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Summary

• Any LP problem (primal problem) can be transformed with
mechanical rules into another LP problem (dual problem)

• The relation between the two problems is a duality:
applying the rules to the dual problem one obtains the primal

• The two problems are not equivalent: they have different variables,
objective, constraints, feasible sets, etc. . .

• But they are strongly related, with relevant practical consequences
• their basic solutions correspond one-to-one
• their optimal basic solutions correspond one-to-one
• their optimal value is the same
• all feasible values of one are bounds for the other
• . . .
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Estimation of bounds on the optimum

Given a LP problem in the following form

max f = cT x + d

Ax ≤ b

x ≥ 0

how to compute bounds on its optimum?

Lower bounds are provided by the values of feasible solutions

max f = 4 x1 + x2 + 5 x3 + 3 x4

x1 − x2 − x3 + 3 x4 ≤ 1

5 x1 + x2 + 3 x3 + 8 x4 ≤ 55

−x1 + 2 x2 + 3 x3 − 5 x4 ≤ 3

x1, x2, x3, x4 ≥ 0

x ′ = (0, 0, 1, 0) ⇒ f ∗ ≥ f (x ′) = 5
x ′′ = (2, 1, 1, 1/3)⇒ f ∗ ≥ f (x ′′) = 15
x ′′′ = (3, 1, 1, 0) ⇒ f ∗ ≥ f (x ′′′) = 18

What about upper bounds?
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Estimation of bounds on the optimum

Upper bounds are provided by expressions derived aggregating the constraints
so as to dominate the objective function

max f = 4 x1 + x2 + 5 x3 + 3 x4

x1 − x2 − x3 + 3 x4 ≤ 1 (1)

5 x1 + x2 + 3 x3 + 8 x4 ≤ 55 (2)

−x1 + 2 x2 + 3 x3 − 5 x4 ≤ 3 (3)

x1, x2, x3, x4 ≥ 0

1 multiply Constraint (2) by 5/3 and compare the result with the objective

g (x) =
5

3
· (5 x1 + x2 + 3 x3 + 8 x4) ≤

5

3
· 55⇒

⇒ g (x) =
25

3
x1 +

5

3
x2 + 5 x3 +

40

3
x4 ≤

275

3

For all x ≥ 0, each coefficient of g dominates the corresponding one of f :

4x1 ≤
25

3
x1 x2 ≤

5

3
x2 5 x3 ≤ 5 x3 3x4 ≤

40

3
x4

Hence, f (x) ≤ g (x) ≤
275

3
for all x ≥ 0 that satisfy Constraint (2)

4 / 24



Estimation of bounds on the optimum

Upper bounds are provided by expressions derived aggregating the constraints
so as to dominate the objective function

min f = 4 x1 + x2 + 5 x3 + 3 x4

x1 − x2 − x3 + 3 x4 ≤ 1 (1)

5 x1 + x2 + 3 x3 + 8 x4 ≤ 55 (2)

−x1 + 2 x2 + 3 x3 − 5 x4 ≤ 3 (3)

x1, x2, x3, x4 ≥ 0

2 add Constraints (2) and (3) and compare the result with the objective

g ′ (x) = 4 x1 + 3 x2 + 6 x3 + 3 x4 ≤ 58

For all x ≥ 0, each coefficient of g ′ dominates the corresponding one of f :

4x1 ≤ 4x1 x2 ≤ 3x2 5 x3 ≤ 6 x3 3x4 ≤ 3x4

Hence, f (x) ≤ g ′ (x) ≤ 58 for all x ≥ 0 that satisfy Constraints (2) and (3)

Any combination of the constraints with nonnegative values provides a bound
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A general bounding strategy

1 Linearly combine the constraints with nonnegative multipliers yi ≥ 0

m∑
i=1

yi

(
n∑

j=1

aij xj

)
≤

m∑
i=1

yi bi (x ≥ 0, yi ≥ 0 for i = 1, . . . ,m)

2 Choose yi so that each coefficient on the left-hand-side is larger than the
corresponding one in the objective function

m∑
i=1

yi aij ≥ cj (j = 1, . . . , n)

3 The combination of the right-hand-sides is an upper bound on the
optimum (multiply by x∗j , sum over j and apply the first thesis)

f ∗ ≤
m∑
i=1

yi bi

4 Compute the tightest possible upper bound (i. e., the smallest one)

minφ =
m∑
i=1

bi yi subject to the second thesis and y ≥ 0
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Matrix form of the dual

The dual problem is the problem of finding the costraint multipliers which
provide the tightest bound on the primal optimum

minφ =
m∑
i=1

bi yi + d

m∑
i=1

aij yi ≥ cj j = 1, . . . , n

yi ≥ 0 i = 1, . . . ,m

The constant term d has no impact on the optimization process

Primal problem Dual problem

max f = cT x + d

Ax ≤ b

x ≥ 0

minφ = bT y + d

AT y ≥ c

y ≥ 0

The two problems have the same elements rearranged differently
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Example

Compute the dual of the following problem

max f = x1 + 2 x2

2 x1 ≤ 5

−x1 + x2 ≤ 2

x2 ≤ 4

x1, x2 ≥ 0

minφ = 5 y1 + 2 y2 + 4 y3

2 y1 − y2 ≥ 1

y2 + y3 ≥ 2

y1, y2, y3 ≥ 0
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The dual of the dual

The dual of the dual problem is the primal problem

First, put it into the required form

minφ = bT y + d

AT y ≥ c

y ≥ 0

⇒
−maxφ′ = −bT y − d

−AT y ≤ −c
y ≥ 0

Then, apply the rules to build the dual problem

−min f ′ = −cT x − d

−Ax ≥ −b
x ≥ 0

⇒

max f = cT x + d

A x ≤ b

x ≥ 0
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Dual of the standard form

If the problem is in standard form, the transformation is slightly more involved

min f = cT x + d

Ax = b

x ≥ 0

⇒
−max f ′ = −cT x − d[

A
−A

]
x ≤

[
b
−b

]
x ≥ 0

The dual problem is

−minφ′ =
[
bT | − bT

] [ y−

y+

]
− d[

AT | − AT
] [ y−

y+

]
≥ −c

y−, y+ ≥ 0

⇒
−minφ′ = −bT

(
y+ − y−

)
− d

−AT
(
y+ − y−

)
≥ −c

y+, y− ≥ 0

that is (replacing y+ − y− with y)

maxφ = bT y + d

AT y ≤ c

y ∈ Rm

Equalities correspond to free variables

Similar derivations can be devised for
other LP forms (nonpositive variables,
“unnatural” constraints, etc. . . )

By “natural” constraints we mean ≤ for max, ≥ for min problems
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Transformation rules

The dual can be built directly, instead of using an intermediate form

Primal problem (min) Dual problem (max)
m constraints m variables
right-hand-sides objective coefficients
≥/≤ inequalities ≥/≤ variables
equalities free variables
n′ variables n′ constraints
objective coefficients right-hand-sides
≥/≤ variables ≤/≥ inequalities
free variables equalities
A AT

Nonnegative variables correspond to “natural” constraints
(≤ for max, ≥ for min)

Both problems have at most
(
n′+m
m

)
=
(
m+n′

n′

)
basic solutions

• the primal problem has n′ + m variables, m constraints

• the dual problem has n′ + m variables, n′ constraints
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Example

Compute the dual of the following problem

min f = 10 x1 + 20 x2 + 30 x3

2 x1 − x2 ≥ 1

x2 + x3 = 2

x1 − x3 ≤ 3

x1 ≥ 0, x2 ≤ 0, x3 ∈ R

maxφ = y1 + 2 y2 + 3 y3

2 y1 + y3 ≤ 10

−y1 + y2 ≥ 20

y2 − y3 = 30

y1 ≥ 0, y2 ∈ R, y3 ≤ 0
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Weak duality theorem

Given a feasible primal problem and a feasible dual problem

min
{
cT x : x ∈ X

}
with X = {x ∈ Rn : Ax ≥ b, x ≥ 0} 6= ∅

max
{
bT y : y ∈ Y

}
with Y =

{
y ∈ Rm : AT y ≤ c, y ≥ 0

}
6= ∅

the value of each feasible primal solution dominates the value of each feasible
dual solution

bT y ≤ cT x for all x ∈ X , y ∈ Y

Proof: Let x ∈ X and y ∈ Y be two feasible solutions of the two problems.

Using the dual values yi ≥ 0 as multipliers to combine the primal constraints
bi ≤ Aix, we obtain other valid inequalities yTb ≤ yTAx ⇔ bT y ≤ xTAT y.

By definition, x ≥ 0 and AT y ≤ c ⇒ bT y ≤ xT c = cT x, that is the thesis.

Corollary: If there exist x∗ ∈ X , y∗ ∈ Y such that bT y∗ = cT x∗,
x∗ is optimal for the primal problem and y∗ is optimal for the dual problem

This is a generalization of the maximum flow and minimum cut property:

in fact, they are dual problems
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Strong duality theorem

Given a feasible primal problem and a feasible dual problem

min
{
cT x : x ∈ X

}
with X = {x ∈ Rn : Ax ≥ b, x ≥ 0} 6= ∅

max
{
bT y : y ∈ Y

}
with Y =

{
y ∈ Rm : AT y ≤ c, y ≥ 0

}
6= ∅

there exist x∗ ∈ X , y∗ ∈ Y such that bT y∗ = cT x∗. (Hence, they are optimal)

Proof: We derive the optimal dual solution from the optimal primal solution
(constructive proof).

If the dual is feasible, the primal is bounded (dual values provide bounds).
The converse is also true. Thus, both problems have an optimum.

Introduce surplus variables to put the primal problem into standard form.

Let B be an optimal basic submatrix of A in the primal problem.

Then x∗ =

[
B−1b

0

]
is the corresponding optimal primal solution.

Write the dual problem, considering that A = [B |N ]

maxφ = yTb + d

yTB ≤ cTB

yTN ≤ cTN

y ∈ Rm
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Strong duality theorem

maxφ = yTb + d

yTB ≤ cTB (1)

yTN ≤ cTN (2)

y ∈ Rm

Now, we show that, if y =
(
cTB B−1

)T
is an optimal dual solution.

First, it is feasible; remind that the primal problem in optimal basic canonical
form has zero basic reduced costs and nonnegative nonbasic reduced costs

c̄TN = cTN − cTB B−1N ≥ 0⇒ cTN ≥ yTN i. e. (2)

yT = cTB B−1 ⇒ yTB = cTB implying (1)

Then, y is optimal. In fact, its value is

φ∗ = y∗Tb + d = cTB B−1b + d = cTB x∗B + d = cT x∗ + d = f ∗

Two feasible solutions of dual problems having the same value are optimal.
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Possible cases

Three cases are possible for any LP problem: Unbounded, Finite, Unfeasible

Nine cases are possible for a general pair of LP problems

But only four cases are possible for a primal-dual pair of LP problems

• weak duality forbids the (Unbounded,Finite), (Unbounded,Unbounded)
and (Finite,Unbounded) cases:

P Unbounded ⇒ D Unfeasible
D Unbounded ⇒ P Unfeasible

• strong duality forbids the (Unfeasible,Finite) and (Finite,Unfeasible) cases:

P Finite ⇔ D Finite

Dual
Primal Unbounded Finite Unfeasible

Unbounded NO NO YES
Finite NO f ∗ = φ∗ NO

Unfeasible YES NO YES
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Economic interpretation

In practice, the primal and dual problem often correspond to
complementary points of view on the same situation

• the diet problem: select food amounts to build a minimum cost diet
satisfying nutritional constraints

• the “synthetic diet” problem: replace each food with a cheaper mix
of synthetic nutrients, selecting their prices so as to maximize income

xj : amount of food j ∈ F yi : price of synthetic nutrient i ∈ N

min f =
∑
j∈F

cjxj

∑
j∈F

aijxj ≥ bi i ∈ N

xj ≥ 0 j ∈ F

maxφ =
∑
i∈N

biyi∑
i∈N

aijyi ≤ cj j ∈ F

yi ≥ 0 i ∈ N

The two optimal solutions have the same value:
the optimal natural and synthetic diets have the same cost
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Economic interpretation

In practice, the primal and dual problem often correspond to complementary
points of view on the same situation

• the transportation problem: decide how many items to transport from
each source to each destination respecting the source capacities and the
destination demands at minimum total cost

• the “outsourced” transportation problem: replace the transport between
each pair with a cheaper alternative, selecting the purchase price at each
source and selling price at each destination so as to maximize income

xij : items transported from i ∈ S to j ∈ D yi : purchase price in i ∈ S
y ′j : selling price in j ∈ D

min f =
∑
i∈S

∑
j∈D

cijxij

−
∑
j∈D

xij ≤ −ci i ∈ S

∑
i∈S

xij ≥ dj j ∈ D

xij ≥ 0 i ∈ S, j ∈ D

maxφ =
∑
j∈D

djy
′
j −

∑
i∈S

ciy
′
i

y ′j − yi ≤ cij i ∈ S , j ∈ D

yi ≥ 0 i ∈ S

y ′j ≥ 0 j ∈ D

The two optimal solutions have the same value:

the optimal insource and outsource transport plans have the same cost
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Optimality conditions

Remember that feasibility and optimality are equivalent from a
complexity point of view, because

• feasibility can be solved by applying an algorithm for optimality

• optimality can be solved by repeatedly applying an algorithm for
feasibility with dycothomic search

For LP problems dycothomic search is unnecessary

Strong duality allows to find an optimal solution for a LP problem in one
step, by finding a feasible solution for an auxiliary LP problem

min f = cT x + d

Ax ≥ b

x ≥ 0

→

Ax ≥ b

x ≥ 0

AT y ≤ c

y ≥ 0

cT x = bT y
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Complementary slackness conditions

We have already noticed that, given a pair of dual LP problems

• the natural variables of the primal problem correspond to the auxiliary
(slack or surplus) variables of the dual

• the auxiliary variables of the primal problem correspond to the natural
variables of the dual

Given a feasible primal problem and a feasible dual problem

min
{
cT x : x ∈ X

}
with X = {x ∈ Rn : Ax ≥ b, x ≥ 0} 6= ∅

max
{
bT y : y ∈ Y

}
with Y =

{
y ∈ Rm : AT y ≤ c, y ≥ 0

}
6= ∅

the corresponding variables have zero product in the optimal solution.

Proof: Let x∗ ∈ X and y∗ ∈ Y be the corresponding optimal solutions of the
two problems according to strong duality.

Since b ≤ Ax∗ and y∗TA ≤ cT , weak duality states that

y∗Tb ≤ y∗TAx∗ ≤ cT x∗

Since strong duality states that y∗Tb = cT x∗, necessarily{
y∗TAx∗ = cT x∗

y∗Tb = y∗TAx∗
⇒

{(
cT − y∗TA

)
x∗ = 0

y∗T (Ax∗ − b) = 0
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Complementary slackness conditions

Modify the indices so that corresponding variables have the same index:

• the surplus primal variable x∗n′+i corresponds to the natural dual variable
yn′+i

Aix
∗ − bi = x∗n′+i ←→ yn′+i (i = 1, . . . ,m)

• the natural primal variable xj corresponds to the slack dual variable yj

xj ←→ yj = cj − AT
j y
∗ (j = 1, . . . , n′)

Corresponding variables in the two problems are complementary (zero product){(
cT − y∗TA

)
x∗ = 0

y∗T (Ax∗ − b) = 0
⇒

{(
cj − AT

j y
∗) x∗j = y∗j x

∗
j = 0 (j = 1, . . . , n′)

y∗n′+i (Aix
∗ − bi ) = y∗n′+ix

∗
n′+i = 0 (i = 1, . . . ,m)

that is
y∗j x
∗
j = 0 (j = 1, . . . , n)

These conditions allow to derive the optimal solution of the dual from the

optimal solution of the primal, and vice versa
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Example

Given the optimal solution x∗ = (1, 0, 1), find the optimal dual one for

min f = 13 x1 + 10 x2 + 6 x3

5 x1 + x2 + 3 x3 ≥ 8

3 x1 + x2 = 3

x1, x2, x3 ≥ 0

The complete optimal primal solution is x∗ = (1, 0, 1, 0, 0)

The dual problem is

maxφ = 8 y4 + 3 y5

5 y4 + 3 y5 ≤ 13

y4 + y5 ≤ 10

3 y4 ≤ 6

y4 ≥ 0, y5 ∈ R
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Example

The n′ + m = 3 + 2 = 5 complementary slackness conditions state that

y∗1 x
∗
1 = y∗1 · 1 = 0

y∗2 x
∗
2 = y∗2 · 0 = 0

y∗3 x
∗
3 = y∗3 · 1 = 0

y∗4 x
∗
4 = y∗4 · 0 = 0

y∗5 x
∗
5 = y∗5 · 0 = 0

⇒ y∗1 = y∗3 = 0

Together with the dual constraints, they imply
5y∗4 + 3y∗5 + y∗1 = 13

y∗4 + y∗5 + y∗2 = 10

3y∗4 + y∗3 = 6

⇒ y∗4 = 2, y∗5 = 1 and y∗2 = 7⇒ y∗ = (0, 7, 0, 2, 1)
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Correspondence between basic solutions

We know that two dual problems have the same number of basic solutions

In general, given a basic solution of the primal, the complementary slackness
conditions allow to derive a basic solution of the dual, and vice versa

• if the former is optimal, the latter is optimal

• if the former is superoptimal, i. e. has nonnegative reduced costs, the
latter is feasible (though in general nonoptimal)

• if the former is feasible, the latter is superoptimal (though in general
unfeasible)

This correspondence can be exploited to build a dual simplex algorithm, which

• visits basic dual solutions, instead of primal

• achieves first superoptimality, instead of feasibility, and then optimality

This algorithm applies different rules to select the pivot element

Since the average complexity is proportional to m, the dual simplex algorithm is

more efficient than the standard one for problems with many constraints and

few variables
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