
Foundations of Operations Research
Master of Science in Computer Engineering

Roberto Cordone
roberto.cordone@unimi.it

Tuesday 13.15 - 15.15

Thursday 10.15 - 13.15

http://homes.di.unimi.it/~cordone/courses/2014-for/2014-for.html

Lesson 12: Bases and basic solutions Como, Fall 2013

1 / 1

roberto.cordone@unimi.it
http://homes.di.unimi.it/~cordone/courses/2014-for/2014-for.html


Fundamental theorem of Linear Programming

Let P = {x ∈ Rn : Ax = b, x ≥ 0} 6= ∅ be a nonempty polyhedron.
The LP problem

min
x∈P

cT x

either is unbounded or has at least one optimal vertex solution

Any LP problem can be solved
considering only the vertices of P

• their number is finite

• their number can be exponential
with respect to the number of
variables and constraints

How can the vertices be found algorithmically?
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Vertices and inequalities

Consider a LP problem with only ≤ inequalities (always possible)

P =
{
x ∈ Rn′ : Ax ≤ b, x ≥ 0

}

min f = −x1 − 3 x2

x1 + x2 ≤ 6 (I )

2 x1 + x2 ≤ 8 (II )

x1, x2 ≥ 0

• All vertices are feasible intersections of n′ = 2 separating hyperplanes

• p1 = (0, 0) is the intersection of x1 = 0 and x2 = 0
• p2 = (0, 6) is the intersection of x1 = 0 and x1 + x2 = 6
• p5 = (4, 0) is the intersection of 2x1 + x2 = 8 and x2 = 0
• p6 = (2, 4) is the intersection of x1 + x2 = 6 and 2x1 + x2 = 8

• The unfeasible intersections are not vertices

• p3 = (0, 8) is the (unfeasible) intersection of x1 = 0 and 2x1 + x2 = 8
• p4 = (0, 6) is the (unfeasible) intersection of x1 + x2 = 6 and x2 = 0
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Vertices and equalities

In order to obtain the standard form, simply add m slack variables

P = {(x , s) ∈ Rn : Ax+s = b, x ≥ 0, s ≥ 0}

Notice that now n = n′ + m = 4!

min f = −x1 − 3 x2

x1 + x2 + s1 = 6 (I )

2 x1 + x2 + s2 = 8 (II )

x1, x2, s1, s2 ≥ 0

• All vertices are feasible solutions with n −m = 2 variables set to zero

• p1 = (0, 0) has x1 = 0 and x2 = 0 (feasible: s1 = 6 and s2 = 8)
• p2 = (0, 6) has x1 = 0 and s1 = 0 (feasible: x2 = 6 and s2 = 2)
• p5 = (4, 0) has s2 = 0 and x2 = 0 (feasible: x1 = 4 and s1 = 2)
• p6 = (2, 4) has s1 = 0 and s2 = 0 (feasible: x1 = 2 and x2 = 4)

• Only the feasible solutions of this type are vertices

• p3 = (0, 8) has x1 = 0 and s2 = 0 (unfeasible: s1 = −2)
• p4 = (0, 6) has s1 = 0 and x2 = 0 (unfeasible: s2 = −2)
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Vertices and equalities

Given the feasible sets of an LP problem and of its standard form

P =
{
x ∈ Rn′ : Ax ≤ b, x ≥ 0

}
P ′ = {(x , s) ∈ Rn : Ax + s = b, x ≥ 0, s ≥ 0}

• a facet is obtained setting one variable to 0 in the standard form

• a vertex is obtained setting n−m variables to 0 in the standard form

P = {x ∈ R2 : x1 + x2 ≤ 1,
x1, x2 ≥ 0}

P ′ = {x ∈ R3 : x1 + x2 + x3 = 1,
x1, x2, x3 ≥ 0}

• Three facets (edges) are obtained setting xi = 0 (i = 1, . . . , 3)

• Three vertices are obtained setting n−m = 3− 1 = 2 variables to 0

V
(
P ′
)

= {(0, 0, 1) (0, 1, 0) (1, 0, 0)} → V (P) = {(0, 0) (0, 1) (1, 0)}
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Full rank assumption

Given a LP problem in standard form, defined on a polyedron

P = {x ∈ Rn : Ax = b, x ≥ 0}

if P is nonempty, it is always possible to assume that rank(A) = m ≤ n

Proof: By definition, rank(A) ≤ min (m, n). Assume that rank(A) < m.

Then, at least one row aTi is a linear combination of the other ones:

• if the right-hand-side bi is the same linear combination
of the other right-hand-sides, the constraint is redundant

• if it is not, the problem has no feasible solution

x1 + x2 = 1 (I )

x1 + x3 = 1 (II )

2 x1 + x2 + x3 = 2 (III )

x1, x2, x3 ≥ 0

x1 + x2 = 1 (I )

x1 + x3 = 1 (II )

2 x1 + x2 + x3 = 3 (III )

x1, x2, x3 ≥ 0

Redundant Unfeasible
(a3 = a1 + a2 and b3 = b1 + b2) (a3 = a1 + a2, but b3 6= b1 + b2)
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Bases and basic solutions

Under the full rank assumption

• the set of all m rows of A is linearly independent

• at least one subset of m columns of A is linearly independent

A basis is any subset of m linearly independent columns of A

Permuting the columns (rearranging the variables) so that the basic
columns are the first ones, A is partitioned into two submatrices

1 the basic matrix B

2 the nonbasic matrix N

The cost vector c and the variable vector x are permuted and partitioned

• cT =
[
cTB | cTN

]
(basic and nonbasic cost coefficients)

• xT =
[
xTB | xTN

]
(basic and nonbasic variables)
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Basic solutions

Under the full rank assumption, hence, the system can be rewritten as

min f = cTB xB + cTN xN + d

B xB + N xN = b

xB , xN ≥ 0

If the n −m nonbasic variables are fixed arbitrarily,
the m basic variables are uniquely determined

B xB + N xN = b ⇒ xB = B−1 b − B−1 N xN

and the value of the objective function is

f (x) = cB xB + cN xN + d =
(
cN − B−1 N

)
xN + cB B−1 b + d

A basic solution is a solution obtained setting to 0 the nonbasic variables{
B xB + N xN = b

xN = 0
⇒ xB = B−1b ⇒ x =

[
B−1b

0

]
and f (x) = cB B−1 b + d

The basic solution is feasible if xB = B−1 b ≥ 0, unfeasible otherwise
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Example

min f = 2x1 + x2 + 5x3

x1 + x2 + x3 + x4 = 4

x1 + x5 = 2

+ x3 + x6 = 3

3x2 + x3 + x7 = 6

x1, x2, x3, x4, x5, x6, x7 ≥ 0

cT =
[

2 1 5 0 0 0 0
]

A =

 1 1 1 1 0 0 0
1 0 0 0 1 0 0
0 0 1 0 0 1 0
0 3 1 0 0 0 1



b =

 4
2
3
6


Columns 4, 5, 6 and 7 form a basis, with

B =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 and cTB =
[

0 0 0 0
]

The corresponding basic solution is (0, 0, 0, 4, 2, 3, 6) and is feasible

Its cost is f (x) = cB B−1 b + d = 0
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Example

min f = 2x1 + x2 + 5x3

x1 + x2 + x3 + x4 = 4

x1 + x5 = 2

+ x3 + x6 = 3

3x2 + x3 + x7 = 6

x1, x2, x3, x4, x5, x6, x7 ≥ 0

cT =
[

2 1 5 0 0 0 0
]

A =

 1 1 1 1 0 0 0
1 0 0 0 1 0 0
0 0 1 0 0 1 0
0 3 1 0 0 0 1



b =

 4
2
3
6


Columns 2, 5, 6 and 7 form a basis, with

B =


1 0 0 0
0 1 0 0
0 0 1 0
3 0 0 1

⇒ B−1 =


1 0 0 0
0 1 0 0
0 0 1 0
−3 0 0 1


cTB =

[
1 0 0 0

]
⇒ cB B−1 b = 4

The corresponding basic solution is (0, 4, 0, 0, 2, 3,−6) and is unfeasible

Its cost is f (x) = cB B−1 b + d = 4 (useless, since the solution is unfeasible)
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Counting the basic solutions

The number of subset of n −m columns out of n is

C n
m =

(
n

m

)
=

n!

m! (n −m)!

This is an overestimate of the number of vertices because

• not all subsets of columns correspond to a basis
(some subsets could be linearly dependent)

• different bases can correspond to the same solution
(when some basic variable is zero, the solution obtained exchanging
those basic variables with nonbasic ones is the same)

• not all basic solutions are feasible
(some solutions have negative basic components)

number of = number of feasible ≤ number of ≤
vertices basic solutions basic solutions

≤ number of ≤ C n
m =

n!

m! (n −m)!
bases
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An algorithmic idea

A LP problem, therefore, could be solved

1 introducing the full rank assumption
(if not possible, the problem is unfeasible)

2 enumerating the subsets of n −m columns of A

3 for each subset B

1 if it is linearly independent, set xN := 0
2 compute xB = B−1 b
3 if xB ≥ 0, compute f (x) = cB B−1 b + d and save its minimum

The complexity of such an algorithm is clearly exponential as it is
proportional to C n

m

The simplex method (Dantzig, 1947) explores the vertices in a smart way

• in the average case, it explores a very limited subset

• but in the worst case, it explores all vertices

Luckily, the worst case is very rare

Polynomial algorithms have been introduced from 1979
Presently, in the average case they are slower than the simplex method
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A sample problem

Try and find the optimal solution of this problem

min f = 5x1 + 4x2 + 3x3

2x1 + 3x2 + x3 ≤ 5

4x1 + x2 + 2x3 ≤ 11

3x1 + 4x2 + 2x3 ≤ 8

x1, x2, x3 ≥ 0

There are C 6
3 = 20 subsets of n −m = 3 columns

Each one corresponds to a candidate solution

But the optimal solution is absolutely obvious. . .
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