Foundations of Operations Research

Master of Science in Computer Engineering

Roberto Cordone
roberto.cordone@unimi.it

Tuesday 13.15-15.15
Thursday 10.15-13.15
http://homes.di.unimi.it/~cordone/courses/2014-for/2014-for.html

Lesson 13: The simplex method

A sample problem

$$
\begin{aligned}
\min f=5 x_{1}+4 x_{2}+3 x_{3} & \\
2 x_{1}+3 x_{2}+x_{3}+x_{4} & =5 \\
4 x_{1}+x_{2}+2 x_{3}+x_{5} & =11 \\
3 x_{1}+4 x_{2}+2 x_{3}+x_{6} & =8 \\
x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} & \geq 0
\end{aligned}
$$

There are 20 basic solutions, but it is easy to find the optimal one
(1) matrix A shows an obvious basic submatrix $B=I$ (columns 4, 5 and 6) and the basic cost subvector is null: $C_{B}=0$:

- the corresponding basic solution is $\bar{x}_{N}=0 \Rightarrow x_{B}=B^{-1} b=b$
- the value of the objective function is $f(\bar{x})=c_{B} \bar{x}_{B}+c_{N} \bar{x}_{N}+d=d$
(2) the right-hand-side vector b is nonnegative:
the obvious basic solution is feasible
(3) the nonbasic cost subvector c_{N} is nonnegative: $c_{N} \geq 0$
a generic feasible solution x costs $f(x)=c_{N}^{\top} x_{N}+d \geq d$
Therefore, the obvious basic solution $\bar{x}=\left[\begin{array}{l}b \\ 0\end{array}\right]$ is optimal
Not all $L P$ problems enjoy such properties, but all feasible and bounded $L P$ problems admit an equivalent problem that enjoys them

Basic canonical form

A basic canonical form is a special standard form in which

- the coefficient matrix A includes a submatrix $B=I$
- the cost vector c includes a subvector $c_{B}=0$
- B and C_{B} correspond to the same variables

This is the first of the three conditions mentioned above
An LP problem admits a basic canonical form for each of its bases A direct way to obtain it is to multiply the equality constraints by B^{-1}

$$
B^{-1} A x=B^{-1}[B \mid N]\left[\begin{array}{l}
x_{B} \\
x_{N}
\end{array}\right]=B^{-1} b \Rightarrow x_{B}+B^{-1} N x_{N}=B^{-1} b
$$

and then replace x_{B} in the expression of the objective function

$$
f(x)=c^{T} x=\left[c_{B}^{T} \mid c_{N}^{T}\right]\left[\begin{array}{c}
x_{B} \\
x_{N}
\end{array}\right]=\left(c_{N}^{T}-c_{B}^{T} B^{-1} N\right) x_{N}+c_{B}^{T} B^{-1} b+d
$$

From the basic canonical form, it is easy to obtain

- the associated basic solution: $\bar{x}=\bar{b}=\left[\begin{array}{c}B^{-1} b \\ 0\end{array}\right]$
- the associated objective value: $f(\bar{x})=\bar{d}=c_{B}^{T} B^{-1} b+d$
- the associated reduced cost vector: $\bar{c}^{T}=\left[0 \mid c_{N}^{T}-c_{B}^{T} B^{-1} N\right]$

An algorithmic idea

Given an LP problem in standard form
(1) put it into a basic canonical form (How? Premultiplying by B^{-1} ?)
(2) if $\bar{b} \geq 0$, the associated basic solution \bar{x} is feasible; otherwise, put the problem into another basic canonical form and go back to step 1 (How? What form? Is it always possible?)
(3) if $\bar{c}_{N} \geq 0$, the associated feasible basic solution \bar{x} is also optimal; otherwise, put the problem into another basic canonical form and go back to step 2
(How? What form? Is it always possible?)
The simplex method examines a sequence of basic canonical forms (solutions) in two phases
(1) achieving a basic feasible solution by subsequent reductions of the unfeasibility (suitable conditions reveal whether the problem is unfeasible)
(2) achieving a basic optimal solution by subsequent reductions of the objective (suitable conditions reveal whether the problem is unbounded)

The idea is to move from a basic canonical form to an "adjacent" one
(1) a single nonbasic column gets into the basis; correspondingly, a single nonbasic variable changes from zero to nonnegative
(2) a single basic column gets out of the basis; correspondingly, a single basic variable changes from nonnegative to zero

From a geometrical point of view, the idea is that the current solution moves from a vertex to an "adjacent" vertex

The simplex method consists of two phases:
(1) the current basic solution gets closer to the feasible region
(2) the basic solution keeps feasible, and the objective function improves

Obtaining a basic canonical form

The following problem is in standard form, but not in any basic canonical form

$$
\begin{aligned}
\min f=-6 x_{1}-5 x_{3}-\frac{7}{3} x_{4}+\frac{8}{3} x_{5} & +\frac{26}{3} \\
3 x_{1}+3 x_{3}+x_{4}-2 x_{5} & =2 \\
3 x_{1}+3 x_{2}+x_{4}+x_{5} & =8 \\
6 x_{3}+x_{4}-5 x_{5}+3 x_{6} & =1 \\
x_{1}, \ldots, x_{6} & \geq 0
\end{aligned}
$$

Arbitrarily selecting columns ($1,2,6$), one obtains a basis B :

$$
B=\left[\begin{array}{lll}
3 & 0 & 0 \\
3 & 3 & 0 \\
0 & 0 & 3
\end{array}\right] \Rightarrow B^{-1}=\frac{1}{27} \cdot\left[\begin{array}{ccc}
9 & 0 & 0 \\
-9 & 9 & 0 \\
0 & 0 & 9
\end{array}\right]
$$

The corresponding canonical form can be easily built by simple matrix operations

$$
\bar{A}=B^{-1} \cdot A=\left[\begin{array}{cccccc}
1 & 0 & 1 & 1 / 3 & 2 / 3 & 0 \\
0 & 1 & -1 & 0 & 1 & 0 \\
0 & 0 & 2 & 1 / 3 & -5 / 3 & 1
\end{array}\right] \quad \bar{b}=B^{-1} b=\left[\begin{array}{c}
2 / 3 \\
2 \\
1 / 3
\end{array}\right]
$$

The corresponding reduced cost vector and constant term are

$$
\bar{c}^{T}=\left[\begin{array}{llllll}
0 & 0 & 1 & -1 / 3 & -4 / 3 & 0
\end{array}\right] \quad \bar{d}=c_{B}^{T} B^{-1} b+d=\frac{14}{3}
$$

However, there is a simpler and more efficient way to proceed

Equivalent equalities

Any $L P$ problem in standard form can be transformed into an equivalent one by
(1) multiplying both sides of an equality by a constant coefficient

$$
3 x_{1}+3 x_{3}+x_{4}-2 x_{5}=2 \quad \Leftrightarrow \quad 1 x_{1}+1 x_{3}+\frac{1}{3} x_{4}-\frac{2}{3} x_{5}=\frac{2}{3}
$$

(2) using an equality to determine a variable in terms of the other ones and replacing the variable everywhere else

$$
\begin{aligned}
\min f=-6 x_{1}-5 x_{3}-\frac{7}{3} x_{4}+\frac{8}{3} x_{5} & +\frac{26}{3} \\
3 x_{1}+3 x_{3}+x_{4}-2 x_{5} & =2 \\
3 x_{1}+3 x_{2}+x_{4}+x_{5} & =8 \\
6 x_{3}+x_{4}-5 x_{5}+3 x_{6} & =1 \\
x_{1}, \ldots, x_{6} & \geq 0
\end{aligned}
$$

Use the first constraint to determine $x_{1}=\frac{2-3 x_{3}-x_{4}+2 x_{5}}{3}$

$$
\begin{aligned}
\min f=\begin{array}{c}
x_{3}-\frac{1}{3} x_{4}-\frac{4}{3} x_{5}
\end{array} & +\frac{14}{3} \\
x_{1}+x_{3}+\frac{1}{3} x_{4}-\frac{2}{3} x_{5} & =\frac{2}{3} \\
3 x_{2}-3 x_{3}+3 x_{5} & =6 \\
6 x_{3}+x_{4}-5 x_{5}+3 x_{6} & =1 \\
x_{1}, \ldots, x_{6} & \geq 0
\end{aligned}
$$

Equivalent equalities

The same transformation can be done
(1) multiplying both sides of an equality by a constant coefficient

$$
3 x_{1}+3 x_{3}+x_{4}-2 x_{5}=2 \quad \Leftrightarrow \quad 1 x_{1}+1 x_{3}+\frac{1}{3} x_{4}-\frac{2}{3} x_{5}=\frac{2}{3}
$$

(2) subtracting from an equality another equality multiplied by a suitable constant

$$
\begin{aligned}
\min f=-6 x_{1}-5 x_{3}-\frac{7}{3} x_{4}+\frac{8}{3} x_{5} & +\frac{26}{3} \\
3 x_{1}+3 x_{3}+x_{4}-2 x_{5} & =2 \\
3 x_{1}+3 x_{2}+x_{4}+x_{5} & =8 \\
6 x_{3}+x_{4}-5 x_{5}+3 x_{6} & =1 \\
x_{1}, \ldots, x_{6} & \geq 0 \\
& \\
\min f=x_{3}-\frac{1}{3} x_{4}-\frac{4}{3} x_{5} & +\frac{14}{3} \\
x_{1}+x_{3}+\frac{1}{3} x_{4}-\frac{2}{3} x_{5} & =\frac{2}{3} \\
3 x_{2}-3 x_{3}+3 x_{5} & =6 \\
6 x_{3}+x_{4}-5 x_{5}+3 x_{6} & =1 \\
x_{1}, \ldots, x_{6} & \geq 0
\end{aligned}
$$

Multiply the first constraint by $1 / 3$
Subtract the first constraint

- multiplied by 3 from the second constraint
- multiplied by 0 (x_{1} is already absent) from the third constraint

Consider the objective function as an equality: $f-d=c^{T} x$ and subtract from it the first constraint multiplied by -6

The tableau representation

A common representation of an $L P$ problem in standard form is the so called tableau, that is a matrix with $m+1$ rows and $n+1$ columns

- row 0 corresponds to the objective function: $a_{0 j}:=c_{j}(j=1, \ldots, n)$ rows $1, \ldots, m$ correspond to the constraints
- column 0 corresponds to the right-hand sides: $a_{i 0}:=b_{i}(i=1, \ldots, m)$ columns $1, \ldots, n$ correspond to the variables
Since $c^{T} x=f-d$, we set $a_{00}:=-d$

$$
\begin{aligned}
& \begin{array}{r}
\min f=c^{T} x \\
A x=b
\end{array} \quad \begin{array}{|c|c|}
\hline-d & c^{T} \\
\hline b & A \\
\hline
\end{array} \\
& x \geq 0 \\
& \min f=-6 x_{1}-5 x_{3}-\frac{7}{3} x_{4}+\frac{8}{3} x_{5}+\frac{26}{3} \\
& 3 x_{1}+3 x_{3}+x_{4}-2 x_{5}=2 \\
& 3 x_{1}+3 x_{2}+x_{4}+x_{5}=8 \\
& 6 x_{3}+x_{4}-5 x_{5}+3 x_{6}=1 \\
& x_{1}, \ldots, x_{6} \geq 0
\end{aligned}
$$

The pivot operation

The pivot operation represents on the tableau the substitution of a variable It is based on

- a pivot column j : the variable x_{j} expressed in terms of the others
- a pivot row i : the constraint $\left(a_{i}^{T}, b_{i}\right)$ used to determine the variable The pivot is the element $a_{i j}$ identified by the pivot row and column

The pivot operation consists in:

- dividing the pivot row $\left[b_{i} \mid a_{i}^{T}\right]$ by the pivot element $a_{i j}\left(a_{i j} \neq 0\right.$! $)$

$$
\bar{a}_{i}^{T}:=\frac{a_{i}^{T}}{a_{i j}} \quad\left(\text { note: } b_{i}=a_{i 0} \Rightarrow \bar{b}_{i}:=\frac{b_{i}}{a_{i j}}\right)
$$

- subtracting the pivot row multiplied by a suitable value from all other rows

$$
\begin{gathered}
\bar{a}_{h}:=a_{h}-\frac{a_{h j}}{a_{i j}} a_{i} \quad \forall h \neq i \\
\left(\text { note: } c_{j}=a_{0 j} \Rightarrow \bar{c}:=c-\frac{c_{j}}{a_{i j}} a_{i} \text { and } d=a_{00} \Rightarrow \bar{d}:=d-\frac{c_{j}}{a_{i j}} b_{i}\right)
\end{gathered}
$$

For the pivot column j, the operation yields $\bar{c}_{j}=\bar{a}_{0 j}:=0$ and $\bar{a}_{h j}:=0$
The effect of a pivot operation is that the pivot column gets into the basis

Obtaining a basic canonical form

Given an LP problem and a basis, one obtains the associated basic canonical form applying the transformation to each column of the basis; for each basic variable:

- the coefficient in the objective function becomes $\bar{c}_{j}:=0$
- the pivot element becomes $\bar{a}_{i j}:=1$
- the coefficients of the pivot column in the nonpivot rows become $\bar{a}_{h j}:=0, \forall h \neq i$ $\Rightarrow \bar{B}=I$ and $\bar{c}_{B}=0$

This takes one step for each column: $m=3$ steps on elements $(1,1),(2,2)$ and $(3,6)$

$$
\begin{aligned}
\min f=-6 x_{1}-5 x_{3}-\frac{7}{3} x_{4}+\frac{8}{3} x_{5} & +\frac{26}{3} \\
3 x_{1}+3 x_{3}+x_{4}-2 x_{5} & =2 \\
3 x_{1}+3 x_{2}+x_{4}+x_{5} & =8 \\
6 x_{3}+x_{4}-5 x_{5}+3 x_{6} & =1 \\
x_{1}, \ldots, x_{6} & \geq 0 \\
\min f=x_{3}-\frac{1}{3} x_{4}-\frac{4}{3} x_{5} & +\frac{14}{3} \\
x_{1}+x_{3}+\frac{1}{3} x_{4}-\frac{2}{3} x_{5} & =\frac{2}{3} \\
-x_{3}+x_{5} & =2 \\
2 x_{3}+\frac{1}{3} x_{4}-\frac{5}{3} x_{5}+x_{6} & =\frac{1}{3} \\
x_{1}, \ldots, x_{6} & \geq 0
\end{aligned}
$$

$-\frac{26}{3}$	-6	0	-5	$-\frac{7}{3}$	$\frac{8}{3}$	0
2	3	0	3	1	-2	0
8	3	3	0	1	1	0
1	0	0	6	1	-5	3

$\frac{14}{3}$	0	0	1	$-\frac{1}{3}$	$-\frac{4}{3}$	0
$\frac{2}{3}$	1	0	1	$\frac{1}{3}$	$-\frac{2}{3}$	0
2	0	1	-1	0	1	0
$\frac{1}{3}$	0	0	2	$\frac{1}{3}$	$-\frac{5}{3}$	1

Graphical representation

$$
\begin{aligned}
& \min f=-x_{1}-x_{2} \\
& \begin{aligned}
6 x_{1}+4 x_{2}+x_{3} & =24 \\
3 x_{1}-2 x_{2}+x_{4} & =6 \\
x_{1}, x_{2}, x_{3}, x_{4} & \geq 0
\end{aligned}
\end{aligned}
$$

The basis is (3,4) and the basic solution ($0,0,24,6$)
The basic reduced costs are zero, and the objective value is 0
Perform pivot operations on $\underset{x_{1}}{(1,1)} \underset{x_{2}}{\log } \underset{x_{3}}{\text { and }}(2,2) \underset{x_{4}}{\text { to }}$ obtain basis $(1,2)$

$\frac{9}{2}$	0	0	$\frac{5}{24}$	$-\frac{1}{12}$
3	1	0	$\frac{1}{12}$	$\frac{1}{6}$
$\frac{3}{2}$	0	1	$\frac{1}{8}$	$-\frac{1}{4}$

The basis is $(1,2)$ and the basic solution is $(3,3 / 2,0,0)$
The basic reduced costs are zero, and the objective value is $-\frac{9}{2}$

$$
\begin{aligned}
& \min f=-x_{1}-x_{2} \\
& 6 x_{1}+4 x_{2} \leq 24 \\
& 3 x_{1}-2 x_{2} \leq 6 \\
& x_{1}, x_{2} \geq 0 \\
& \text { (2n), }
\end{aligned}
$$

The current vertex is $(0,0)$

The current vertex is $(3,3 / 2)$

Moving from a basis to another basis

When the problem is already in basic canonical form
a pivot operation on element $a_{i j}$ represents a basis change

- the pivot column j enters the basis
- the basic column h with coefficient $a_{i h}=1$ in the pivot row i exits

Therefore, the pivot element determines the resulting basis $\bar{B}=B \cup\{j\} \backslash\{h\}$
We will follow the evolution of the algorithm from three parallel points of view
(1) algebraic representation: variables and equations
(2) programming representation: tableau
(3) graphical representation: possible only for 2 natural variables

A wrong choice of the pivot element

For example, we can move from basis $(3,4)$ to basis $(2,3)$:

- x_{2} gets into the basis: the pivot column is 2
- x_{4} gets out of the basis: the pivot row is 2 (only nonzero coefficient) the pivot element is $a_{22}=-1$

This choice of the pivot element is completely wrong:

- it produces an unfeasible solution:
if x_{4} goes to zero, x_{1} is unchanged and $3 x_{1}-2 x_{2}+x_{4}=6$, then x_{2} decreases $\bar{x}_{2}=\bar{b}_{2}:=b_{2} / a_{22}=6 /-2=-3<0$
- it produced a worse solution:
if x_{1} is unchanged, x_{2} decreases and
$f(x)=-x_{1}-x_{2}$, then the cost increases

$$
-\bar{d}_{j}:=-d+\left(c_{j} / a_{i j}\right) b_{i}=0+(-1 /-2) 6=3
$$

See also the graphic

The current vertex is $(0,-3)$

How to choose the pivot element

At first, we introduce a fundamental assumption: let the current basic solution be feasible ($b_{i} \geq 0$ for all i) (we will see later how to obtain it)

The choice of the new basis, that is of the pivot element, must guarantee that
(1) the new basic variable remains nonnegative

- algebraic perspective: if the old basic variable decreases to zero, the new one must increase
- tableau perspective: $\bar{b}_{i}:=\frac{b_{i}}{a_{i j}} \geq 0$
- graphical perspective: we must move towards the feasible region

Therefore, choose a positive pivot element: $a_{i j}>0$
(2) the objective function improves

- algebraic perspective: when the new basic variable increases, the total cost must decrease
- tableau perspective: $-\bar{d}=-d-\frac{c_{j}}{a_{i j}} b_{i}>-d$
- graphical perspective: we must move consistently with the most improving direction

Therefore, choose a pivot column with negative reduced cost: $c_{j}<0$

How to choose the pivot element

The choice of the new basis, that is of the pivot element, must guarantee that
(3) the other basic variables remain feasible (one decreases to zero)

- algebraic perspective: if x_{j} increases by ϵ, and the nonbasic variables keep zero, each old basic variable changes by $-\epsilon a_{h j}(h=1, \ldots, m)$; they keep feasible as long as

$$
\overline{x_{B_{h}}}=b_{h}-\epsilon a_{h j} \geq 0 \Leftrightarrow \epsilon a_{h j} \leq b_{h} \text { for all } h \neq i
$$

- tableau perspective:

$$
\bar{b}_{h}:=b_{h}-\frac{a_{h j}}{a_{i j}} b_{i} \geq 0 \Leftrightarrow\left\{\begin{array}{l}
\frac{b_{i}}{a_{i j}} \leq \frac{b_{h}}{a_{h j}} \text { for } a_{h j}>0 \\
\frac{b_{i}}{a_{i j}} \geq 0 \quad \text { for } a_{h j}=0 \text { (trivial) } \\
\frac{b_{i}}{a_{i j}} \geq \frac{b_{h}}{a_{h j}} \text { for } a_{h j}<0 \text { (trivial) }
\end{array}\right.
$$

- graphical perspective:
- if $a_{h j}<0$, we move away from the separating hyperplane $a_{h}^{T} x=b_{h}$
- if $a_{h j}=0$, we move parallel to the separating hyperplane $a_{h}^{T} x=b_{h}$
- if $a_{h j}>0$, we move closer to the separating hyperplane $a_{h}^{T} x=b_{h}$ Therefore, choose the pivot row with minimum $b_{h} / a_{h j}$ among those with $a_{h j}>0$

$$
i:=\arg \min _{i: a_{h j}>0} \frac{b_{h}}{a_{h j}}
$$

Example (1)

The basis is $(3,4)$
The basic solution ($0,0,24,6$)
The objective value is 0
The basic reduced costs are zero

$$
\begin{aligned}
& \min f=-x_{1}-x_{2} \\
& 6 x_{1}+4 x_{2} \leq \\
& 3 x_{1}-2 x_{2} \leq \\
& x_{1}, x_{2} \geq \\
& 2
\end{aligned}
$$

The current vertex is $(0,0)$

Two nonbasic variables have the same negative reduced cost: $c_{1}=c_{2}=-1$
Variable x_{1} enters the basis (x_{2} would be better, but the selection rule is heuristic)
The ratio $b_{i} / a_{i j}$ is minimum for $i=2$: variable x_{4} leaves the basis; pivot element a_{21}

Example (2)

The basis is $(1,3)$
The basic solution ($2,0,12,0$)
The objective value is -2
The basic reduced costs are zero

$$
\begin{array}{lll}
\min f=-x_{1}-x_{2} \\
6 x_{1}+4 x_{2} & \leq & 24 \\
3 x_{1}-2 x_{2} & \leq & 6 \\
x_{1}, x_{2} & \geq & 0 \\
2
\end{array}
$$

Only one nonbasic variable has a negative reduced cost: $c_{2}=-5 / 3$
Variable x_{2} enters the basis
The ratio $b_{i} / a_{i j}$ is positive only for row $i=1$: variable x_{3} leaves the basis; pivot element a_{12}

Example (3)

The basis is $(1,2)$
The basic solution (3, 3/2, 0, 0)
The objective value is $-9 / 2$
The basic reduced costs are zero

$$
\begin{aligned}
& \min f=-x_{1}-x_{2} \\
& 6 x_{1}+4 x_{2} \leq 24 \\
& 3 x_{1}-2 x_{2} \leq 6 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

The current vertex is $(3,3 / 2)$

Only one nonbasic variable has a negative reduced cost: $c_{4}=-1 / 12$
Variable x_{4} enters the basis
The ratio $b_{i} / a_{i j}$ is positive only for row $i=2$: variable x_{1} leaves the basis; pivot element a_{24}

Example (4)

$\min f=-x_{1}-x_{2}$
$6 x_{1}+4 x_{2}+x_{3}=24$
$3 x_{1}-2 x_{2}+x_{4}=6$
$x_{1}, x_{2}, x_{3}, x_{4} \geq 0$

$-d$	x_{1}	x_{2}	x_{3}	x_{4}
6	$\frac{1}{2}$	0	$\frac{1}{4}$	0
6	$\frac{3}{2}$	1	$\frac{1}{4}$	0
18	6	0	$\frac{1}{2}$	1

The basis is $(2,4)$
The basic solution $(0,6,0,18)$
The objective value is -6
The basic reduced costs are zero

$$
\begin{aligned}
& \min f=-x_{1}-x_{2} \\
& 6 x_{1}+4 x_{2} \leq 24 \\
& 3 x_{1}-2 x_{2} \leq 60 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

All reduced costs are nonnegative: the current solution is optimal

