
Solved exercises for the course of

Foundations of Operations Research

Roberto Cordone

Shortest path problem

Given a graph with the following cost matrix

1 2 3 4 5
1 0 3 5 ∞ 6
2 ∞ 0 4 -1 4
3 ∞ ∞ 0 ∞ 2
4 ∞ ∞ 4 0 12
5 7 ∞ ∞ -5 0

determine the shortest paths from node 1 to all other nodes with the proper
algorithm, justifying the choice.

1

Solution

First of all, let us represent the graph corresponding to the cost matrix.

1

3

2

4
5

5

1 2

3

- 1
6

4

4

7

2

4

- 5

We recall that

• in general, the shortest path problem is ill-posed, because the existence of
negative cost circuits makes the solution unbounded or requires additional
constraints on the number of visits of each arc or node

• if such constraints are introduced, the shortest path problem becomes NP-
hard

• if no negative cost circuits exist, the shortest path problem can be sol-
ved with Floyd-Warshall’s algorithm (which otherwise detects negative cost
cycles)

• if all arc costs are nonnegative, the shortest path problem (cij ≥ 0 for all
(i, j) ∈ A) can be solved with Dijkstra’s algorithm

• if the graph has no circuits, the shortest path problem can be solved with
a simple dynamic programming algorithm

In the present case, the proper algorithm is Floyd-Warshall’s algorithm, which
provides more than what is required, since it provides a shortest path from each
node to every other node, instead of simply from node 1 to every other node.

If the problem admits an optimal solution, the set of all shortest paths from
a node to all other ones yields an arborescence rooted in the starting node. In
fact, in the opposite case some nodes would have indegree different from 1, i. e.
nonreachable from the starting node (if the indegree is zero) or reachable through
different paths (if the indegree is larger than 1). On the contrary, the solution
reports a single optimal path for each node.

2

Floyd-Warshall’s algorithm

Floyd-Warshall(N,A, c)

For each i ∈ N do

For each j ∈ N do

ℓij := cij ; πj := i;

For h := 1 to n do

For each i ∈ N \ {h} do

For each j ∈ N \ {h} do

If ℓij > ℓih + ℓhj then

ℓij := ℓih + ℓhj; πij := πhj ;

If ∃i ∈ N : ℓii < 0

then Return “Negative circuit detected”;

else Return (ℓ, π);

Initialization Matrices ℓ and π at first represent the paths consisting of a single
arc.

Distance matrix Predecessor matrix
ℓ 1 2 3 4 5 π 1 2 3 4 5
1 0 3 5 +∞ 6 1 1 1 1 1 1
2 +∞ 0 4 -1 4 2 2 2 2 2 2
3 +∞ +∞ 0 +∞ 2 3 3 3 3 3 3
4 +∞ +∞ 4 0 12 4 4 4 4 4 4
5 7 +∞ +∞ -5 0 5 5 5 5 5 5

3

First iteration Try and improve each path visiting node 1. Of course, the
paths which starts and end in node 1 cannot be improved. As for the other ones:

• ℓ22 = 0 is not improved by ℓ21 + ℓ12 = ∞+ 3

• ℓ23 = 4 is not improved by ℓ21 + ℓ13 = ∞+ 5

• ℓ24 = −1 is not improved by ℓ21 + ℓ14 = ∞+∞

• ℓ25 = 4 is not improved by ℓ21 + ℓ15 = ∞+ 6

• ℓ32 = +∞ is not improved by ℓ31 + ℓ12 = ∞+ 3

• ℓ33 = 0 is not improved by ℓ31 + ℓ13 = ∞+ 5

• ℓ34 = +∞ is not improved by ℓ31 + ℓ14 = ∞+∞

• ℓ35 = 2 is not improved by ℓ31 + ℓ15 = ∞+ 6

• ℓ42 = +∞ is not improved by ℓ41 + ℓ12 = ∞+ 3

• ℓ43 = 4 is not improved by ℓ41 + ℓ13 = ∞+ 5

• ℓ44 = 0 is not improved by ℓ41 + ℓ14 = ∞+∞

• ℓ45 = 12 is not improved by ℓ41 + ℓ15 = ∞+ 6

• ℓ52 = +∞ is improved by ℓ51 + ℓ12 = 7 + 3 = 10

• ℓ53 = +∞ is improved by ℓ51 + ℓ13 = 7 + 5 = 12

• ℓ54 = −5 is not improved by ℓ51 + ℓ14 = 7 +∞

• ℓ55 = 0 is not improved by ℓ51 + ℓ15 = 7 + 6

Distance matrix Predecessor matrix
ℓ 1 2 3 4 5 π 1 2 3 4 5
1 0 3 5 +∞ 6 1 1 1 1 1 1
2 +∞ 0 4 -1 4 2 2 2 2 2 2
3 +∞ +∞ 0 +∞ 2 3 3 3 3 3 3
4 +∞ +∞ 4 0 12 4 4 4 4 4 4
5 7 10 12 -5 0 5 5 1 1 5 5

4

Second iteration Try and improve each path visiting node 2. Of course, the
paths which starts and end in node 2 cannot be improved. As for the other ones:

• ℓ11 = 0 is not improved by ℓ12 + ℓ21 = 3 +∞

• ℓ13 = 5 is not improved by ℓ12 + ℓ23 = 3 + 4

• ℓ14 = +∞ is improved by ℓ12 + ℓ24 = 3− 1 = 2

• ℓ15 = 6 is not improved by ℓ12 + ℓ25 = 3 + 4

• ℓ31 = +∞ is not improved by ℓ32 + ℓ21 = ∞+∞

• ℓ33 = 0 is not improved by ℓ32 + ℓ23 = ∞+ 4

• ℓ34 = +∞ is improved by ℓ32 + ℓ24 = ∞− 1

• ℓ35 = 2 is not improved by ℓ32 + ℓ25 = ∞+ 4

• ℓ41 = +∞ is not improved by ℓ42 + ℓ21 = ∞+∞

• ℓ43 = 4 is not improved by ℓ42 + ℓ23 = ∞+ 4

• ℓ44 = 0 is not improved by ℓ42 + ℓ24 = ∞− 1

• ℓ45 = 12 is not improved by ℓ42 + ℓ25 = ∞+ 4

• ℓ51 = 7 is not improved by ℓ52 + ℓ21 = 10 +∞

• ℓ53 = 12 is not improved by ℓ52 + ℓ23 = 10 + 4

• ℓ54 = −5 is not improved by ℓ52 + ℓ24 = 10− 1

• ℓ55 = 0 is not improved by ℓ52 + ℓ25 = 10 + 4

Distance matrix Predecessor matrix
ℓ 1 2 3 4 5 π 1 2 3 4 5
1 0 3 5 2 6 1 1 1 1 2 1
2 +∞ 0 4 -1 4 2 2 2 2 2 2
3 +∞ +∞ 0 +∞ 2 3 3 3 3 3 3
4 +∞ +∞ 4 0 12 4 4 4 4 4 4
5 7 10 12 -5 0 5 5 1 1 5 5

5

Third iteration Try and improve each path visiting node 3. Of course, the
paths which start and end in node 3 cannot be improved. As for the other ones:

• ℓ11 = 0 is not improved by ℓ13 + ℓ31 = 5 +∞

• ℓ12 = 3 is not improved by ℓ13 + ℓ32 = 5 +∞

• ℓ14 = 2 is not improved by ℓ13 + ℓ34 = 5 +∞

• ℓ15 = 6 is not improved by ℓ13 + ℓ35 = 5 + 2

• ℓ21 = +∞ is not improved by ℓ23 + ℓ31 = 4 +∞

• ℓ22 = 0 is not improved by ℓ23 + ℓ32 = 4 +∞

• ℓ24 = −1 is not improved by ℓ23 + ℓ34 = 4 +∞

• ℓ25 = 4 is not improved by ℓ23 + ℓ35 = 4 + 2

• ℓ41 = +∞ is not improved by ℓ43 + ℓ31 = 4 +∞

• ℓ42 = +∞ is not improved by ℓ43 + ℓ32 = 4 +∞

• ℓ44 = 0 is not improved by ℓ43 + ℓ34 = 4 +∞

• ℓ45 = 12 is improved by ℓ43 + ℓ35 = 4 + 2 = 6

• ℓ51 = 7 is not improved by ℓ53 + ℓ31 = 12 +∞

• ℓ52 = 10 is not improved by ℓ53 + ℓ32 = 12 +∞

• ℓ54 = −5 is not improved by ℓ53 + ℓ34 = 12 +∞

• ℓ55 = 0 is not improved by ℓ53 + ℓ35 = 12 + 2

Distance matrix Predecessor matrix
ℓ 1 2 3 4 5 π 1 2 3 4 5
1 0 3 5 2 6 1 1 1 1 2 1
2 +∞ 0 4 -1 4 2 2 2 2 2 2
3 +∞ +∞ 0 +∞ 2 3 3 3 3 3 3
4 +∞ +∞ 4 0 6 4 4 4 4 4 3
5 7 10 12 -5 0 5 5 1 1 5 5

6

Fourth iteration Try and improve each path visiting node 4. Of course, the
paths which start and end in node 4 cannot be improved. As for the other ones:

• ℓ11 = 0 is not improved by ℓ14 + ℓ41 = 2 +∞

• ℓ12 = 3 is not improved by ℓ14 + ℓ42 = 2 +∞

• ℓ13 = 5 is not improved by ℓ14 + ℓ43 = 2 + 4

• ℓ15 = 6 is not improved by ℓ14 + ℓ45 = 2 + 6

• ℓ21 = +∞ is improved by ℓ24 + ℓ41 = −1 +∞

• ℓ22 = 0 is not improved by ℓ24 + ℓ42 = −1 +∞

• ℓ23 = 4 is improved by ℓ24 + ℓ43 = −1 + 4 = 3

• ℓ25 = 4 is not improved by ℓ24 + ℓ45 = −1 + 6

• ℓ31 = +∞ is not improved by ℓ34 + ℓ41 = ∞+∞

• ℓ32 = +∞ is not improved by ℓ34 + ℓ42 = ∞+∞

• ℓ33 = 0 is not improved by ℓ34 + ℓ43 = ∞+ 4

• ℓ35 = 2 is not improved by ℓ34 + ℓ45 = ∞+ 6

• ℓ51 = 7 is not improved by ℓ54 + ℓ41 = −5 +∞

• ℓ52 = 10 is not improved by ℓ54 + ℓ42 = −5 +∞

• ℓ53 = 12 is improved by ℓ54 + ℓ43 = −5 + 4 = −1

• ℓ55 = 0 is not improved by ℓ54 + ℓ45 = −5 + 6

Distance matrix Predecessor matrix
ℓ 1 2 3 4 5 π 1 2 3 4 5
1 0 3 5 2 6 1 1 1 1 2 1
2 +∞ 0 3 -1 4 2 3 2 4 2 2
3 +∞ +∞ 0 +∞ 2 3 3 3 3 3 3
4 +∞ +∞ 4 0 6 4 4 4 4 4 3
5 7 10 -1 -5 0 5 5 1 4 5 5

7

Fifth iteration Try and improve each path visiting node 5. Of course, the
paths which start and end in node 5 cannot be improved. As for the other ones:

• ℓ11 = 0 is not improved by ℓ15 + ℓ51 = 6 + 7

• ℓ12 = 3 is not improved by ℓ15 + ℓ52 = 6 + 10

• ℓ13 = 5 is not improved by ℓ15 + ℓ53 = 6− 1

• ℓ14 = 2 is improved by ℓ15 + ℓ54 = 6− 5 = 1

• ℓ21 = +∞ is improved by ℓ25 + ℓ51 = 4 + 7 = 11

• ℓ22 = 0 is not improved by ℓ25 + ℓ52 = 4 + 10

• ℓ23 = 3 is not improved by ℓ25 + ℓ53 = 4− 1

• ℓ24 = −1 is not improved by ℓ25 + ℓ54 = 4− 5

• ℓ31 = +∞ is improved by ℓ35 + ℓ51 = 2 + 7 = 9

• ℓ32 = +∞ is improved by ℓ35 + ℓ52 = 2 + 10 = 12

• ℓ33 = 0 is not improved by ℓ35 + ℓ53 = 2− 1

• ℓ34 = +∞ is improved by ℓ35 + ℓ54 = 2− 5 = −3

• ℓ41 = +∞ is improved by ℓ45 + ℓ51 = 6 + 7 = 13

• ℓ42 = +∞ is improved by ℓ45 + ℓ52 = 6 + 10 = 16

• ℓ43 = 4 is not improved by ℓ45 + ℓ53 = 6− 1

• ℓ44 = 0 is not improved by ℓ45 + ℓ54 = 6− 5

Distance matrix Predecessor matrix
ℓ 1 2 3 4 5 π 1 2 3 4 5
1 0 3 5 1 6 1 1 1 1 5 1
2 11 0 3 -1 4 2 5 2 4 2 2
3 9 12 0 -3 2 3 5 1 3 5 3
4 13 16 4 0 6 4 5 1 4 4 3
5 7 10 -1 -5 0 5 5 1 4 5 5

8

Conclusion The two matrices represent the following paths on the original
graph.

1

3

2

4
5

5

1 2

3

- 1
6

4

4

7

2

4

- 5

9

Dijkstra’s algorithm

We here apply the efficient O (n2) version of the algorithm. This version maintains
a vector π of candidate paths and a vector ℓ of corresponding costs; at each step,
one of the paths is definitively marked as shortest and used to possibly update
the other paths.

Dijkstra(N,A, c, s)

Ls := 0; Ps := s;

For each j ∈ N \ {s} do

If (i, j) ∈ A

then Lj := cij; Pj := i;

else Lj := +∞; Pj := −;

EndIf ;

EndFor

i∗ := s;

T := N \ {s};

While i∗ 6= s do

If Lj > Li∗ + ci∗j then

Lj := Li∗ + ci∗j ;

Pj := i∗;

i∗ := argmin
i∈T

Li;

EndIf ;

EndWhile

Return (L, P)

Dijkstra’s algorithm cannot be applied to the given problem. It can be applied
to a modified problem, obtained reverting the sign of all negative costs.

10

1

3

2

4
5

5

1 2

3

1
6

4

4

7

2

4

5

First iteration First consider the arcs going out of node 1. Nodes 2, 3 and 5
admit a direct arc, so that their cost label ℓi is given by the cost of the arc csi;
the cost label of node 4, on the contrary, is +∞. For all nodes, the predecessor
label πi is given by the label of the starting node 1. In the following figures, the
first number aside each node j is ℓj, the second one (in round parenthesis) is πj .
The node with the minimum cost label is i∗ = 2, which is definitively marked.

1

3

2

4

5

5 (1)

3 (1)

6 (1)

+ ¥ (-)

*

Second iteration For each arc (i∗, j) going out of the last marked node, the
algorithm evaluates whether reaching node j through it is more profitable than
using the previous candidate path. For example, arc (2, 3) allows to reach node
3 with a path costing ℓ2 + c23 = 3 + 4 = 7, which is worse than the known one
(ℓ3 = 5), so that the label of node 3 does not change. The label of node 4 changes,
because arc (2, 4) allows to reach it with a path of cost ℓ2 + c24 = 3 + 1 = 2,
which is better than ℓ4 = +∞. Arc (2, 5), in the end, does not improve the label
of node 5. Now, the algorithm marks node 4, which has the smallest cost label.

11

1

3

2

4

5

5 (1)

3 (1)

6 (1)

+ ¥ (-)
3

4

5

5 (1)

6 (1)

4 (2)

*

*

Third iteration For each arc (i∗, j) going out of the last marked node (i∗ = 4),
the algorithm evaluates whether it is profitable to reach node j through it. No
label is updated. Node 3 is marked, because it has the smallest label.

1

3

2

4

5

5 (1)

3 (1)

6 (1)

+ ¥ (-)
3

4

5

5 (1)

6 (1)

4 (5)
3

5

5 (1)

6 (1)

*

*

*

Fourth iteration For each arc (i∗, j) going out of the last marked node (i∗ = 3),
the algorithm evaluates whether it is profitable to reach node j through it. No
label is updated. Node 5 is marked, because it has the smallest label.

12

1

3

2

4

5

5 (1)

3 (1)

6 (1)

+ ¥ (-)
3

4

5

5 (1)

6 (1)

4 (5)
3

5

5 (1)

6 (1)

*

*

*

Conclusion Now all nodes are marked: the set of all shortest paths yields an
arborescence rooted in node 1.

1

3

2

4
5

5

1 2

3

1
6

4

4

7

2

4

5

13

