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The two phase method

Apply the simplex algorithm with the tableau representation to the following
problem, and solve it for every value of parameter α > 0.

max f = x1 + x2

x1 ≥ x2

x2 ≥ α (x1 − 1)

x1 ≥ 2

x2 ≥ 0

The simplex algorithm moves from a basic solution to an adjacent basic
solution. It consists of two phases

1. the former starts from a generic basic solution and finds a feasible one,
solving an optimization problem, with the same constraints and an auxiliary
objective function;

2. the latter starts from the feasible basic solution found in the former phase
and move step by step through feasible improving (or at least nonworsening)
basic solutions, until an optimal solution has been found.

With suitable conditions, the methods selects at each step a nonbasic variable
to introduce into the basis, so as to improve the current objective, and a basic
variable to remove from the basis, so as to maintain feasibility.

Obtaining a basic solution is easy: each pivot operation isolates the variable
associated to the pivot column in the constraint associated to the pivot row and
removes it from the other constraints and from the objective function. In the
tableau representation, this operation produces a column made of zero elements,
except for a single unitary element, that is a valid column to be part of a basis.
After m operations, the coefficient matrix contains an identity submatrix of order
m and the corresponding reduced costs are zero. The problem thus obtained is
denoted as basic canonical form associated to the considered basis. In general,
the associated basic solution is unfeasible.

Let us consider the i-th constraint:
∑

j∈N

aijxj + xBi
= bi < 0

where N is the set of the indices of the nonbasic variables, and xBi
is the i-th

basic variable. Let us exchange the sides of the constraints, so as to make the
right-hand-side positive.

∑

j∈N

−aijxj − xBi
= −bi
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where −bi > 0. However, the problem is no longer in basic canonical form.
The idea is to relax the constraint, allowing to violate it, stating that we

accept not only the original feasible solutions, but also those for which

∑

j∈N

−aijxj − xBi
≤ −bi

which can be put into standard form, as usual, introducing an auxiliary slack

variable x̂i.
∑

j∈N

−aijxj − xBi
+ x̂i = −bi x̂i ≥ 0

This is a different problem, but it includes all the solutions of the original one.
In particular, the solutions of the original problem correspond one-to-one to the
solutions with x̂i = 0 of the new one. The new problem also admits solutions
(those with x̂i > 0) that have no corresponding solution in the original problem.

Moreover, after this operation the problem is again in basic canonical form,
with x̂i in the basis and xBi

is out of it, and the basic solution obtained is feasible
(x̂i = −bi > 0).

The first phase of the simplex method aims to obtain a feasible solution of
the original problem. It does so minimizing x̂i:

min f = x̂i

If the optimum of this problem is f ∗ = x̂∗

i = 0 (it cannot be negative), the
other variables provide a feasible (nonoptimal, in general) solution for the original
problem, and we can start from there with the simplex algorithm (second phase).
Otherwise, it f ∗ = x̂∗

i > 0, then the auxiliary problem admits no solution with
x̂i = 0, and the original problem admits no feasible solution at all.

In general, the starting basis includes more than one negative variable. For
each of them, we introduce an auxiliary variable, and the original problem mini-
mizes their sum

min f =
∑

i:bi<0

x̂i

The second phase of the simplex method starts from the basis obtained in
this way. In order to build the tableau, we remove the artificial columns and
replace row 0 with the original one. In this way, the tableau contains an identity
submatrix, but the cost vector is not in canonical form. To obtain this form, we
perform m pivot operations on the elements of the identity submatrix. These
operations are very simple, because they actually modify only row 0.
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Solution

First, let us put the problem into standard form. This requires to introduce
surplus variables. These variables form a trivial basis, but the resulting tableau

contains the opposite of an identity submatrix (−I) instead of I. Some pivot

operations on these m coefficients would be necessary to obtain a basic canonical
form. It is equivalent (and faster) to first replace the ≥ constraints with ≤

constraints (exchanging their sides) and then introduce slack variables:

min z = −x1 − x2

−x1 + x2 + x3 = 0

αx1 − x2 + x4 = α

−x2 + x5 = −2

x1, x2 ≥ 0

This yields directly a a basic canonical form with respect to variables x3, x4 and
x5. Notice that variable x2 was a free variable, but the third constraint (x1 ≥ 2)
implies that it is actually nonnegative. We have therefore introduced a redundant
nonnegativity constraint x1 ≥ 0. The aim is to avoid the useless complication
implied by dealing with x2 as with a free variable.

The problem in basic canonical form has the following tableau:

0 -1 -1 0 0 0
0 -1 1 1 0 0
α α -1 0 1 0
-2 0 -1 0 0 1

The corresponding basic solution is unfeasible: x1 = x2 = x3 = 0, x4 = α > 0,
but x5 = −2. Figures 1, 2 and 3 show that point (0, 0) is unfeasible for all values
of α > 0.

Let us introduce an artificial variable for each negative basic variable: in this
case, a single variable, associated to the third constraint. Moreover, let us assume
as objective the minimization of this variable. The auxiliary problem is

min z = + x6

−x1 + x2 + x3 = 0

αx1 − x2 + x4 = α

x2 − x5 + x6 = 2

x1, x2 ≥ 0

and its tableau is

0 0 0 0 0 0 1
0 -1 1 1 0 0 0
α α -1 0 1 0 0
2 0 1 0 0 -1 1
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Figura 1: Graphical solution when α ≤ 1

x1

x2 g1= 0g3= 0

g2= 0

0

1

2

0 1 2O

A(2,2)

Figura 2: Graphical solution when 1 < α ≤ 2

x1

x2 g1= 0g3= 0g2= 0

0

1

2

0 1 2O

A (2,2)

Figura 3: Graphical solution when α > 2
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This must be put into basic canonical form with respect to (x3, x4, x6) setting
the reduced costs of the basic variables to zero (here, c6 = 1). A single pivot

operation is enough: the pivot element is a36, and the operation only subtracts
row 3 from row 0:

-2 0 -1 0 0 1 0
0 -1 1 1 0 0 0
α α -1 0 1 0 0
2 0 1 0 0 -1 1

Now x6 = 2 and the value of the objective is −a00 = 2. Indeed point (0, 0) has a
positive unfeasibility.

A single variable can improve the objective: x2. The pivot operation is per-
formed in the positive element of column 2 with the minimum ratio bi/ai2, that
is element a12 = 1. This means that the current slack variable of constraint 1,
that is x3, will get out of the basis and will become zero.

-2 -1 0 1 0 1 0
0 -1 1© 1 0 0 0
α α-1 0 1 1 0 0
2 1 0 -1 0 -1 1

Notice that x6 is still basic. Given that the aim of this procedure is to remove
x6, one could wonder why we do not directly remove x6 from the basis. The
answer it that introducing x2 and removing x6 constraint 1 would be violated,
and the method would not work. By contrast, the simplex algorithm guarantees
to minimize x6 without introducing any other unfeasibility.

In the second step the pivot element depends on the value of α. Let us
distinguish two cases:

{

α
α−1

< 2
α

α−1
≥ 2

⇔

{

α > 2

α ≤ 2

First case: α > 2

The pivot element is a21.

-2 + α
α−1

0 0 1 + 1

α−1
1 + 1

α−1
1 0

α
α−1

0 1 1 + 1

α−1

1

α−1
0 0

α
α−1

1 0 1

α−1

1

α−1
0 0

2 - α
α−1

0 0 -1 - 1

α−1
- 1

α−1
-1 1

Notice that this basic solution is feasible and optimal, as the right-hand-sides
and the reduced costs are all nonnegative. Hence, it is the solution with minimal
unfeasibility. However, the objective value is f = −a00 = 2 − α

α−1
> 0. So,

the unfeasibility cannot be completely removed: for α > 2 the original problem
admits no feasible solution. It is easy to see it in Figure 3.
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Second case: α ≤ 2

The pivot element is a31.

0 0 0 0 0 0 1
2 0 1 0 0 -1 1
2-α 0 0 α 1 α-1 1-α
2 1 0 -1 0 -1 1

Notice that this basic solution (x1 = x2 = 2, x3 = x5 = x6 = 0, x4 = 2 −

α) is feasible, since 2 − α ≥ 0. Since all the reduced costs are nonnegative,
it is also optimal with respect to the auxiliary objective, that is, it minimizes
unfeasibility. Moreover, the objective value is f = −a00 = 0, so that the solution
found corresponds to a feasible solution of the original problem. Graphically,
it corresponds to point A = (2, 2), which is the starting solution of the second
phase.

Second phase Once the first phase has ended, we remove the auxiliary column
from the tableau: the artificial variable, in fact, is zero (out of the basis) and it
will remain such. Then, we replace row 0 with the original one.

0 -1 -1 0 0 0
2 0 1 0 0 -1
2-α 0 0 α 1 α-1
2 1 0 -1 0 -1

This is not a basic canonical form, because row 0 has not been submitted to the
same pivot operations of the other rows. However, the rest of the tableau suggests
quite clearly to adopt basis (x2, x4, x1). In order to set the reduced costs of these
three variables to zero, we combine row 0 with the other ones. In particular, we
sum rows 1 and 3 to row 0. These are actually three pivot operations (one of
them with a zero multiplier, and two with unitary multipliers). Since they are
very simple, we perform them all together.

4 0 0 α-1 1 -2
2 0 1 0 0 -1
2-α 0 0 α 1 α-1
2 1 0 -1 0 -1

The reduced cost of variable x5 is the most negative one for all values of α.
Anyway, the only necessary condition is that it is negative, thus making profitable
to include x5 into the basis. In order to determine the variable which will get out
of the basis, we analyze the elements of column 5. There are two cases: α ≤ 1
and 1 < α ≤ 2.

If α ≤ 1, all the elements of the column are negative or zero: increasing
variable x5, the basic variables suffer on effect or are forced to increase. Thus,
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the nonnegativity constraints never intervene, and the solution can be improved
without any limit. There is no optimal solution, and the problem is unbounded.
Graphically, this corresponds to the case in which the separating line of the second
constraint is parallel to that of the first one, or forms an open angle with it, and
the feasible region becomes an unbounded polyhedron (as in Figure 1).

If 1 < α ≤ 2, we perform a pivot operation on element a25.

-4+22−α
α−1

0 0 2α
α−1

− 1 2

α−1
0

2+22−α
α−1

0 1 α
α−1

1

α−1
0

2−α
α−1

0 0 α
α−1

1

α−1
1

2+22−α
α−1

1 0 α
α−1

-1 1

α−1
0

This solution is feasible and optimal for all values α ∈ (1; 2]. In fact, the reduced
costs are all nonnegative (in particular, c̃3 = 2α/(α− 1)− 1 = (α+1)/(α− 1) >
0) and the right-hand-sides are nonnegative, as well. This case is reported in
Figure 2.
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