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A sample problem

min f = 5x1 + 4x2 + 3x3

2x1 + 3x2 + x3 + x4 = 5

4x1 + x2 + 2x3 + x5 = 11

3x1 + 4x2 + 2x3 + x6 = 8

x1, x2, x3, x4, x5, x6 ≥ 0

There are 20 basic solutions, but it is easy to find the optimal one

1 matrix A shows an obvious basic submatrix B = I (columns 4, 5 and 6)
and the basic cost subvector is null: cB = 0:

• the corresponding basic solution is x̄N = 0⇒ xB = B−1 b = b
• the value of the objective function is f (x̄) = cB x̄B + cN x̄N + d = d

2 the right-hand-side vector b is nonnegative:
the obvious basic solution is feasible

3 the nonbasic cost subvector cN is nonnegative: cN ≥ 0
a generic feasible solution x costs f (x) = cTN xN + d ≥ d

Therefore, the obvious basic solution x̄ =

[
b
0

]
is optimal

Not all LP problems enjoy such properties, but all feasible and bounded LP

problems admit an equivalent problem that enjoys them
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Basic canonical form

A basic canonical form is a special standard form in which

• the coefficient matrix A includes a submatrix B = I

• the cost vector c includes a subvector cB = 0

• B and cB correspond to the same variables

This is the first of the three conditions mentioned above

An LP problem admits a basic canonical form for each of its bases
A direct way to obtain it is to multiply the equality constraints by B−1

B−1 Ax = B−1 [B |N ]

[
xB
xN

]
= B−1 b ⇒ xB + B−1 N xN = B−1 b

and then replace xB in the expression of the objective function

f (x) = cT x =
[
cTB | cTN

] [ xB
xN

]
=
(
cTN − cTB B−1 N

)
xN + cTB B−1 b + d

From the basic canonical form, it is easy to obtain

• the associated basic solution: x̄ = b̄ =

[
B−1 b

0

]
• the associated objective value: f (x̄) = d̄ = cTB B−1 b + d

• the associated reduced cost vector: c̄T =
[

0 | cTN − cTB B−1 N
]
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An algorithmic idea

Given an LP problem in standard form

1 put it into a basic canonical form (How? Premultiplying by B−1?)

2 if b̄ ≥ 0, the associated basic solution x̄ is feasible;
otherwise, put the problem into another basic canonical form
and go back to step 1 (How? What form? Is it always possible?)

3 if c̄N ≥ 0, the associated feasible basic solution x̄ is also optimal;
otherwise, put the problem into another basic canonical form
and go back to step 2 (How? What form? Is it always possible?)

The simplex method examines a sequence of basic canonical forms (solutions)
in two phases

1 achieving a basic feasible solution by subsequent reductions of the
unfeasibility (suitable conditions reveal whether the problem is unfeasible)

2 achieving a basic optimal solution by subsequent reductions of the
objective (suitable conditions reveal whether the problem is unbounded)
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The simplex method: general idea

The idea is to move from a basic canonical form to an “adjacent” one

1 a single nonbasic column gets into the basis; correspondingly,
a single nonbasic variable changes from zero to nonnegative

2 a single basic column gets out of the basis; correspondingly,
a single basic variable changes from nonnegative to zero

From a geometrical point of view, the idea is that
the current solution moves from a vertex to an “adjacent” vertex

The simplex method consists of two phases:

1 the current basic solution gets closer to the feasible region

2 the basic solution keeps feasible, and the objective function improves
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Obtaining a basic canonical form

The following problem is in standard form, but not in any basic canonical form

min f = −6 x1 − 5 x3 −
7

3
x4 +

8

3
x5 +

26

3
3 x1 + 3 x3 + x4 − 2 x5 = 2

3 x1 + 3 x2 + x4 + x5 = 8

6 x3 + x4 − 5 x5 + 3 x6 = 1

x1, . . . , x6 ≥ 0

Arbitrarily selecting columns (1, 2, 6), one obtains a basis B:

B =

 3 0 0
3 3 0
0 0 3

⇒ B−1 =
1

27
·

 9 0 0
−9 9 0
0 0 9


The corresponding canonical form can be easily built by simple matrix operations

Ā = B−1 · A =

 1 0 1 1/3 2/3 0
0 1 −1 0 1 0
0 0 2 1/3 −5/3 1

 b̄ = B−1b =

 2/3
2

1/3


The corresponding reduced cost vector and constant term are

c̄T =
[

0 0 1 −1/3 −4/3 0
]

d̄ = cTB B−1b + d =
14

3

However, there is a simpler and more efficient way to proceed
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Equivalent equalities

Any LP problem in standard form can be transformed into an equivalent one by

1 multiplying both sides of an equality by a constant coefficient

3 x1 + 3 x3 + x4 − 2 x5 = 2 ⇔ 1 x1 + 1 x3 +
1

3
x4 −

2

3
x5 =

2

3

2 using an equality to determine a variable in terms of the other ones
and replacing the variable everywhere else

min f = −6 x1 − 5 x3 −
7

3
x4 +

8

3
x5 +

26

3
3 x1 + 3 x3 + x4 − 2 x5 = 2

3 x1 + 3 x2 + x4 + x5 = 8

6 x3 + x4 − 5 x5 + 3 x6 = 1

x1, . . . , x6 ≥ 0

Use the first constraint to determine x1 =
2− 3 x3 − x4 + 2 x5

3

min f = x3 −
1

3
x4 −

4

3
x5 +

14

3

x1 + x3 +
1

3
x4 −

2

3
x5 =

2

3
3 x2 − 3 x3 + 3 x5 = 6

6 x3 + x4 − 5 x5 + 3 x6 = 1

x1, . . . , x6 ≥ 0
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Equivalent equalities

The same transformation can be done

1 multiplying both sides of an equality by a constant coefficient

3 x1 + 3 x3 + x4 − 2 x5 = 2 ⇔ 1 x1 + 1 x3 +
1

3
x4 −

2

3
x5 =

2

3

2 subtracting from an equality another equality multiplied by a suitable constant

min f = −6 x1 − 5 x3 −
7

3
x4 +

8

3
x5 +

26

3
3 x1 + 3 x3 + x4 − 2 x5 = 2

3 x1 + 3 x2 + x4 + x5 = 8

6 x3 + x4 − 5 x5 + 3 x6 = 1

x1, . . . , x6 ≥ 0

min f = x3 −
1

3
x4 −

4

3
x5 +

14

3

x1 + x3 +
1

3
x4 −

2

3
x5 =

2

3
3 x2 − 3 x3 + 3 x5 = 6

6 x3 + x4 − 5 x5 + 3 x6 = 1

x1, . . . , x6 ≥ 0

Multiply the first constraint by 1/3

Subtract the first constraint

• multiplied by 3
from the second constraint

• multiplied by 0
(x1 is already absent)
from the third constraint

Consider the objective function
as an equality: f − d = cT x and
subtract from it the first constraint
multiplied by −6
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The tableau representation

A common representation of an LP problem in standard form is the so called
tableau, that is a matrix with m + 1 rows and n + 1 columns

• row 0 corresponds to the objective function: a0j := cj (j = 1, . . . , n)
rows 1, . . . ,m correspond to the constraints

• column 0 corresponds to the right-hand sides: ai0 := bi (i = 1, . . . ,m)
columns 1, . . . , n correspond to the variables

Since cT x = f − d , we set a00 := −d

min f = cT x + d

A x = b

x ≥ 0

−d cT

b A

min f = −6 x1 − 5 x3 −
7

3
x4 +

8

3
x5 +

26

3
3 x1 + 3 x3 + x4 − 2 x5 = 2

3 x1 + 3 x2 + x4 + x5 = 8

6 x3 + x4 − 5 x5 + 3 x6 = 1

x1, . . . , x6 ≥ 0

−
26

3
-6 0 -5 −

7

3

8

3
0

2 3 0 3 1 -2 0

8 3 3 0 1 1 0

1 0 0 6 1 -5 3
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The pivot operation

The pivot operation represents on the tableau the substitution of a variable
It is based on

• a pivot column j : the variable xj expressed in terms of the others

• a pivot row i : the constraint
(
aTi , bi

)
used to determine the variable

The pivot is the element aij identified by the pivot row and column

The pivot operation consists in:

• dividing the pivot row
[
bi | aTi

]
by the pivot element aij (aij 6= 0!)

āTi :=
aTi
aij

(note: bi = ai0 ⇒ b̄i :=
bi
aij

)

• subtracting the pivot row multiplied by a suitable value from all other rows

āh := ah −
ahj
aij

ai ∀h 6= i

(note: cj = a0j ⇒ c̄ := c − cj
aij

ai and d = a00 ⇒ d̄ := d − cj
aij

bi )

For the pivot column j , the operation yields c̄j = ā0j := 0 and āhj := 0

The effect of a pivot operation is that the pivot column gets into the basis
10 / 20



Obtaining a basic canonical form

Given an LP problem and a basis, one obtains the associated basic canonical form
applying the transformation to each column of the basis; for each basic variable:

• the coefficient in the objective function becomes c̄j := 0

• the pivot element becomes āij := 1

• the coefficients of the pivot column in the nonpivot rows become āhj := 0, ∀h 6= i

⇒ B̄ = I and c̄B = 0

This takes one step for each column: m = 3 steps on elements (1, 1), (2, 2) and (3, 6)

min f = −6 x1 − 5 x3 −
7

3
x4 +

8

3
x5 +

26

3
3 x1 + 3 x3 + x4 − 2 x5 = 2

3 x1 + 3 x2 + x4 + x5 = 8

6 x3 + x4 − 5 x5 + 3 x6 = 1

x1, . . . , x6 ≥ 0

−
26

3
-6 0 -5 −

7

3

8

3
0

2 3 0 3 1 -2 0

8 3 3 0 1 1 0

1 0 0 6 1 -5 3

min f = x3 −
1

3
x4 −

4

3
x5 +

14

3

x1 + x3 +
1

3
x4 −

2

3
x5 =

2

3

− x3 + x5 = 2

2 x3 +
1

3
x4 −

5

3
x5 + x6 =

1

3
x1, . . . , x6 ≥ 0

14

3
0 0 1 −

1

3
−

4

3
0

2

3
1 0 1

1

3
−

2

3
0

2 0 1 -1 0 1 0

1

3
0 0 2

1

3
−

5

3
1
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Graphical representation

min f = − x1 − x2

6 x1 + 4 x2 + x3 = 24

3 x1 − 2 x2 + x4 = 6

x1, x2, x3, x4 ≥ 0

min f = − x1 − x2

6 x1 + 4 x2 ≤ 24

3 x1 − 2 x2 ≤ 6

x1, x2 ≥ 0

−d x1 x2 x3 x4

0 -1 -1 0 0

24 6 4 1 0

6 3 -2 0 1

The basis is (3, 4) and the basic solution (0, 0, 24, 6)
The basic reduced costs are zero, and the objective value is 0

The current vertex is (0, 0)Perform pivot operations on (1, 1) and (2, 2) to obtain basis (1, 2)
−d x1 x2 x3 x4

9

2
0 0

5

24
−

1

12

3 1 0
1

12

1

6
3

2
0 1

1

8
−

1

4
The basis is (1, 2) and the basic solution is (3, 3/2, 0, 0)

The basic reduced costs are zero, and the objective value is −
9

2
The current vertex is (3, 3/2)
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Moving from a basis to another basis

When the problem is already in basic canonical form
a pivot operation on element aij represents a basis change

• the pivot column j enters the basis

• the basic column h with coefficient aih = 1 in the pivot row i exits

Therefore, the pivot element determines the resulting basis B̄ = B ∪ {j} \ {h}

We will follow the evolution of the algorithm from three parallel points of view

1 algebraic representation: variables and equations

2 programming representation: tableau

3 graphical representation: possible only for 2 natural variables
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A wrong choice of the pivot element

For example, we can move from basis (3, 4) to basis (2, 3):

• x2 gets into the basis: the pivot column is 2

• x4 gets out of the basis: the pivot row is 2 (only nonzero coefficient)

the pivot element is a22 = −1

This choice of the pivot element is completely wrong:

• it produces an unfeasible solution:
if x4 goes to zero, x1 is unchanged and
3x1 − 2x2 + x4 = 6, then x2 decreases

x̄2 = b̄2 := b2/a22 = 6/− 2 = −3 < 0

• it produced a worse solution:
if x1 is unchanged, x2 decreases and
f (x) = −x1 − x2, then the cost increases

−d̄j := −d + (cj/aij ) bi = 0 + (−1/− 2) 6 = 3

See also the graphic

The current vertex is
(0,−3)
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How to choose the pivot element

At first, we introduce a fundamental assumption: let the current basic solution
be feasible (bi ≥ 0 for all i) (we will see later how to obtain it)

The choice of the new basis, that is of the pivot element, must guarantee that

1 the new basic variable remains nonnegative

• algebraic perspective: if the old basic variable decreases to zero,
the new one must increase

• tableau perspective: b̄i :=
bi
aij
≥ 0

• graphical perspective: we must move towards the feasible region

Therefore, choose a positive pivot element: aij > 0

2 the objective function improves

• algebraic perspective: when the new basic variable increases,
the total cost must decrease

• tableau perspective: −d̄ = −d − cj
aij

bi > −d
• graphical perspective: we must move consistently with the most

improving direction

Therefore, choose a pivot column with negative reduced cost: cj < 0
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How to choose the pivot element

The choice of the new basis, that is of the pivot element, must guarantee that

3 the other basic variables remain feasible (one decreases to zero)

• algebraic perspective: if xj increases by ε, and the nonbasic variables
keep zero, each old basic variable changes by −ε ahj (h = 1, . . . ,m);
they keep feasible as long as

¯xBh = bh − ε ahj ≥ 0⇔ ε ahj ≤ bh for all h 6= i

• tableau perspective:

b̄h := bh −
ahj
aij

bi ≥ 0⇔



bi
aij
≤ bh

ahj
for ahj > 0

bi
aij
≥ 0 for ahj = 0 (trivial)

bi
aij
≥ bh

ahj
for ahj < 0 (trivial)

• graphical perspective:
• if ahj < 0, we move away from the separating hyperplane aTh x = bh
• if ahj = 0, we move parallel to the separating hyperplane aTh x = bh
• if ahj > 0, we move closer to the separating hyperplane aTh x = bh

Therefore, choose the pivot row with minimum bh/ahj among those with
ahj > 0

i := arg min
i :ahj>0

bh
ahj
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Example (1)

min f = − x1 − x2

6 x1 + 4 x2 + x3 = 24

3 x1 − 2 x2 + x4 = 6

x1, x2, x3, x4 ≥ 0

min f = − x1 − x2

6 x1 + 4 x2 ≤ 24

3 x1 − 2 x2 ≤ 6

x1, x2 ≥ 0

−d x1 x2 x3 x4

0 -1 -1 0 0

24 6 4 1 0

6 3 -2 0 1

The basis is (3, 4)
The basic solution (0, 0, 24, 6)

The objective value is 0
The basic reduced costs are zero

The current vertex is (0, 0)

Two nonbasic variables have the same negative reduced cost: c1 = c2 = −1

Variable x1 enters the basis (x2 would be better, but the selection rule is heuristic)

The ratio bi/aij is minimum for i = 2: variable x4 leaves the basis; pivot element a21
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Example (2)

min f = − x1 − x2

6 x1 + 4 x2 + x3 = 24

3 x1 − 2 x2 + x4 = 6

x1, x2, x3, x4 ≥ 0

min f = − x1 − x2

6 x1 + 4 x2 ≤ 24

3 x1 − 2 x2 ≤ 6

x1, x2 ≥ 0

−d x1 x2 x3 x4

2 0 −
5

3
0

1

3
12 0 8 1 -2

2 1 −
2

3
0

1

3

The basis is (1, 3)
The basic solution (2, 0, 12, 0)

The objective value is −2
The basic reduced costs are zero The current vertex is (2, 0)

Only one nonbasic variable has a negative reduced cost: c2 = −5/3

Variable x2 enters the basis
The ratio bi/aij is positive only for row i = 1: variable x3 leaves the basis;

pivot element a12
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Example (3)

min f = − x1 − x2

6 x1 + 4 x2 + x3 = 24

3 x1 − 2 x2 + x4 = 6

x1, x2, x3, x4 ≥ 0

min f = − x1 − x2

6 x1 + 4 x2 ≤ 24

3 x1 − 2 x2 ≤ 6

x1, x2 ≥ 0

−d x1 x2 x3 x4
9

2
0 0

5

24
−

1

12
3

2
0 1

1

8
−

1

4

3 1 0
1

12

1

6

The basis is (1, 2)
The basic solution (3, 3/2, 0, 0)

The objective value is −9/2
The basic reduced costs are zero The current vertex is (3, 3/2)

Only one nonbasic variable has a negative reduced cost: c4 = −1/12

Variable x4 enters the basis
The ratio bi/aij is positive only for row i = 2: variable x1 leaves the basis;

pivot element a24
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Example (4)

min f = − x1 − x2

6 x1 + 4 x2 + x3 = 24

3 x1 − 2 x2 + x4 = 6

x1, x2, x3, x4 ≥ 0

min f = − x1 − x2

6 x1 + 4 x2 ≤ 24

3 x1 − 2 x2 ≤ 6

x1, x2 ≥ 0

−d x1 x2 x3 x4

6
1

2
0

1

4
0

6
3

2
1

1

4
0

18 6 0
1

2
1

The basis is (2, 4)
The basic solution (0, 6, 0, 18)

The objective value is −6
The basic reduced costs are zero The current vertex is (0, 6)

All reduced costs are nonnegative: the current solution is optimal
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