# Foundations of Operations Research 

Master of Science in Computer Engineering

Roberto Cordone<br>roberto.cordone@unimi.it

Tuesday 13.15-15.15
Thursday 10.15-13.15
http://homes.di.unimi.it/~cordone/courses/2014-for/2014-for.html


Lesson 14: Special cases of the simplex method

Algorithm Simplex $(A, b, c)$
$(A, b):=\operatorname{IntroduceFullRank}(A, b)$;
If $A=\emptyset$ then Return Unfeasible;
\{ Inconsistent constraints \}
$B:=$ FindFeasibleBasis $(A, b)$;
If $B=\emptyset$ then Return Unfeasible;
\{ Unfeasible problem \}
Optimum $:=$ False; $\bar{A}:=A ; \bar{b}:=b ; \bar{c}:=c$;
While Optimum = False do
If $\bar{c} \geq 0$ then Optimum $:=$ True;
else $j:=\arg \min _{j=1, \ldots, n} \bar{c}_{j}$;
If $\bar{A}_{j} \leq 0$ then Return Unbounded;
$i:=\arg \min _{i: a_{i j}>0} \frac{\bar{b}_{j}}{a_{i j}}$;
\{ Select pivot column \}
\{ Unbounded problem \}
\{ Select pivot row \}
$(\bar{A}, \bar{b}, \bar{c}, \bar{d}):=\operatorname{Pivot}(\bar{A}, \bar{b}, \bar{c}, \bar{d}, i, j) ; \quad\{$ Perform pivot operation $\}$
$B:=B \cup\{j\} \backslash\left\{B_{i}\right\} ; \quad$ \{ Exchange basic and nonbasic column $\}$
Return $(\bar{A}, \bar{b}, \bar{c}, \bar{d})$;
The complexity of a single pivot step is $O(m n)$

## Unbounded problems

In any step, if a column of the tableau has $\bar{c}_{j}<0$ and $\bar{A}_{j} \leq 0$

- the nonbasic variable improves the objective entering the basis
- all basic variables keep unchanged or increase their values there is no limit on the value of the new variable: the problem is unbounded

$$
\begin{aligned}
\min f=-x_{1}-x_{2} & \\
-x_{1}+x_{2} & \leq 1 \\
\frac{1}{2} x_{1}-x_{2} & \leq \frac{1}{2} \\
-x_{2} & \leq \frac{1}{2} \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

| $-d$ | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | -1 | -1 | 0 | 0 | 0 |
| 1 | -1 | 1 | 1 | 0 | 0 |
| $\frac{1}{2}$ | $\frac{1}{2}$ | -1 | 0 | 1 | 0 |
| $\frac{1}{2}$ | 0 | -1 | 0 | 0 | 1 |

Select (arbitrarily) column 2 and (necessarily) row 1


## Unbounded problems

In any step, if a column of the tableau has $\bar{c}_{j}<0$ and $\bar{A}_{j} \leq 0$

- the nonbasic variable improves the objective entering the basis
- all basic variables keep unchanged or increase their values there is no limit on the value of the new variable: the problem is unbounded

| $-d$ | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | -2 | 0 | 1 | 0 | 0 |
| 1 | -1 | 1 | 1 | 0 | 0 |
| $\frac{3}{2}$ | $-\frac{1}{2}$ | 0 | 1 | 1 | 0 |
| $\frac{3}{2}$ | -1 | 0 | 1 | 0 | 1 |



Variable 1 should enter the basis: it can increase without limit, improving the objective

## Degenerate basic solutions

A degenerate basic solution is a basic solution in which one of the basic variables has value zero

A degenerate basic solution corresponds to several bases, because any basis including the nonzero variables yields the same solution

$$
\begin{aligned}
\min f=-x_{1}-x_{2} & \\
x_{1}-x_{2} & \leq 0 \\
x_{2} & \leq 1 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

| $-d$ | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | -1 | -1 | 0 | 0 |
| 0 | 1 | -1 | 1 | 0 |
| 1 | 0 | 1 | 0 | 1 |

Select (arbitrarily) column 1 and (necessarily) row 1

| $-d$ | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | -2 | 1 | 0 |
| 0 | 1 | -1 | 1 | 0 |
| 1 | 0 | 1 | 0 | 1 |



The solution does not change at all

## Degeneracy and the simplex algorithm

If a basic variable is 0

- it cannot decrease when leaving the basis
- the new basic variable enters the basis with zero value
so that the new solution is identical to the old one
The simplex method does not guarantee to decrease the objective at each step: it only guarantees not to increase the objective

Only the following steps might increase the zero basic variable and strictly improve the objective

It is possible to cycle through a repeated sequence of degenerate bases associated to the same vertex, which is in general nonoptimal

Fortunately, there exist several anticycling rules, that is rules to choose the pivot column and row which guarantee to avoid solution cycles

The basic rule is Bland's rule: always choose the variables of minimum index among the candidate ones; under this rule,

- all steps visit different solutions, so that the number of steps is $\leq\binom{ n}{m}$
- in pathological cases, the number of steps is actually exponential
- on average, it is polynomial and very low (linear in $m$, logarithmic in $n$ )


## The first phase of the simplex method

Any $L P$ problem in standard form $A x=b$ admits an auxiliary $L P$ problem in feasible basic canonical form with $b \geq 0$ and auxiliary variables $y$

$$
\begin{aligned}
A x+I y & =b \\
x \geq 0, y & \geq 0
\end{aligned}
$$

The auxiliary problem is not equivalent to the original one, but:

- the basic solutions of the original problem correspond one-to-one to basic solutions with $y=0$ of the auxiliary problem
- the feasible solutions of the original problem correspond one-to-one to feasible solutions with $y=0$ of the auxiliary problem but the auxiliary problem has more feasible solutions; in particular
- it always admits the feasible basic solution $\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}0 \\ b\end{array}\right]$

The idea is to move from the trivial solution to other basic solutions minimizing an auxiliary objective function $h(x, y)=\sum_{i=1}^{m} y_{i}$, that is reducing the unfeasibility with respect to the original problem

- if $h^{*}=\sum_{i=1}^{m} y_{i}^{*}=0, x^{*}$ provides a feasible solution of the original problem
- if $h^{*}=\sum_{i=1}^{m} y_{i}^{*}>0$, the original problem has no feasible solution


## Example 1

$$
\begin{aligned}
\min f=-x_{1}-x_{2} & \\
-x_{1}+x_{2} & \leq 0 \\
\frac{3}{2} x_{1}-x_{2} & \leq \frac{3}{2} \\
-x_{1} & \leq-2 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$



1) Add the slack variables
2) $b_{3}<0$ : exchange the two sides of constraint (3), add auxiliary variable $y_{3}$ and minimize $h=y_{3}$

$$
\begin{aligned}
\min h= & y_{3} \\
-x_{1}-x_{2} & =f \\
-x_{1}+x_{2}+x_{3} & =0 \\
\frac{3}{2} x_{1}-x_{2}+x_{4} & =\frac{3}{2} \\
x_{1}-x_{5}+y_{3} & =2 \\
x_{1}, \ldots, x_{5}, y_{3} & \geq 0
\end{aligned}
$$

|  | $-d$ | $x_{1}$ | $x_{2}$ | $x_{3}$ | $\times_{4}$ | $\times_{5}$ | Y3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $h$ | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| $f$ | 0 | -1 | -1 | 0 | 0 | 0 | 0 |
|  | 0 | -1 | 1 | 1 | 0 | 0 | 0 |
|  | 3/2 | 3/2 | -1 | 0 | 1 | 0 | 0 |
|  | 2 | 1 | 0 | 0 | 0 | -1 | 1 |

3) Put into canonical form for basis $\left(x_{3}, x_{4}, y_{3}\right)$ : only the auxiliary objective row needs modifying

|  | $-d$ | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $y_{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $h$ | -2 | -1 | 0 | 0 | 0 | 1 | 0 |
| $f$ | 0 | -1 | -1 | 0 | 0 | 0 | 0 |
|  | 0 | -1 | 1 | 1 | 0 | 0 | 0 |
|  | 3/2 | 3/2 | -1 | 0 | 1 | 0 | 0 |
|  | 2 | 1 | 0 | 0 | 0 | -1 | 1 |

## Example 1

$$
\begin{aligned}
\min f=-x_{1}-x_{2} & \\
-x_{1}+x_{2} & \leq 0 \\
\frac{3}{2} x_{1}-x_{2} & \leq \frac{3}{2} \\
-x_{1} & \leq-2 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$


4) Improve the auxiliary objective with a pivot operation on $a_{21}$
5) Improve the auxiliary objective with a pivot operation on $a_{32}$

|  | $-d$ | $x_{1}$ | $x_{2}$ | $x_{3}$ | $\chi_{4}$ | $\chi_{5}$ | $y_{3}$ | $-d$ | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $y_{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $h$ | -1 | 0 | -2/3 | 0 | 2/3 | 1 | Oh | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| $f$ | 1 | 0 | -5/3 | 0 | 2/3 | 0 | Of | 7/2 | 0 | 0 | 0 | -1 | -5/2 | 5/2 |
|  | 1 | 0 | 1/3 | 1 | 2/3 | 0 | 0 | 1/2 | 0 | 0 | 1 | 1 | 1/2 | -1/2 |
|  | 1 | 1 | -2/3 | 0 | 2/3 | 0 | 0 | 2 | 1 | 0 | 0 | 0 | -1 | 1 |
|  | 1 | 0 | 2/3 | 0 | -2/3 | -1 | 1 | 3/2 | 0 | 1 | 0 | 1 | -3/2 | 3/2 |

The current basis $\left(x_{3}, x_{1}, x_{2}\right)$ is feasible: we can remove the auxiliary column $y_{3}$ and row $h$ and proceed with the regular pivot operations to improve the original objective function $f$

$$
\begin{aligned}
\min f=-x_{1}-x_{2} & \\
-x_{1}+x_{2} & \leq 0 \\
3 x_{1}-x_{2} & \leq 3 \\
-x_{1} & \leq-2 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$



1) Add the slack variables
2) $b_{3}<0$ : exchange the two sides of constraint (3), add auxiliary variable $y_{3}$ and minimize $h=y_{3}$

$$
\begin{aligned}
\min h= & y_{3} \\
-x_{1}-x_{2} & =f \\
-x_{1}+x_{2}+x_{3} & =0 \\
3 x_{1}-x_{2}+x_{4} & =3 \\
x_{1}-x_{5}+y_{3} & =2 \\
x_{1}, \ldots, x_{5}, y_{3} & \geq 0
\end{aligned}
$$

|  |  |  |  |  |  |  | $-d$ |  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $y_{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 0 | 0 | 0 | 0 | 0 | 1 |  |  |  |  |  |  |  |
|  | 0 | -1 | -1 | 0 | 0 | 0 | 0 |  |  |  |  |  |  |  |
|  | 0 | -1 | 1 | 1 | 0 | 0 | 0 |  |  |  |  |  |  |  |
| 3 | 3 | -1 | 0 | 1 | 0 | 0 |  |  |  |  |  |  |  |  |
| 2 | 1 | 0 | 0 | 0 | -1 | 1 |  |  |  |  |  |  |  |  |

3) Put into canonical form for basis $\left(x_{3}, x_{4}, y_{3}\right)$ : only the auxiliary objective row needs modifying

|  | $-d$ | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $y_{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $h$ | -2 | -1 | 0 | 0 | 0 | 1 | 0 |
| $f$ | 0 | -1 | -1 | 0 | 0 | 0 | 0 |
|  | 0 | -1 | 1 | 1 | 0 | 0 | 0 |
|  | 3 | 3 | -1 | 0 | 1 | 0 | 0 |
|  | 2 | 1 | 0 | 0 | 0 | -1 | 1 |

## Example 2

$$
\begin{aligned}
\min f=-x_{1}-x_{2} & \\
-x_{1}+x_{2} & \leq 0 \\
3 x_{1}-x_{2} & \leq 3 \\
-x_{1} & \leq-2 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

4) Improve the auxiliary objective with a pivot operation on $a_{21}$

5) Improve the auxiliary objective with a pivot operation on $a_{12}$

|  | -d | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $\times_{5}$ | $y_{3}$ | $-d$ | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $y_{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $h$ | -1 | 0 | -1/3 | 0 | 1/3 | 1 | Oh | -1/2 | 0 | 0 | 1/2 | 1/2 | 1 | 0 |
| $f$ | 1 | 0 | -4/3 | 0 | 1/3 | 0 | Of | 3 | 0 | 0 | 2 | 1 | 0 | 0 |
|  | 1 | 0 | 2/3 | 1 | 1/3 | 0 | 0 | 3/2 | 0 | 1 | 3/2 | 1/2 | 0 | 0 |
|  | 1 | 1 | -1/3 | 0 | 1/3 | 0 | 0 | 3/2 | 1 | 0 | 1/2 | 1/2 | 0 | 0 |
|  | 1 | 0 | 1/3 | 0 | -1/3 | -1 | 1 | 1/2 | 0 | 0 | -1/2 | -1/2 | -1 | 1 |

The current basis $\left(x_{2}, x_{1}, y_{3}\right)$ is optimal, but unfeasible for the original problem, since $\phi=y_{3}=1 / 2$

The original problem has no feasible solution

