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The simplex method

Given the LP problem

max z = 2x1 + x2

20x1 ≤ 100

3x1 + 2x2 ≤ 18

x1 − x2 ≥ 0

x1, x2 ≥ 0

1. build the tableau for the problem and illustrate the passage from the basic
canonical form associated to basis (x3, x4, x5) and that associated to basis
(x3, x1, x5). Show the associated move on the graphical representation of
the problem.

2. Solve the problem with the simplex method, showing its steps on the
tableau.

Solution

The tableau is a table representation of a LP problem. Let us assume that the
problem, once in standard form, has m constraints and n + m variables, n of
which are natural, while the other m are slack variables. The tableau has m+ 1
rows, numbered from 0 to m, and n+m+1 columns, numbered from 0 to n+m.
The rows correspond to the objective function (row 0) and to the constraints
(from row 1 to row m), the columns to the right-hand-side vector (column 0) and
to the coefficients of the variables (from column 1 to column n +m). Let aij be
the generic element of the tableau:

• element (0, 0) is the opposite of the constant term in the objective function

• the other elements of row 0 are the costs of the variables, column by column

• the other elements of column 0 are the right-hand-sides of the constraints,
row by row

• the other elements are the coefficients of the column variable in the row
constraint

The tableau associated to the given problem, when put into standard form, is

0 -2 -1 0 0 0
100 20 0 1 0 0
18 3 2 0 1 0
0 -1 1 0 0 1
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and it is already in basic canonical form with respect to basis (x3, x4, x5). The
value of the basic variables can be read in column 0: x3 = b1 = 100 (as the
unitary coefficient of column 3 is in row 1), x4 = b2 = 18 and x5 = b3 = 0, while
the nonbasic variables x1 and x2 are null. The corresponding basic solution is the
origin of plane (x1, x2). The first two constraints are nonactive, while the third
one is active (satisfied to equality). The basic solution is degenerate (one of the
basic variables has zero value, so that some variables can get into or out of the
basis without modifying the solution).

It is possible to move from one basis to another through algebraic transforma-
tion, premultiplying the system of equalities by B−1, where B is the submatrix
formed by the columns which are required to get into the basis. However, this
requires that the desired basis be known and it requires to invert a matrix, a poly-
nomial, but not trivial, operation. The tableau allows to simplify this operation,
dividing it into a sequence of elementary steps. These are called pivot operations

and allow to move from a basic solution to an adjacent basic solution, that is a
solution in which a single variable has left the basis and has been replaced by a
previously nonbasic variable.

Algebraically, this corresponds to determining the variable which must be
added to the basis in terms of the other nonbasic variables and of the variable
which must be removed from the basis. Replacing the expression obtained, both
in the objective function and in the other constraints, one obtains an equivalent
problem, which is the canonical form associated to the new basis. For example,
let us move from basis (x3, x4, x5) to basis (x3, x1, x5): x4 must get out of the
basis, while x1 must get in. So, we determine x1 from the second constraint, that
is the only one in which x4 occurs:

3x1 + 2x2 + x4 = 18 ⇔ x1 = −
2

3
x2 −

1

3
x4 + 6

and we replace it in the objective function and in the other constraints.

min z =
1

3
x2 +

2

3
x4

−
4

3
x2 + x3 −

20

3
x4 ≤ −20

x1 +
2

3
x2 + +

1

3
x4 ≤ 6

+
5

3
x2 +

1

3
x4 + x5 ≤ 6

x1, x2, x3, x4, x5 ≥ 0

On the tableau the operation is very simple:

1. select the pivot element ai∗j∗ (in this case a21), which is

• in the column associated to the variable entering the basis (column 1)
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• in the row containing the unitary coefficient of the column going out
of the basis (x4 goes out and a24 = 1, hence row 2)

2. divide the entire pivot row by the element itself. This corresponds to deter-
mining x1 as a function of the other variables occurring in the constraint.

3. sum to every other row i of the tableau the pivot row i∗ multiplied by
−aij∗/ai∗j∗ , so as to cancel element aij∗. This corresponds to replacing the
expression of x1 in the other rows.

It is possible to let every variable in or out of the basis, provided that the pivot

element is not zero. In that case, in fact, we would be trying to build a submatrix
made of linearly dependent columns, that is not a basis.

In the example:

0 -2 -1 0 0 0
100 20 0 1 0 0
18 3© 2 0 1 0
0 -1 1 0 0 1

first becomes

0 -2 -1 0 0 0
100 20 0 1 0 0
6 1© 2/3 0 1/3 0
0 -1 1 0 0 1

and then

12 0 1/3 0 2/3 0
-20 0 -40/3 1 -20/3 0
6 1 2/3 0 1/3 0
6 0 5/3 0 1/3 1

The resulting solution has x2 = x4 = 0 as they are nonbasic, while x1 = 6 (the
only unitary coefficient of column 1 is in row 2, whose right-hand-side is b2 = 6),
x3 = −20 and x5 = 6. It is a basis solution, but unfeasible: point (6, 0). The
violated constraint is the first one, which corresponds to slack variable x3; this
is, in fact, negative.

Graphically, the pivot operation consists in moving from the intersection of
n − m = 2 constraints to the intersection of other two constraints, keeping on
the separating line associated to the variable x2, which remains nonbasic, and
therefore null.
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Simplex algorithm and tableau

The tableau allows to perform the simplex algorithm in an elementary way: each
move corresponds, in fact, to a pivot operation. Moreover, the conditions for the
selection of the variable which will get into the basis and of the one which will
get out of it, as well as the condition for the termination of the algorithm, can
be read very clearly on the tableau itself.

Let us start from the initial basic canonical form.

0 -2 -1 0 0 0
100 20 0 1 0 0
18 3 2 0 1 0
0 -1 1 0 0 1

The cost coefficient, denoted as reduced costs, are represented as c̃, to distin-
guish them from the original costs. They allow to determine which of the basic
solutions adjacent to the current one are better and which are worse. Let us
assume that we want to increase variable xj∗ by δxj∗ , keeping all other nonbasic
variables out of the basis (in this case only x2). Correspondingly, the objective
function changes by

δz =
∑

j∈N

cjδxj +
∑

j∈B

cjδxj

where B and N are, respectively, the sets of the indices of the basic and nonbasic
variables. The costs of the basic variables are null (from the definition of basic
canonical form: c̃j = 0, ∀j ∈ B), while the nonbasic variables different from
xj∗ keep unchanged by assumption (δxj = 0, ∀j ∈ N \ {j∗}). Consequently,
δz = c̃i δxj∗ . This holds in general: the reduced cost of a nonbasic variable
provides the unitary variation of the objective function when the variable enters
the basis. In order to improve the objective, only variables with negative reduced
cost must enter the basis.

This is a necessary condition to improve the solution. It is not sufficient in
general, because it is possible that, if the current solution is degenerate, the new
variable enter the basis with a zero value, so that δz = c̃ δx = 0 even if c̃ < 0.
This happens in the example if x2 gets into and x5 out of the basis.

The choice among the variables of negative reduced cost is arbitrary: all of
the bring an advantage, or at least bring no disadvantage. It is usual to select:

• the variable with the minimum reduced cost c̃;

• the variable which, entering the basis, provides the strongest reduction in
the objective function.

The first rule is more miopic, but only requires to compare the reduced costs,
while the second requires to perform the pivot operation for all candidate varia-
bles, so as to compare their effects. In the example, both rules suggest that x1
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should enter the basis, but if c2 = −3 the first rule would have suggested x3 and
the second rule would have suggested x1.

Now let us consider the choice of the variable which must get out of the
basis. We already know the constraints which remain active, so that we know the
direction towards which the current solution moves in the graphical representation
of the problem. It remains to determine where the solution stops, and specifically
in which other intersection. It is easy to see that only two intersections along the
line (the current one and a single other one) are feasible. So, the first intersection
met is the good one. In algebraic terms, this corresponds to increasing the new
basic variable (in the example, x1) keeping all other nonbasic variables to zero and
modifying the basic variables so as to keep all constraints in the basic canonical
form satisfied. For example, in the second constraint (3x1 +2x2 + x4 = 18), if x1

increases and x2 remains zero, x4 must decrease. Thanks to the basic canonical
form, each constraint includes a single different basic variable, so that the effect of
the new basic variable on each constraint is exactly compensated by the variation
of the corresponding basic variable.

All depends on the coefficients of the new basic column j, row by row:

• If aij = 0, variable j has no effect on constraint i, so that the basic variable
does not change (movement parallel to the separating line)

• If aij < 0, variable j decreases the left-hand-side of constraint i, so that the
basic variable must increase. There is no limit to the increase, so that these
constraints can be ignored (the movement gets farther from the separating
line).

• If aij > 0, variable j increases the left-hand-side of constraint i, so that
the basic variable must decrease. Since at first its value is bi and it must
remain nonnegative, the maximum increase of xj is max δxj = bi/aij (the
movement gets the solution closer and finally crosses the separating line).

Since all constraints must be respected, the most restrictive condition dominates:
xj assumes the minimum value min

i:aij>0

bi/aij . This condition in general identifies

a single row, and correspondingly a single basic variable which must get out of
the basis. In particular cases, it could identify more than one row: then, select
one at random; the pivot operation will produce a degenerate solution, in which
more than one basic variable will assume zero value, even if only one officially
gets out of the basis.

Notice that, if all elements of a column of negative reduced cost are ≤ 0,
this indicates that the corresponding variable can increase ad libitum without
producing any unfeasibility, and therefore the problem is unbounded.

Let us apply the method to the given problem.
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0 -2 -1 0 0 0
100 20© 0 1 0 0
18 3 2 0 1 0
0 -1 1 0 0 1

The minimum reduced cost column is the first one. Element a31 is negative,
so it must be ignored. For the other two elements, we compute the ratio bi/ai1:
the first one is smaller (100/20 < 18/3). Hence, the pivot element is a11.

10 0 -1 1/10 0 0
5 1 0 1/20 0 0
3 0 2© -3/20 1 0
5 0 1 1/20 0 1

Now, variable x2 has a negative reduced cost. The pivot element is a22,
because the first coefficient is zero and the last one has a larger ratio bi/ai2
(5/1 < 3/2).

23/2 0 0 1/40 1/2 0
5 1 0 1/20 0 0
3/2 0 1 -3/40 1/2 0
7/2 0 0 5/40 -1/2 1

from which the basic solution is x1 = 5, x2 = 3/2, x3 = x4 = 0, x5 = 7/2,
since the basis is (x1, x2, x5). This solution is feasible (all right-hand-sides are
nonnegative) and optimal (all reduced costs are nonnegative). This is confirmed
by the analysis of the graph. Moreover, the value of the objective function is
f ∗ = −a00 = −23/2.
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