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4.1 Graphical resolution and standard form

Given the problem

min cTx

Ax ≥ b

x ≥ 0

where

x =

(

x1

x2

)

, c =

(

16

25

)

, b =







4

5

9






, A =







1 7

1 5

2 3







1. Solve it graphically.

2. Restate it in standard form, identify B, N , and the corresponding partition of the cost
vector w.r.t. the vertex which is optimal for the related polyhedron.

4.2 Geometry of linear programming

Given the linear program

max z = 3x1 + 2x2

2x1 + x2 ≤ 4 (1)

− 2x1 + x2 ≤ 2 (2)

x1 − x2 ≤ 1 (3)

x1, x2≥ 0

1. Solve it graphically, indicating, for each variable and for the objective function, the value
that it takes in an optimal solution.

2. Determine the basic solutions related to all the vertices of the polyhedron of the feasible
region.

3. Indicate the sequence of basic solutions that are visited by the simplex algorithm (let x1
be the first variable to enter the basis).

4. Determine the reduced costs for the basic solution associated to the vertices ((eq. 1) ∩
(eq. 2)) and ((eq. 1) ∩ (eq. 3)), where (eq. i) is obtained from (i), by substituting = for
≤.

5. Show, geometrically, that the gradient of the objective function is a conic combination
(i.e. a nonnegative linear combination) of the gradients of the constraints which are active
at an optimal vertex. Indicate the value taken by the objective function in that vertex.
Note: All the constrains must be in ≤ form, since the problem is a maximization one (e.g.,
x1 ≥ 0 must be rewritten as −x1 ≤ 0).
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6. Determine the range of values for the right hand side b1 of constraint (1) for which the
optimality of the basis solution is preserved.

7. Indicate for which values of the objective function coefficients ((x1 = 0)∩ (eq. 2)) is an
optimal vertex.

8. Determine the range of values for the right hand side b2 of constraint (2) for which the
feasible region is (a) empty (b) contains a single point.

9. Indicate the values for c1 for which there are multiple optimal solutions.

4.3 Simplex algorithm with Bland’s rule

Given the linear program

min z = x1 − 2x2

2x1 + 3x3 = 1

3x1 + 2x2 − x3 = 5

x1, x2 , x3 ≥ 0

solve it via the two phases simplex algorithm applying Bland’s rule.
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Solution

4.1 Graphical resolution and standard form

1. The equations associated to the system are Ax = b

x1 + 7x2 = 4 (4)

x1 + 5x2 = 5 (5)

2x1 + 3x2 = 9 (6)

The corresponding lines are shown in Figure 1. The level curves of the objective function

1 2 3 4

1

5

2

3

x1

x2

z =
16x

1 +
25x

2

∇
z

x1 + 7x2 = 4

x1 + 5x2 = 5

2x
1 +

3x
2 =

9

Figure 1: The polyhedron is unbounded

are z = 16x1+25x2, or, equivalently, x2 = −16
25x1+

z

25 . Inspecting Figure 2, we observe that
vertex R is the unique optimal solution. Since vertex R is the intersection of equations (5)
and (6), we obtain it by solving

x1 + 5x2 = 5

2x1 + 3x2 = 9

obtaining x1 =
30
7 , x2 =

1
7 .

2. To express the problem in standard form, we introduce 3 slack variables, s1, s2, s3, one per
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valori decrescenti
funzione obiettivo

P

Q

R

S

T

U

x = 0 2 3 4 65

eq. (4)

eq. (5)

eq. (6)

Figure 2: Graphical resolution: R is an optimal solution

constraint. The new problem is

min c′Tx′

A′x′ = b

x′ ≥ 0

where x′ = (x1, x2, s1, s2, s3)
T , c′ = (16, 25, 0, 0, 0), and

A′ =







1 7 −1 0 0

1 5 0 −1 0

2 3 0 0 −1






= (A| − I).

Since R is obtained by intersecting (4) and (5), the slack variables of the corresponding
constraints are null in R. By letting xB = (x1, x2, s1) and xN = (s2, s3), we partition the
variables into x′ = (xB|xN ). The corresponding partition of matrix A′ is

A′ =







1 7 −1 0 0

1 5 0 −1 0

2 3 0 0 −1






= (B|N).
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The basic variables in R have values xB = B−1b. Therefore,

B−1 =
1

7







0 −3 5

0 2 −1

−7 11 −2







and xB = (307 ,
1
7 ,

9
7), where xB = (x1, x2)

′.

4.2 Geometry of linear programming

1. The equations associated to constraints (1), (2), (3) are

2x1 + x2 = 4 (eq. 1)

−2x1 + x2 = 2 (eq. 2)

x1 − x2 = 1 (eq. 3)

or, equivalently,

x2= −2 x1 + 4

x2= 2 x1 + 2

x2= x1 − 1.

The level curves of the objective function are z = 3x1 + 2x2, i.e., x2 = −3x1
2 + z

2 . The
polyhedron PQROS of the feasible solutions is shown in Figure 3. The unique optimal
solution is achieved at vertex P = (12 , 3), where z∗ = 15

2 .

P

Q

R

S

O

max z*

eq. (1) eq. (2)

eq. (3)

Figure 3: Polyhedron of the feasible solutions
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2. To express the problem in standard form, we introduce 3 slack variables, s1, s2, s3, one per
constraint. The problem is

max z = c′Tx′

A′x′ = b

x′ ≥ 0,

where

x′ =

















x1

x2

s1

s2

s3

















, c′ =

















3

2

0

0

0

















, b′ = b, A′ = (A|I) =







2 1 1 0 0

−2 1 0 1 0

1 −1 0 0 1






.

(a) Vertex P : s1 = 0, s2 = 0, where xB = (x1, x2, s3), xN = (s1, s2),

B =







2 1 0

−2 1 0

1 −1 1






, N =







1 0

0 1

0 0






.

(b) Vertex Q: s1 = 0, s3 = 0, where xB = (x1, x2, s2), xN = (s1, s3),

B =







2 1 0

−2 1 1

1 −1 0






, N =







1 0

0 0

0 1






.

(c) Vertex R: x2 = 0, s3 = 0, where xB = (x1, s1, s2), xN = (x2, s3),

B =







2 1 0

−2 0 1

1 0 0






, N =







1 0

1 0

−1 1






.

(d) Vertex O: x1 = 0, x2 = 0, where xB = (s1, s2, s3), xN = (x1, x2),

B =







1 0 0

0 1 0

0 0 1






, N =







2 1

−2 1

1 −1






.

(e) Vertex S: x1 = 0, s2 = 0, where xB = (x2, s1, s3), xN = (x1, s2),

B =







1 1 0

1 0 0

−1 0 1






, N =







2 0

−2 1

1 0






.

3. Assume that, initially, the basic solution is given by the slack variables, i.e., xB =
(s1, s2, s3). Variables x1, x2 are nonbasic. The solution corresponds to vertex O (the
origin). Assuming that x1 becomes basic, we are increasing the value of x1, i.e., we are

Document prepared by L. Liberti, S. Bosio, S. Coniglio, and C. Iuliano. Translation to English by S. Coniglio 6



ex-4.1-4.3 Foundations of Operations Research Instructor: Dr. S. Coniglio

moving on segment O − R. Variables s1 and s3 decrease as x1 increases. The first one
to become 0 is s3. We reach vertex R, where xB = (x1, s1, s2). The next variable to
become basic is x2. We are moving on segment R−Q, and obtain the next solution in Q,
where xB = (x1, x2, s2). Then s3 becomes basic and s2 becomes nonbasic, i.e., we move
on segment Q− P , reaching the unique optimal vertex P , where xB = (x1, x2, s3),

4. The vertex given by (1) ∩ (2) isP . That given by (1) ∩ (3) is Q. The reduced costs are
c̄ = cT − cT

B
B−1A. Observe that c̄ is zero for basic variables, and (possibly!) nonzero for

nonbasic ones. Therefore, we only consider c̄N = cT
N
− cT

B
B−1N . In vertex P , we have B

and N as in (b)i, so

B−1N =
1

4







1 −1

2 2

1 3







where c′
B

= (3, 2, 0) and c′
N

= (0, 0). We obtain c̄N = (−7
4 ,−

1
4). Since both values are

≥ 0 and the problem is maximization one, the basic solution corresponding to vertex P is
optimal. In vertex Q, we have B,N as in 4.2(b)ii, so

B−1N =
1

3







1 1

1 −2

1 4







where c′
B
= (3, 2, 0) and c̄N = (−5

3 ,
1
3). Therefore, Q is not an optimal solution.

5. The gradient of the objective function is a conic combination of the gradients of the active
constraints only in an optimal vertex. It means that any improving direction is infeasible,
which implies that the current vertex is optimal. Consider P = (12 , 3). The gradient of
the objective function is ∇f = (3, 2). The active constraints, in P , are (1) and (2). The
gradients are (2, 1) and (−2, 1). We are to check whether the system

λ1

(

2

1

)

+ λ2

(

−2

1

)

=

(

3

2

)

admits a solution where λ1 ≥ 0 and λ2 ≥ 0. Since it is of full rank, the solution is unique.
Since it amounts to λ1 =

7
4 , λ2 =

1
4 , P satisfies the condition. See Figure 4.

We verify that the condition is not satisfied in the nonoptimal vertices Q,R,O, S.

• Vertex Q. Active constraints (1), (3) with gradients (2, 1), (1,−1). We obtain λ1 =
5
3 ,

λ2 = −1
3 < 0. The condition is not satisfied.

• Vertex R. Active constraints (3), −x2 ≤ 0 with gradients (1,−1), (0,−1). We obtain
λ1 = 3, λ2 = −5 < 0. The condition is not satisfied.

• Vertex O. Active constraints −x1 ≤ 0, −x2 ≤ 0 with gradients (−1, 0), (0,−1). We
obtain λ1 = −3 < 0, λ2 = −2 < 0. The condition is not satisfied.

• Vertex S. Active constraints −x1 ≤ 0, (2) with gradients (−1, 0), (−2, 1). We obtain
λ1 = −7 < 0, λ2 = 2. The condition is not satisfied.

6. Geometrical solution, without sensitivity analysis.

For b1 → ∞, the optimality of the optimal basis is preserved. Let S = (0, s). If b1
decreases, while b1 > s, the optimality of the basis is preserved. If b1 = s, we have a
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P

Q

R

S

O

(eq.1) eq. (2)

∇f

∇g1
∇g2

Figure 4: Optimality of vertex P

degenerate solution which can be expressed both as xB = (x1, s3, x2) or xB = (x1, s3, s2).
For 0 < b1 < s, x1 = 0 becomes nonbasic and s2 becomes basic, since the corresponding
constraints (2) is no more active. For b1 = 0, the problem has a single feasible point, (0, 0),
and for b1 < 0 the feasible region is empty.

7. S is an optimal solution for any objective function with a gradient which is a conic com-
bination of (−1, 0)T and (−2, 1)T .

8. The feasible region contains a single point, Q, for b2 such that Q is the intersection of the
three lines corresponding to the three constraints, i.e., for b2 = −8

3 . The feasible region is
empty for b2 < −8

3 .

9. We have multiple optimal solutions if the gradient of the objective function is parallel to
that of an inequality defining a facet f of the polyhedron, i.e., if the two gradients are
equivalent up to a positive multiplicative factor.

4.3 Simplex method with Bland’s rule

The problem is already in standard form. Constraints (1)-(3) equal to the systemAx = b, where
x = (x1, x2, x3)

T , b = (1, 5)T and

A =

(

2 0 3

3 2 −1

)

.

Since a feasible basic solution is not evident, we apply the two phases simplex method.

Phase I
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This phase finds a feasible basic solution, if any. We solve the auxiliary problem

min v =
∑

i

yi

s.t. Ax+ Iy = b

x ≥ 0

y ≥ 0

where an artificial yi is introduced for each equality constraint. Observe that vector b must be
nonnegative. If it is not, we need to multiply the lines where the entry is negative by −1.

A feasible basic solution for the auxiliary problem is given by xB = (y1, y2), where the
objective function has a strictly positive value. The problem admits an optimal solution of
value 0 if and only if the original problem admits a feasible solution. Indeed, to achieve a value
of 0, all variables yi must be zero, which implies that Ax = b can be satisfied.

If no optimal solution of value 0 is found, the original problem is infeasible and the algorithm
stops.

For the current problem, the auxiliary problem reads min{y1 + y2 | Āx̄ = b, x ≥ 0, y ≥ 0}.
The initial basic solution is x̄B = (y1, y2). We express the basic variables w.r.t. the nonbasic
ones

y1 = 1− 2x1 − 3x3

y2 = 5− 3x1 − 2x2 + x3

so that the objective function becomes v = y1 + y2 = 6− 5x1 − 2x2 − 2x3. The initial tableau is

x1 x2 x3 y1 y2

-6 -5 -2 -2 0 0

y1 1 2 0 3 1 0

y2 5 3 2 -1 0 1

The reduced costs of the nonbasic variables x̄N = (x1, x2, x3) are all negative. Using Bland’s
rule, we pick the nonbasic variable with smallest index, x1. There are two limitations to the
growth of x1, i.e., given by y1 = 1 − 2x1 and y2 = 5 − 3x1. Therefore, the tightest limit is
min{1

2 ,
5
3} = 1

2 , given by the basic variable y1, which leaves the basis. Pivoting is performed on
coefficient 2 in tableau position(1,1)

1. divide row 1 by 2

2. add 5 times row 1 to row 0

3. subtract 3 times row 1 from row 2

We obtain the tableau

x1 x2 x3 y1 y2

−7
2 0 -2 11

2
5
2 0

x1
1
2 1 0 3

2
1
2 0

y2
7
2 0 2 −11

2 −3
2 1
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which shows the current basic solution xB = (x1, y2)
T = (1/2, 7/2)T of value 7/2 (obviously

xN = 0). Since the only negative reduced cost is given by x2, x2 enters the basis. The only
limit to its growth is given by y2 = 7

2 − 2x2, therefore x2 ≤ 7
4 and y2 leaves the basis. Pivoting

is performed on coefficient 2 in position (2,2) of the previous tableau

1. add row 2 to row 0

2. divide row 2 by 2

We obtain

x1 x2 x3 y1 y2

0 0 0 0 1 1

x1
1
2 1 0 3

2
1
2 0

x2
7
4 0 1 −11

4 −3
4

1
2

Since the reduced costs for the nonbasic variables are all nonnegative, Phase I stops, proving
that the feasible region of the original problem is nonempty, and yielding an initial basic solution
of value xB = (x1, x2).

Phase II

The objective function is x1 − 2x2, and the initial basis is (x1, x2), with x3 nonbasic. We
express x1, x2 w.r.t. x3

x1 =
1

2
−

3

2
x3

x2 =
7

4
+

11

4
x3

The objective function becomes −3 − 7x3. Removing from the tableau the columns of the
auxiliary variables, we obtain

x1 x2 x3

3 0 0 -7

x1
1
2 1 0 3

2

x2
7
4 0 1 −11

4

Variable x3, having a negative reduced cost of -7, enters the basis. Since the only limit to its
growth is given by x1 =

1
2 −

3
2x3, x1 leaves the basis. Therefore, we perform a pivoting operation

on coefficient 3
2 in position (3,1)

1. divide row 1 by 3
2 ;

2. add 7 times row 1 to row 0

3. add −11
4 times row 1 to row 3

We obtain
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x1 x2 x3
16
3

14
3 0 0

x3
1
3

2
3 0 1

x2
8
3

11
6 1 0

The reduced costs are all nonnegative and the algorithm halts, yielding the optimal solution
(0, 83 ,

1
3), of value z∗ = −16

3 .
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