Foundations of Operations Research

Master of Science in Computer Engineering

Roberto Cordone
roberto.cordone@unimi.it

Tuesday 13.15-15.15
Thursday 10.15-13.15
http://homes.di.unimi.it/~cordone/courses/2014-for/2014-for.html

Lesson 12: Bases and basic solutions

Fundamental theorem of Linear Programming

Let $P=\left\{x \in \mathbb{R}^{n}: A x=b, x \geq 0\right\} \neq \emptyset$ be a nonempty polyhedron.
The $L P$ problem

$$
\min _{x \in P} c^{T} x
$$

either is unbounded or has at least one optimal vertex solution

Any $L P$ problem can be solved considering only the vertices of P

- their number is finite
- their number can be exponential with respect to the number of variables and constraints

How can the vertices be found algorithmically?

Vertices and inequalities

Consider a $L P$ problem with only \leq inequalities (always possible)

$$
P=\left\{x \in \mathbb{R}^{n^{\prime}}: A x \leq b, x \geq 0\right\}
$$

$$
\begin{aligned}
\min f & =-x_{1}-3 x_{2} \\
x_{1}+x_{2} & \leq 6(I) \\
2 x_{1}+x_{2} & \leq 8 \quad(I I) \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

- All vertices are feasible intersections of $n^{\prime}=2$ separating hyperplanes
- $p_{1}=(0,0)$ is the intersection of $x_{1}=0$ and $x_{2}=0$
- $p_{2}=(0,6)$ is the intersection of $x_{1}=0$ and $x_{1}+x_{2}=6$
- $p_{5}=(4,0)$ is the intersection of $2 x_{1}+x_{2}=8$ and $x_{2}=0$
- $p_{6}=(2,4)$ is the intersection of $x_{1}+x_{2}=6$ and $2 x_{1}+x_{2}=8$
- The unfeasible intersections are not vertices
- $p_{3}=(0,8)$ is the (unfeasible) intersection of $x_{1}=0$ and $2 x_{1}+x_{2}=8$
- $p_{4}=(0,6)$ is the (unfeasible) intersection of $x_{1}+x_{2}=6$ and $x_{2}=0$

Vertices and equalities

In order to obtain the standard form, simply add m slack variables

$$
P=\left\{(x, s) \in \mathbb{R}^{n}: A x+s=b, x \geq 0, s \geq 0\right\}
$$

Notice that now $n=n^{\prime}+m=4$!

$$
\begin{aligned}
\min f & =-x_{1}-3 x_{2} \\
x_{1}+x_{2}+s_{1} & =6(I) \\
2 x_{1}+x_{2}+s_{2} & =8(I I) \\
x_{1}, x_{2}, s_{1}, s_{2} & \geq 0
\end{aligned}
$$

- All vertices are feasible solutions with $n-m=2$ variables set to zero
- $p_{1}=(0,0)$ has $x_{1}=0$ and $x_{2}=0$ (feasible: $s_{1}=6$ and $s_{2}=8$)
- $p_{2}=(0,6)$ has $x_{1}=0$ and $s_{1}=0$ (feasible: $x_{2}=6$ and $s_{2}=2$)
- $p_{5}=(4,0)$ has $s_{2}=0$ and $x_{2}=0$ (feasible: $x_{1}=4$ and $s_{1}=2$)
- $p_{6}=(2,4)$ has $s_{1}=0$ and $s_{2}=0$ (feasible: $x_{1}=2$ and $x_{2}=4$)
- Only the feasible solutions of this type are vertices
- $p_{3}=(0,8)$ has $x_{1}=0$ and $s_{2}=0$ (unfeasible: $s_{1}=-2$)
- $p_{4}=(0,6)$ has $s_{1}=0$ and $x_{2}=0$ (unfeasible: $s_{2}=-2$)

Vertices and equalities

Given the feasible sets of an $L P$ problem and of its standard form

$$
P=\left\{x \in \mathbb{R}^{n^{\prime}}: A x \leq b, x \geq 0\right\} \quad P^{\prime}=\left\{(x, s) \in \mathbb{R}^{n}: A x+s=b, x \geq 0, s \geq 0\right\}
$$

- a facet is obtained setting one variable to 0 in the standard form
- a vertex is obtained setting $n-m$ variables to 0 in the standard form

$$
\begin{gathered}
P=\left\{x \in \mathbb{R}^{2}: x_{1}+x_{2} \leq 1,\right. \\
\\
\left.x_{1}, x_{2} \geq 0\right\} \\
P^{\prime}=\left\{x \in \mathbb{R}^{3}: x_{1}+x_{2}+x_{3}=1,\right. \\
\\
\left.x_{1}, x_{2}, x_{3} \geq 0\right\}
\end{gathered}
$$

- Three facets (edges) are obtained setting $x_{i}=0(i=1, \ldots, 3)$
- Three vertices are obtained setting $n-m=3-1=2$ variables to 0

$$
V\left(P^{\prime}\right)=\{(0,0,1)(0,1,0)(1,0,0)\} \rightarrow V(P)=\{(0,0)(0,1)(1,0)\}
$$

Given a $L P$ problem in standard form, defined on a polyedron

$$
P=\left\{x \in \mathbb{R}^{n}: A x=b, x \geq 0\right\}
$$

if P is nonempty, it is always possible to assume that $\operatorname{rank}(A)=m \leq n$
Proof: By definition, $\operatorname{rank}(A) \leq \min (m, n)$. Assume that $\operatorname{rank}(A)<m$.
Then, at least one row a_{i}^{T} is a linear combination of the other ones:

- if the right-hand-side b_{i} is the same linear combination of the other right-hand-sides, the constraint is redundant
- if it is not, the problem has no feasible solution

$$
\begin{array}{rlrll}
x_{1}+x_{2} & =1 & (I) & x_{1}+x_{2} & =1 \\
x_{1}+x_{3} & =1 & (I I) & x_{1}+x_{3} & =1 \\
2 x_{1}+x_{2}+x_{3} & =2 & (I I I) & 2 x_{1}+x_{2}+x_{3} & =3 \\
x_{1}, x_{2}, x_{3} & \geq 0 & (I I I) \\
\text { Redundant } & x_{1}, x_{2}, x_{3} & \geq 0 \\
\text { Unfeasible }
\end{array}
$$

Bases and basic solutions

Under the full rank assumption

- the set of all m rows of A is linearly independent
- at least one subset of m columns of A is linearly independent

A basis is any subset of m linearly independent columns of A
Permuting the columns (rearranging the variables) so that the basic columns are the first ones, A is partitioned into two submatrices
(1) the basic matrix B
(2) the nonbasic matrix N

$$
A=\underbrace{[B}_{m}: \underbrace{D}_{n-m} \underbrace{N}_{n}]
$$

The cost vector c and the variable vector x are permuted and partitioned

- $c^{T}=\left[c_{B}^{T} \mid c_{N}^{T}\right]$ (basic and nonbasic cost coefficients)
- $x^{T}=\left[x_{B}^{T} \mid x_{N}^{T}\right]$ (basic and nonbasic variables)

Basic solutions

Under the full rank assumption, hence, the system can be rewritten as

$$
\begin{aligned}
\min f=c_{B}^{T} x_{B}+c_{N}^{T} x_{N} & +d \\
B x_{B}+N x_{N} & =b \\
x_{B}, x_{N} & \geq 0
\end{aligned}
$$

If the $n-m$ nonbasic variables are fixed arbitrarily, the m basic variables are uniquely determined

$$
B x_{B}+N x_{N}=b \Rightarrow x_{B}=B^{-1} b-B^{-1} N x_{N}
$$

and the value of the objective function is

$$
f(x)=c_{B} x_{B}+c_{N} x_{N}+d=\left(c_{N}-B^{-1} N\right) x_{N}+c_{B} B^{-1} b+d
$$

A basic solution is a solution obtained setting to 0 the nonbasic variables

$$
\left\{\begin{array}{l}
B x_{B}+N x_{N}=b \\
x_{N}=0
\end{array} \Rightarrow x_{B}=B^{-1} b \Rightarrow x=\left[\begin{array}{c}
B^{-1} b \\
0
\end{array}\right] \text { and } f(x)=c_{B} B^{-1} b+d\right.
$$

The basic solution is feasible if $x_{B}=B^{-1} b \geq 0$, unfeasible otherwise

Example

$$
\begin{aligned}
& c^{T}=\left[\begin{array}{lllllll}
2 & 1 & 5 & 0 & 0 & 0 & 0
\end{array}\right] \\
& \min f=2 x_{1}+x_{2}+5 x_{3} \\
& \begin{aligned}
& x_{1}+x_{2}+x_{3}+x_{4}= \\
& x_{1}+x_{5}= \\
&+x_{3}+x_{6}= \\
& r
\end{aligned} \\
& \begin{aligned}
3 x_{2}+x_{3} & +x_{7}
\end{aligned}=6 \\
& b=\left[\begin{array}{l}
4 \\
2 \\
3 \\
6
\end{array}\right]
\end{aligned}
$$

Columns 4, 5, 6 and 7 form a basis, with

$$
B=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \text { and } c_{B}^{T}=\left[\begin{array}{llll}
0 & 0 & 0 & 0
\end{array}\right]
$$

The corresponding basic solution is ($0,0,0,4,2,3,6$) and is feasible Its cost is $f(x)=c_{B} B^{-1} b+d=0$

$$
\begin{aligned}
& c^{T}=\left[\begin{array}{lllllll}
2 & 1 & 5 & 0 & 0 & 0 & 0
\end{array}\right] \\
& \min f=2 x_{1}+x_{2}+5 x_{3} \\
& x_{1}+x_{2}+x_{3}+x_{4} \\
& \begin{array}{ll}
x_{1}+x_{2}+x_{3}+x_{4} & \\
x_{1}+x_{5}
\end{array} \\
& \begin{aligned}
+x_{3}+x_{6} & =3 \\
3 x_{2}+x_{3}+x_{7} & =6 \\
x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7} & \geq 0
\end{aligned} \\
& A=\left[\begin{array}{lllllll}
1 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 3 & 1 & 0 & 0 & 0 & 1
\end{array}\right] \\
& b=\left[\begin{array}{l}
4 \\
2 \\
3 \\
6
\end{array}\right]
\end{aligned}
$$

Columns 2, 5, 6 and 7 form a basis, with

$$
\begin{gathered}
B=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
3 & 0 & 0 & 1
\end{array}\right] \Rightarrow B^{-1}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-3 & 0 & 0 & 1
\end{array}\right] \\
c_{B}^{T}=\left[\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right] \Rightarrow c_{B} B^{-1} b=4
\end{gathered}
$$

The corresponding basic solution is $(0,4,0,0,2,3,-6)$ and is unfeasible Its cost is $f(x)=c_{B} B^{-1} b+d=4$ (useless, since the solution is unfeasible)

Counting the basic solutions

The number of subset of $n-m$ columns out of n is

$$
C_{m}^{n}=\binom{n}{m}=\frac{n!}{m!(n-m)!}
$$

This is an overestimate of the number of vertices because

- not all subsets of columns correspond to a basis (some subsets could be linearly dependent)
- different bases can correspond to the same solution (when some basic variable is zero, the solution obtained exchanging those basic variables with nonbasic ones is the same)
- not all basic solutions are feasible (some solutions have negative basic components)

$\underset{\text { number of }}{\text { vertices }}=\underset{\text { number of feasible }}{\text { basic solutions }} \quad \leq \quad$| number of |
| :---: |
| basic solutions |\leq

$$
\leq \quad \leq \quad C_{m}^{n}=\frac{n!}{m!(n-m)!}
$$

An algorithmic idea

A $L P$ problem, therefore, could be solved
(1) introducing the full rank assumption (if not possible, the problem is unfeasible)
(2) enumerating the subsets of $n-m$ columns of A
(3) for each subset B
(1) if it is linearly independent, set $x_{N}:=0$
(2) compute $x_{B}=B^{-1} b$
(3) if $x_{B} \geq 0$, compute $f(x)=c_{B} B^{-1} b+d$ and save its minimum

The complexity of such an algorithm is clearly exponential as it is proportional to C_{m}^{n}

The simplex method (Dantzig, 1947) explores the vertices in a smart way

- in the average case, it explores a very limited subset
- but in the worst case, it explores all vertices

Luckily, the worst case is very rare
Polynomial algorithms have been introduced from 1979
Presently, in the average case they are slower than the simplex method

A sample problem

Try and find the optimal solution of this problem

$$
\begin{aligned}
\min f=5 x_{1}+4 x_{2}+3 x_{3} & \\
2 x_{1}+3 x_{2}+x_{3} & \leq 5 \\
4 x_{1}+x_{2}+2 x_{3} & \leq 11 \\
3 x_{1}+4 x_{2}+2 x_{3} & \leq 8 \\
x_{1}, x_{2}, x_{3} & \geq 0
\end{aligned}
$$

There are $C_{3}^{6}=20$ subsets of $n-m=3$ columns
Each one corresponds to a candidate solution
But the optimal solution is absolutely obvious. . .

