Foundations of Operations Research

Master of Science in Computer Engineering

Roberto Cordone roberto.cordone@unimi.it

Tuesday 13.15 - 15.15 Thursday 10.15 - 13.15

http://homes.di.unimi.it/~cordone/courses/2014-for/2014-for.html

Lesson 13: The simplex method

A sample problem

$$\min f = 5x_1 + 4x_2 + 3x_3$$

$$2x_1 + 3x_2 + x_3 + x_4 = 5$$

$$4x_1 + x_2 + 2x_3 + x_5 = 11$$

$$3x_1 + 4x_2 + 2x_3 + x_6 = 8$$

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

There are 20 basic solutions, but it is easy to find the optimal one

- **1** matrix A shows an obvious basic submatrix B = I (columns 4, 5 and 6) and the basic cost subvector is null: $c_B = 0$:
 - the corresponding basic solution is $\bar{x}_N = 0 \Rightarrow x_B = B^{-1} b = b$
 - the value of the objective function is $f(\bar{x}) = c_B \bar{x}_B + c_N \bar{x}_N + d = d$
- 2 the right-hand-side vector *b* is nonnegative: the obvious basic solution is feasible
- ③ the nonbasic cost subvector c_N is nonnegative: c_N ≥ 0 a generic feasible solution x costs f (x) = c_N^T x_N + d ≥ d

Therefore, the obvious basic solution $\bar{x} = \begin{bmatrix} b \\ 0 \end{bmatrix}$ is optimal

Not all *LP* problems enjoy such properties, but all feasible and bounded *LP* problems admit an equivalent problem that enjoys them

Basic canonical form

A basic canonical form is a special standard form in which

- the coefficient matrix A includes a submatrix B = I
- the cost vector c includes a subvector $c_B = 0$
- B and c_B correspond to the same variables

This is the first of the three conditions mentioned above

An *LP* problem admits a basic canonical form for each of its bases A direct way to obtain it is to multiply the equality constraints by B^{-1}

$$B^{-1}Ax = B^{-1}[B | N] \begin{bmatrix} x_B \\ x_N \end{bmatrix} = B^{-1}b \Rightarrow x_B + B^{-1}Nx_N = B^{-1}b$$

and then replace x_B in the expression of the objective function

$$f(\mathbf{x}) = c^{\mathsf{T}} \mathbf{x} = \begin{bmatrix} c_B^{\mathsf{T}} \mid c_N^{\mathsf{T}} \end{bmatrix} \begin{bmatrix} x_B \\ x_N \end{bmatrix} = \begin{pmatrix} c_N^{\mathsf{T}} - c_B^{\mathsf{T}} B^{-1} N \end{pmatrix} \mathbf{x}_N + c_B^{\mathsf{T}} B^{-1} b + d$$

From the basic canonical form, it is easy to obtain

- the associated basic solution: $\bar{x} = \bar{b} = \begin{bmatrix} B^{-1}b\\0 \end{bmatrix}$
- the associated objective value: $f(\bar{x}) = \bar{d} = c_B^T B^{-1} b + d$
- the associated reduced cost vector: $\bar{c}^T = \begin{bmatrix} 0 | c_N^T c_B^T B^{-1} N \end{bmatrix}$

Given an LP problem in standard form

- **1** put it into a basic canonical form (*How*? *Premultiplying by* B^{-1} ?)
- 2 if b ≥ 0, the associated basic solution x̄ is feasible; otherwise, put the problem into another basic canonical form and go back to step 1 (How? What form? Is it always possible?)
- if c̄_N ≥ 0, the associated feasible basic solution x̄ is also optimal; otherwise, put the problem into another basic canonical form and go back to step 2 (How? What form? Is it always possible?)

The simplex method examines a sequence of basic canonical forms (solutions) in two phases

- achieving a basic feasible solution by subsequent reductions of the unfeasibility (suitable conditions reveal whether the problem is unfeasible)
- 2 achieving a basic optimal solution by subsequent reductions of the objective (suitable conditions reveal whether the problem is unbounded)

The simplex method: general idea

The idea is to move from a basic canonical form to an "adjacent" one

- a single nonbasic column gets into the basis; correspondingly, a single nonbasic variable changes from zero to nonnegative
- 2 a single basic column gets out of the basis; correspondingly, a single basic variable changes from nonnegative to zero

From a geometrical point of view, the idea is that the current solution moves from a vertex to an "adjacent" vertex

The simplex method consists of two phases:

- 1 the current basic solution gets closer to the feasible region
- 2 the basic solution keeps feasible, and the objective function improves

Obtaining a basic canonical form

The following problem is in standard form, but not in any basic canonical form

$$\min f = -6x_1 - 5x_3 - \frac{7}{3}x_4 + \frac{8}{3}x_5 + \frac{26}{3}$$
$$3x_1 + 3x_3 + x_4 - 2x_5 = 2$$
$$3x_1 + 3x_2 + x_4 + x_5 = 8$$
$$6x_3 + x_4 - 5x_5 + 3x_6 = 1$$
$$x_1, \dots, x_6 \ge 0$$

Arbitrarily selecting columns (1, 2, 6), one obtains a basis B:

$$B = \begin{bmatrix} 3 & 0 & 0 \\ 3 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix} \Rightarrow B^{-1} = \frac{1}{27} \cdot \begin{bmatrix} 9 & 0 & 0 \\ -9 & 9 & 0 \\ 0 & 0 & 9 \end{bmatrix}$$

The corresponding canonical form can be easily built by simple matrix operations

$$\bar{A} = B^{-1} \cdot A = \begin{bmatrix} 1 & 0 & 1 & 1/3 & 2/3 & 0 \\ 0 & 1 & -1 & 0 & 1 & 0 \\ 0 & 0 & 2 & 1/3 & -5/3 & 1 \end{bmatrix} \quad \bar{b} = B^{-1}b = \begin{bmatrix} 2/3 \\ 2 \\ 1/3 \end{bmatrix}$$

The corresponding reduced cost vector and constant term are

$$\bar{c}^T = \begin{bmatrix} 0 & 0 & 1 & -1/3 & -4/3 & 0 \end{bmatrix} \quad \bar{d} = c_B^T B^{-1} b + d = \frac{14}{3}$$

However, there is a simpler and more efficient way to proceed

Equivalent equalities

Any LP problem in standard form can be transformed into an equivalent one by

1 multiplying both sides of an equality by a constant coefficient

$$3x_1 + 3x_3 + x_4 - 2x_5 = 2 \quad \Leftrightarrow \quad 1x_1 + 1x_3 + \frac{1}{3}x_4 - \frac{2}{3}x_5 = \frac{2}{3}$$

2 using an equality to determine a variable in terms of the other ones and replacing the variable everywhere else

$\min f = -6 x_1 - 5 x_3 - \frac{7}{3} x_4 + \frac{8}{3} x_5 + \frac{26}{3}$	
$3 x_1 + 3 x_3 + x_4 - 2 x_5 = 2$	
$3x_1 + 3x_2 + x_4 + x_5 = 8$	
$6 x_3 + x_4 - 5 x_5 + 3 x_6 = 1$	
$x_1,\ldots,x_6 \geq 0$	
Use the first constraint to determine $x_1 = \frac{2 - 3x_3 - x_4 + 2x_5}{3}$	
min $f = x_3 - \frac{1}{3}x_4 - \frac{4}{3}x_5 + \frac{14}{3}$	
$x_1 + x_3 + \frac{1}{3}x_4 - \frac{2}{3}x_5 = \frac{2}{3}$	
$3x_2 - 3x_3 + 3x_5 = 6$	
$6 x_3 + x_4 - 5 x_5 + 3 x_6 = 1$	
$x_1,\ldots,x_6 \geq 0$	<

Equivalent equalities

The same transformation can be done

1 multiplying both sides of an equality by a constant coefficient

$$3x_1 + 3x_3 + x_4 - 2x_5 = 2 \quad \Leftrightarrow \quad 1x_1 + 1x_3 + \frac{1}{3}x_4 - \frac{2}{3}x_5 = \frac{2}{3}$$

2 subtracting from an equality another equality multiplied by a suitable constant

$$\min f = -6x_1 - 5x_3 - \frac{7}{3}x_4 + \frac{8}{3}x_5 + \frac{26}{3}$$

$$3x_1 + 3x_3 + x_4 - 2x_5 = 2$$

$$3x_1 + 3x_2 + x_4 + x_5 = 8$$

$$6x_3 + x_4 - 5x_5 + 3x_6 = 1$$

$$x_1, \dots, x_6 \ge 0$$

$$\min f = x_3 - \frac{1}{3}x_4 - \frac{4}{3}x_5 + \frac{14}{3}$$

$$x_1 + x_3 + \frac{1}{3}x_4 - \frac{2}{3}x_5 = \frac{2}{3}$$

$$3x_2 - 3x_3 + 3x_5 = 6$$

$$6x_3 + x_4 - 5x_5 + 3x_6 = 1$$

$$x_1, \dots, x_6 \ge 0$$

Multiply the first constraint by 1/3Subtract the first constraint

- multiplied by 3 from the second constraint
- multiplied by 0

 (x₁ is already absent)
 from the third constraint

Consider the objective function as an equality: $f - d = c^T x$ and subtract from it the first constraint multiplied by -6

The tableau representation

A common representation of an *LP* problem in standard form is the so called *tableau*, that is a matrix with m + 1 rows and n + 1 columns

- row 0 corresponds to the objective function: $a_{0j} := c_j$ (j = 1, ..., n) rows 1, ..., m correspond to the constraints
- column 0 corresponds to the right-hand sides: a_{i0} := b_i (i = 1,..., m) columns 1,..., n correspond to the variables

Since $c^T x = f - d$, we set $a_{00} := -d$

$$\min f = c^T x + d$$
$$Ax = b$$
$$x \ge 0$$

-d	сT
b	Α

$$\min f = -6 x_1 - 5 x_3 - \frac{7}{3} x_4 + \frac{8}{3} x_5 + \frac{26}{3} \\ 3 x_1 + 3 x_3 + x_4 - 2 x_5 = 2 \\ 3 x_1 + 3 x_2 + x_4 + x_5 = 8 \\ 6 x_3 + x_4 - 5 x_5 + 3 x_6 = 1 \\ x_1, \dots, x_6 \ge 0$$

$-\frac{26}{3}$	-6	0	-5	$-\frac{7}{3}$	$\frac{8}{3}$	0
2	3	0	3	1	-2	0
8	3	3	0	1	1	0
1	0	0	6	1	-5	3

The *pivot* operation

The *pivot* operation represents on the *tableau* the substitution of a variable It is based on

- a *pivot* column *j*: the variable *x_j* expressed in terms of the others
- a *pivot* row *i*: the constraint (a_i^T, b_i) used to determine the variable

The *pivot* is the element *a_{ij}* identified by the *pivot* row and column

The *pivot* operation consists in:

• dividing the *pivot* row $\begin{bmatrix} b_i \mid a_i^T \end{bmatrix}$ by the *pivot* element a_{ij} ($a_{ij} \neq 0!$)

$$\bar{\boldsymbol{a}}_i^T := \frac{\boldsymbol{a}_i^T}{\boldsymbol{a}_{ij}} \qquad (note: \ \boldsymbol{b}_i = \boldsymbol{a}_{i0} \Rightarrow \bar{\boldsymbol{b}}_i := \frac{\boldsymbol{b}_i}{\boldsymbol{a}_{ij}})$$

• subtracting the *pivot* row multiplied by a suitable value from all other rows

$$\bar{a}_h := a_h - \frac{a_{hj}}{a_{ij}} a_i \quad \forall h \neq i$$
(note: $c_j = a_{0j} \Rightarrow \bar{c} := c - \frac{c_j}{a_{ij}} a_i$ and $d = a_{00} \Rightarrow \bar{d} := d - \frac{c_j}{a_{ij}} b_i$)

For the *pivot* column *j*, the operation yields $\bar{c}_j = \bar{a}_{0j} := 0$ and $\bar{a}_{hj} := 0$ The effect of a *pivot* operation is that the *pivot* column gets into the basis

Obtaining a basic canonical form

Given an *LP* problem and a basis, one obtains the associated basic canonical form applying the transformation to each column of the basis; for each basic variable:

- the coefficient in the objective function becomes c
 _j := 0
- the *pivot* element becomes *ā_{ij}* := 1
- the coefficients of the *pivot* column in the nonpivot rows become $\bar{a}_{hj} := 0, \forall h \neq i$

 $\Rightarrow \bar{B} = I$ and $\bar{c}_B = 0$

This takes one step for each column: m = 3 steps on elements (1, 1), (2, 2) and (3, 6)

$\min f = -6 x_1 - 5 x_3 - \frac{7}{3} x_4 + \frac{8}{3} x_5$	+	$\frac{26}{3}$	$-\frac{26}{3}$	-6	0	-5 —	$\frac{7}{3}$ $\frac{8}{3}$	0
$3x_1 + 3x_3 + x_4 - 2x_5$		-	2	3	0	3 1	-2	0
$3x_1 + 3x_2 + x_4 + x_5$	=	8	8	3	3	0 1	1	0
$6 x_3 + x_4 - 5 x_5 + 3 x_6 x_1, \dots, x_6$		1 0	1	0	0	6 1	-5	3
$\min f = x_3 - \frac{1}{3} x_4 - \frac{4}{3} x_5$	+	$\frac{14}{3}$	$\frac{14}{3}$	0	0 1	$-\frac{1}{3}$	$-\frac{4}{3}$	0
x_1 + $x_3 + \frac{1}{3}x_4 - \frac{2}{3}x_5$	=	$\frac{2}{3}$	$\frac{2}{3}$			$\frac{1}{3}$	•	
$- x_3 + x_5$	=	2	2	0	1 -1	L 0	1	0
$2x_3 + \frac{1}{3}x_4 - \frac{5}{3}x_5 + x_6$		5	$\frac{1}{3}$	0	0 2	$\frac{1}{3}$	$-\frac{5}{3}$	1
x_1, \ldots, x_6	2	0	I			₽ ► < ≣ ►	★重≯	E

Graphical representation

-u	×1	×2	×3	74
0	-1	-1	0	0
24	6	4	1	0
6	3	-2	0	1

The basis is (3, 4) and the basic solution (0, 0, 24, 6)The basic reduced costs are zero, and the objective value is 0

Perform *pivot* operations on $\begin{pmatrix} 1,1 \\ -d \end{pmatrix}$ and $\begin{pmatrix} 2,2 \\ x_3 \end{pmatrix}$ to obtain basis $\begin{pmatrix} 1,2 \end{pmatrix}$

 $\min f = -x_1 - x_2$ $6x_1 + 4x_2 \leq$ 24 $3x_1 - 2x_2 \leq$ 6 $x_1, x_2 \geq$ 0 improving direction The current vertex is (0,0)improving direction The current vertex is (3, 3/2)イロト イヨト イヨト イヨト 2

When the problem is already in basic canonical form a *pivot* operation on element a_{ii} represents a basis change

- the *pivot* column *j* enters the basis
- the basic column h with coefficient $a_{ih} = 1$ in the pivot row i exits

Therefore, the *pivot* element determines the resulting basis $\overline{B} = B \cup \{j\} \setminus \{h\}$

We will follow the evolution of the algorithm from three parallel points of view

- **1** algebraic representation: variables and equations
- **2** programming representation: tableau
- **3** graphical representation: possible only for 2 natural variables

A wrong choice of the *pivot* element

For example, we can move from basis (3, 4) to basis (2, 3):

- x₂ gets into the basis: the *pivot* column is 2
- x4 gets out of the basis: the *pivot* row is 2 (only nonzero coefficient)

the *pivot* element is $a_{22} = -1$

This choice of the *pivot* element is completely wrong:

• it produced a worse solution: if x_1 is unchanged, x_2 decreases and $f(x) = -x_1 - x_2$, then the cost increases $-\overline{d}_j := -d + (c_j/a_{ij}) b_i = 0 + (-1/-2) 6 = 3$

The current vertex is (0, -3)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

See also the graphic

How to choose the pivot element

At first, we introduce a fundamental assumption: let the current basic solution be feasible $(b_i \ge 0 \text{ for all } i)$ (we will see later how to obtain it)

The choice of the new basis, that is of the *pivot* element, must guarantee that

1 the new basic variable remains nonnegative

- algebraic perspective: if the old basic variable decreases to zero, the new one must increase
- *tableau* perspective: $\bar{b}_i := \frac{b_i}{a_{ii}} \ge 0$
- graphical perspective: we must move towards the feasible region

Therefore, choose a positive *pivot* element: $a_{ij} > 0$

- **2** the objective function improves
 - algebraic perspective: when the new basic variable increases, the total cost must decrease
 - *tableau* perspective: $-\bar{d} = -d \frac{c_j}{a_{ii}} b_i > -d$
 - graphical perspective: we must move consistently with the most improving direction

Therefore, choose a *pivot* column with negative reduced cost: $c_j < 0$

How to choose the *pivot* element

The choice of the new basis, that is of the *pivot* element, must guarantee that

- **3** the other basic variables remain feasible (one decreases to zero)
 - algebraic perspective: if x_j increases by ε, and the nonbasic variables keep zero, each old basic variable changes by -ε a_{hj} (h = 1,...,m); they keep feasible as long as

$$x_{B_h} = b_h - \epsilon \, a_{hj} \ge 0 \Leftrightarrow \epsilon \, a_{hj} \le b_h$$
 for all $h
eq i$

tableau perspective:

$$\bar{b}_h := b_h - \frac{a_{hj}}{a_{ij}} \ b_i \ge 0 \Leftrightarrow \begin{cases} \frac{b_i}{a_{ij}} \le \frac{b_h}{a_{hj}} & \text{for } a_{hj} > 0 \\ \frac{b_i}{a_{ij}} \ge 0 & \text{for } a_{hj} = 0 \ (\text{trivial}) \\ \frac{b_i}{a_{ij}} \ge \frac{b_h}{a_{hj}} & \text{for } a_{hj} < 0 \ (\text{trivial}) \end{cases}$$

- graphical perspective:
 - if $a_{hj} < 0$, we move away from the separating hyperplane $a_h^T x = b_h$
 - if $a_{hj} = 0$, we move parallel to the separating hyperplane $a_h^T x = b_h$

• if $a_{hj} > 0$, we move closer to the separating hyperplane $a_h^T x = b_h$ Therefore, choose the *pivot* row with minimum b_h/a_{hj} among those with $a_{hj} > 0$ $i := \arg \min_{i:a_{hj} > 0} \frac{b_h}{a_{hj}}$

Example (1)

The objective value is 0 The basic reduced costs are zero

The current vertex is (0,0)

Two nonbasic variables have the same negative reduced cost: $c_1 = c_2 = -1$ Variable x_1 enters the basis (x_2 would be better, but the selection rule is heuristic) The ratio b_i/a_{ij} is minimum for i = 2: variable x_4 leaves the basis; *pivot* element a_{21}

Example (2)

Only one nonbasic variable has a negative reduced cost: $c_2 = -5/3$ Variable x_2 enters the basis The ratio b_i/a_{ij} is positive only for row i = 1: variable x_3 leaves the basis; *pivot* element a_{12}

(日) (四) (王) (王) (王) 18 / 20

 $g_2 = 0$

Example (3)

The basis is (1, 2)The basic solution (3, 3/2, 0, 0)The objective value is -9/2The basic reduced costs are zero $\min f = -x_1 - x_2$ $6x_1 + 4x_2 \leq 24$ $3x_1 - 2x_2 < 6$ $x_1, x_2 \ge 0$ improving direction $\int g_2 = 0$ 3.3/2) \overline{O}

The current vertex is (3, 3/2)

Only one nonbasic variable has a negative reduced cost: $c_4 = -1/12$ Variable x_4 enters the basis The ratio b_i/a_{ij} is positive only for row i = 2: variable x_1 leaves the basis; *pivot* element a_{24}

Example (4)

 $\min f = -x_1 - x_2$ $6x_1 + 4x_2 \leq 24$ $3x_1 - 2x_2 \leq 6$ $x_1, x_2 \ge 0$ improving direction $g_2 = 0$ 3,3(2) \overline{O}

The current vertex is (0, 6)

All reduced costs are nonnegative: the current solution is optimal