational complexity: example

Given the Boolean function in Conjunctive Normal Form

 $\phi = \xi_1 \vee \left(\bar{\xi}_1 \wedge \bar{\xi}_2\right) \vee \left(\bar{\xi}_1 \wedge \xi_3\right)$ 

find whether there exists a truth assignment  $\xi$  such that  $\phi(\xi)$  is true The only solution is  $\xi_1 = \xi_3 = true$  and  $\xi_2 = false$ 

This is equivalent to finding whether the BLP problem

$$egin{array}{rcl} x_1 & \geq & 1 \ (1-x_1)+(1-x_2) & \geq & 1 \ ar{x}_1 & +x_3 & \geq & 1 \ x_1,x_2,x_3 & \in & \{0,1\} \end{array}$$

admits any feasible solution

The only solution is  $x_1 = x_3 = 1$  and  $x_2 = 0$ 

<ロ> <冊> < ≧> < ≧> < ≧> ≥ のQ(~ 4/1

## ILP and LP

Every *ILP* instance trivially corresponds to its continuous relaxation, i. e. the *LP* instance obtained neglecting (relaxing) the integrality constraint

- the relaxation admits more solutions (the fractionary ones)
- the relaxed optimum is a bound on the original optimum (not worse)



If the relaxed solution is integer, it is optimal for the *ILP* problem Why not simply round the solution of the continuous relaxation?

# ILP and rounded LP (1)

For many good reasons rounding is a bad algorithm for *ILP* (in general)

1 all rounded solutions could be unfeasible



2 the relaxation could be unable to suggest how to round Consider the independent set problem on an undirected graph

$$\max f = \sum_{v \in V} x_v$$

$$x_u + x_v \leq 1 \qquad [u, v] \in E$$

$$x_v \in \{0, 1\} \quad v \in V$$

The optimal relaxed solution is  $x_v = 1/2$  for all  $v \in V$ 

3 the nearest rounded solution could be very bad

$$\min f = -10^{9} x_{1} + 8 \cdot 10^{9} x_{2}$$

$$7x_{1} + 8x_{2} \leq 57$$

$$x_{2} \leq 3/2$$

$$x_{1} - 9x_{2} \leq 0$$

$$x_{1}, x_{2} \in \mathbb{N}$$

$$\frac{a_{2}x \leq b_{2}}{1 + 2 - 3 + 5 - 6 - 7 - 8 - \frac{a_{2}x \leq b_{2}}{9 - 10}} x_{1}$$

The relaxed solution is  $(513/71, 57/71) \approx (7.23, 0.80)$ The rounded solution (7, 1) costs  $\hat{f} = 1$ The optimal solution (0, 0) costs  $f^* = 0$ Their ratio is infinite

Rounding is a good idea when the relaxed variables have very large values In that case, a variation < 1 has little impact on the objective function and on the constraints

## Total unimodularity

### If the relaxed solution is integer, it is optimal for the ILP problem

For some special ILP problems, all relaxed basic solutions are integer

A coefficient matrix A is totally unimodular when all subsets of m columns of A have determinant in  $\{-1, 0, +1\}$ 

If A and b are integer and A is totally unimodular, all basic solutions of Ax = b are integer (thus, the optimal solution for any objective is integer)

Proof: Consider any subset B of m columns extracted from A. If |B| = 0, B is not a basis, and does not identify a basic solution. If  $|B| \in \{-1, +1\}$ , then B is a basis. Its inverse is

$$B^{-1} = \frac{1}{|B|} \begin{bmatrix} \beta_{11} & \dots & \beta_{1m} \\ \dots & \dots & \dots \\ \beta_{m1} & \dots & \beta_{mm} \end{bmatrix}^T$$

where  $\beta_{ij} = (-1)^{i+j} |M_{ij}|$  and  $M_{ij}$  is the submatrix obtained removing row *i* and column *j* from *B*. Consequently,  $B^{-1}$  is integer.

The corresponding basic solution is  $x = \begin{bmatrix} B^{-1}b \\ 0 \end{bmatrix}$ , which is also integer.

First check whether the given ILP problem provides integer solutions automatically due to its structure (assignment, transportation, flow, ...)

Excluding those easy cases, *ILP* problems can be attacked by

**1** heuristics, which give no optimality guarantee:

- greedy constructive methods, stingy destructive methods
- local search heuristics and metaheuristics
- population-based randomized methods
- exponential exact algorithms, which repeatedly solve the relaxation and take care of fractionality introducing new constraints
  - cutting plane methods: a single relaxation is iteratively tightened and solved
  - branch-and-bound methods: several independent relaxations are recursively generated and solved

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○臣 - のへ()