
Foundations of Operations Research
Master of Science in Computer Engineering

Roberto Cordone
roberto.cordone@unimi.it

Tuesday 13.15 - 15.15

Thursday 10.15 - 13.15

http://homes.di.unimi.it/~cordone/courses/2014-for/2014-for.html

Lesson 11: Geometry of Linear Programming Como, Fall 2013

1 / 13

roberto.cordone@unimi.it
http://homes.di.unimi.it/~cordone/courses/2014-for/2014-for.html


Geometry of Linear Programming

A hyperplane is the set of points satisfying an affine equality{
x ∈ Rn : aT · x = b

}
An affine half-space is the set of points satisfying an affine inequality{

x ∈ Rn : aT · x ≤ b
}

Vector a is orthogonal to the separating hyperplane and points outwards

When n = 2

• a hyperplane reduces to a line

• an affine half-space reduces to an affine half-plane;

A polyhedron is the intersection of a finite number m of
affine half-spaces{

x ∈ Rn : aTi · x ≤ b i = 1, . . . ,m
}

The feasible set of a LP problem is a polyhedron: it can be empty or unbounded
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Convexity

A convex combination of r vectors y1, . . . , yr is a linear combination of the
vectors with nonnegative coefficients summing up to 1

r∑
i=1

αiyi with
r∑

i=1

αi = 1 and αi ≥ 0 for i = 1, . . . , r

A convex set is a set containing every convex combination of its elements

• The affine half-spaces are convex sets (easy to prove)

• Intersections of convex sets are convex sets (easy to prove)

Therefore, polyhedra are convex sets
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Vertices

A vertex of a polyhedron P is any point x ∈ P which cannot be expressed as a
convex combination of two different points of P

@y , z ∈ P and λ ∈ (0; 1) : x = λy + (1− λ) z

A polyhedron has a finite number of vertices
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Rays

A ray of a polyhedron P is any vector d ∈ R \ {0} such that

(x + λd) ∈ P for all x ∈ P, λ ≥ 0

A polyhedron admits rays if and only if it is unbounded

A polytope is a bounded polyhedron (therefore, with no rays)
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Gradient and level curves

Given a function f (x)

• the gradient vector ∇f is the vector whose components are the partial
derivatives of f with respect to the variables xi

• the level curve of value z is the set of points where f (x) = z

The gradient vector points in the direction of fastest growth of f and is
orthogonal to all level curves

For affine functions f (x) = cT x

• the gradient is the objective coefficient vector (∇f (x) = c)

• the level curves are parallel lines, orthogonal to c

max f (x) = cT x = 0.04 xA + 0.06 xB

∇f (x) = c =

[
0.04
0.06

]
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Example: capital investment

You have a capital of 10 000 Euros to invest.

Two investments are available, denoted as A and B: the former has an
expected return of 4%, the latter of 6%

In order to diversify the investment, reducing risk, at most 75% of the
capital can be invested in A, and at most 50% in B.

Determine a portfolio that maximizes the expected return, while
respecting the diversification constraints.

The natural decision variables are

• xA = capital invested in A, measured in euros

• xB = capital invested in B, measured in euros

max f = 0.04 xA + 0.06 xB

xA + xB ≤ 10 000

xA ≤ 7 500

xB ≤ 5 000

xA, xB ≥ 0
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Graphical solution

max f = 0.04xA + 0.06xB

xA + xB ≤ 10 000

xA ≤ 7 500

xB ≤ 5 000

xA, xB ≥ 0
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Hyperplane and vertex representation

A polyhedron is defined as an intersection of half-spaces (inequalities),
but it admits an equivalent representation based on vertices and rays

Minkowski-Weyl theorem (simplified):
Every point x of a polyhedron P is a convex combination of the vertices
y1, . . . , yr of P plus a ray d of P (if rays exist)

x =
r∑

i=1

αiyi + d for all x ∈ P with
r∑

i=1

αi = 1 and αi ≥ 0 (i = 1, . . . , r)

(of course, αi and d depend on x)

If P is a polytope, x is a convex combination of y1, . . . , yr
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Fundamental theorem of Linear Programming

Let P = {x ∈ Rn : Ax = b, x ≥ 0} 6= ∅ be a nonempty polyhedron.
The LP problem

min
x∈P

cT x

either is unbounded or has at least one optimal vertex solution

This implies four alternative cases:

1 unique optimal vertex solution

2 infinite set of optimal solutions,
convex combinations of a finite
number of optimal vertex
solutions

3 unbounded objective value and
unbounded polyhedron

4 unfeasible problem and
empty polyhedron
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Consequences

1 in an optimal solution all improving directions (“opposite” to c) are
unfeasible (lead to unfeasible solution with any step), and vice versa

2 an interior point cannot be an optimal solution

Any LP problem could be solved

• enumerating its vertices
• computing and comparing the values of the objective in the vertices

The number of solutions is infinite (and continuous), but the number of
relevant solutions is finite, as in Combinatorial Optimization

Linear Programming and Combinatorial Optimization are strictly related:
each vertex is the intersection of some separating hyperplanes;
LP problems can be seen as the search for a subset of hyperplanes
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Proof of the fundamental theorem

Let P = {x ∈ Rn : Ax = b, x ≥ 0} 6= ∅ be a nonempty polyhedron.
The LP problem

min
x∈P

cT x

either is unbounded or has at least one optimal vertex solution

Consider the following two cases:

1 P is nonempty and has a ray d such that cTd < 0

x ∈ P ⇒ (x + λd) ∈ P ∀λ > 0

Now, f (x + λd) = f (x) + λcTd < f (x).
Increasing λ, the value of f (x + λd) decreases without bounds

2 all rays d of P satisfy cTd ≥ 0, or P has no ray

x =
r∑

i=1

αiyi + d such that

• αi ≥ 0

•
r∑

i=1

αi = 1

• (x + λd) ∈ P and cTd ≥ 0
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Proof of the fundamental theorem

For a generic solution x ∈ P, there exist d and αi (i = 1, . . . , r) such that

• x =
r∑

i=1
αiyi + d

• αi ≥ 0

•
r∑

i=1
αi = 1

• (x + λd) ∈ P and cTd ≥ 0

Now consider the value f (x) of the generic solution x

f (x) = cT x = cT

(
r∑

i=1

αiyi + d

)
=

r∑
i=1

αic
T yi + cTd ≥

r∑
i=1

αic
T yi

Let yi∗ be the best vertex: yi∗ = arg min
i=1,...,r

cT yi

cT yi ≥ cT yi∗ for all i = 1, . . . , r

which implies that f (x) ≥
r∑

i=1
αic

T yi∗ = cT yi∗ = f (yi∗ )

Since yi∗ is better than x for all x ∈ P:yi∗ is an optimal solution
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