### 4.4 Linear programming duality

Write the dual of the following linear program

$$
\begin{aligned}
& \min \quad 2 x_{2}+x_{3}-3 x_{4} \\
& x_{1}-x_{2}+2 x_{4} \geq 2 \\
& 2 x_{2}+x_{3}=4 \\
& 2 x_{1} \quad-x_{3}+x_{4} \leq 1 \\
& x_{1} \geq 0 \quad x_{2} \geq 0 \\
& x_{3}, x_{4} \text { unrestricted }
\end{aligned}
$$

### 4.5 Dual of the transportation problem

A company owns $m$ production factories, and produces goods for $n$ warehouses. Each warehouse $j \in\{1, \ldots, n\}$ requires $d_{j}$ units of product, while $b_{i}$ units are available at each production factory $j \in\{1, \ldots, m\}$. Let $c_{i j}$ bet the unit transportation cost from factory $i$ to warehouse $j$.

Consider the problem of determining a transportation plan that minimizes the total cost, satisfying the demands and the availability constraints. Let $x_{i j}$ be the quantity of product transported from $i$ to $j$. We consider the following formulation

$$
\begin{array}{ll}
\left(\mathbf{P}_{1}\right) \min & \sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j} x_{i j} \\
& -\sum_{j=1}^{n} x_{i j} \geq-b_{i} \\
& i \in\{1, \ldots, m\} \\
\sum_{i=1}^{m} x_{i j} \geq d_{j} & j \in\{1, \ldots, n\} \\
x_{i j} \geq 0 & i \in\{1, \ldots, m\} \quad j \in\{1, \ldots, n\}
\end{array}
$$

Determine the linear programming dual of $P_{1}$, providing an economical interpretation.

### 4.6 Complementary slackness

Given the problem

$$
\begin{aligned}
& \left(\mathbf{P}_{\mathbf{2}}\right) \quad \max 2 x_{1}+x_{2} \\
& x_{1}+2 x_{2} \leq 14 \\
& 2 x_{1}-x_{2} \leq 10 \\
& x_{1}-x_{2} \leq 3 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

a) write its dual
b) show that $\underline{\bar{x}}=\left(\frac{20}{3}, \frac{11}{3}\right)$ is a feasible solution
c) show that $\underline{\bar{x}}$ is also an optimal solution, by means of the complementary slackness theorem
d) determine an optimal solution to its dual.

## Solution

### 4.4 Linear programming duality

The dual reads

$$
\begin{aligned}
& \max 2 y_{1}+4 y_{2}+y_{3} \\
& y_{1}+2 y_{3} \leq 0 \\
& -y_{1}+2 y_{2} \leq 2 \\
& y_{2}-y_{3}=1 \\
& 2 y_{1}+y_{3}=-3 \\
& y_{1} \geq 0 \\
& y_{2} \text { unrestricted } \\
& y_{3} \leq 0
\end{aligned}
$$

### 4.5 Dual of the transportation problem

Let $u_{i}, v_{j}$ be the dual variables of the two classes of constraints. Since for each column of the the constraint matrix of the primal problem only two entries are nonzero, taking value -1 and +1 for, respectively, rows corresponding to the fist and second class of constraints, the dual reads

$$
\begin{array}{cll}
\left(\mathbf{D}_{\mathbf{1}}\right) \max -\sum_{i=1}^{m} b_{i} u_{i}+\sum_{j=1}^{n} d_{j} v_{j} & & \\
v_{j}-u_{i} \leq c_{i j} & i \in\{1, \ldots, m\} & j \in\{1, \ldots, n\} \\
u_{i} \geq 0, v_{j} \geq 0 & i \in\{1, \ldots, m\} & j \in\{1, \ldots, n\}
\end{array}
$$

Economical interpretation. We suppose that the production company (company A) hires a logistics company to handle the transportation business (company B). This company buys all the products from the different factories, paying a unit cost of $u_{i}$ Euro for factory $i$. Then, it sells the products to the warehouses at a unit cost of $v_{j}$ Euro, per warehouse $j$. The objective of company B amounts to maximizing the profit, i.e.,

$$
\max -\sum_{i=1}^{m} b_{i} u_{i}+\sum_{j=1}^{n} d_{j} v_{j}
$$

Company B has to decide the prices $u_{i}, v_{j}$ such that it is not cheaper, for company A , to handle the transportation business without involving B. Suppose that, for a pair $i, j$, the prices are such that $v_{j}-u_{i}>c_{i j}$. In such case, company A would prefer to transport the product by itself, being cheaper than hiring company B. Therefore, for each pair $i, j$, the prices must satisfy the condition $v_{j}-u_{i} \leq c_{i j}$.

### 4.6 Complementary slackness

a) The dual reads

$$
\begin{gathered}
\left(\mathbf{D}_{\mathbf{2}}\right) \quad \min \quad 14 y_{1}+10 y_{2}+3 y_{3} \\
y_{1}+2 y_{2}+y_{3} \geq 2 \\
2 y_{1}-y_{2}-y_{3} \geq 1 \\
\\
y_{1}, y_{2}, y_{3} \geq 0
\end{gathered}
$$

b) $\underline{\bar{x}}=\left(\frac{20}{3}, \frac{11}{3}\right)$ is feasible, as it satisfies the constrains of $\left(P_{2}\right)$.
c-d) By the complementary slackness theorem, if $\underline{\bar{x}}=\left(x_{1}, x_{2}\right)$ is feasible for the primal and $\underline{\bar{y}}=\left(y_{1}, y_{2}, y_{3}\right)$ is feasible for the dual, and they satisfy

$$
\begin{aligned}
y_{i}\left(a_{i}^{T} \underline{x}-b_{i}\right)=0 & \forall i \\
\left(c_{j}-\underline{y}^{T} A_{j}\right) x_{j}=0 & \forall j
\end{aligned}
$$

then they are optimal for the respective problems. The complementary slackness conditions for the problem at hand read

$$
\begin{gathered}
y_{1}\left(x_{1}+2 x_{2}-14\right)=0 \\
y_{2}\left(2 x_{1}-x_{2}-10\right)=0 \\
y_{3}\left(x_{1}-x_{2}-3\right)=0 \\
x_{1}\left(y_{1}+2 y_{2}+y_{3}-2\right)=0 \\
x_{2}\left(2 y_{1}-y_{2}-y_{3}-1\right)=0
\end{gathered}
$$

We obtain $\underline{\bar{y}}$, by substituting for $\underline{\bar{x}}$. Since $\underline{\bar{x}}=\left(\frac{20}{3}, \frac{11}{3}\right)$ satisfies as equations the first and third constraints, but not the second one, we deduce $y_{2}=0$. Since $x_{1}>0$ and $x_{2}>0$, we obtain

$$
\begin{gathered}
y_{1}+2 y_{2}+y_{3}-2=0 \\
2 y_{1}-y_{2}-y_{3}-1=0 \\
y_{2}=0
\end{gathered}
$$

By solving the system, we obtain $\underline{y}=(1,0,1)$, which satisfies the dual constraints of $D_{2}$. Since $\underline{\bar{x}}$ is primal feasible and $\underline{\bar{y}}$ is dual feasible, the primal/dual pair $(\underline{\bar{x}}, \underline{\bar{y}})$ satisfies the complementary slackness constraints and, therefore, $\bar{x}$ is an optimal solution to the primal and $\underline{y}$ is an optimal solution to the dual.
To double check, verify that the two solutions have the same objective function value in the respective problems, i.e., verify that $\underline{c}^{T} \underline{x}=\underline{y}^{T} \underline{b}$.

