
ex-2.6-2.10 Foundations of Operations Research Instructor: Dr. S. Coniglio

2.6 Shortest paths with nonnegative costs

Given the following graph, find a set of shortest paths from node 0 to all the other nodes, using
Dijkstra’s algorithm.

Can we apply Dynamic Programming to solve the problem. If so, apply it.
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2.7 Shortest paths with negative costs

Given the following graph, find the shortest paths between all pairs of nodes, or show that
the problem is ill-posed, by exhibiting a circuit of total negative cost. Apply Floyd-Warshall’s
algorithm.
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2.8 Shortest paths with negative costs and ill-posedness

Given the following graph, find the shortest paths between all pairs of nodes, or show that the
problem is ill-posed, by exhibiting a circuit of total negative cost, using the Floyd-Warshall
algorithm.
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2.9 Shortest paths application

A company buys a machine for 12k Euro. The maintenance costs and the expected revenue for
the next 5 years are indicated in the following table.

years maintenance (kEuro) recovery (kEuro)

0 2 -
1 4 7
2 5 6
3 9 2
4 12 1

To avoid a high maintenance cost of an older machine, the machine can be replaced at the
beginning of the second, third, fourth, and fifth year with a new one.

Show how the problem of determining an optimal maintenance/replacement policy of mini-
mum total cost (price + maintenance - recovery) can be solved via Dynamic Programming.

Hint: Reduce the problem to a minimum cost path problem in an appropriate acyclic graph.

2.10 Project planning

The preparation of the apple pie has long been a tradition for the Smiths family. First the
weight of the ingredients has to be determined: flour, sugar, butter, eggs, apples, cream. Then,
we must melt down the butter and add it to a mixture of flour, sugar, and eggs. Apples must
be added to this new mixture, once they have been peeled and cut into thin slices. The mixture
can then be cooked, in the already heatened oven. It is adviced to whip the cream only after
the apple slices have been added to the mixture. Once the cake is cooked, the cream is used to
garnish it.

The following table reports the time needed for each activity.
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Activity Time (minutes)

A Weight the ingredients 5
B Meld the butter down 3
C Mix flour, eggs, and sugar 5
D Peel and cut the apples into slices 10
E Heaten the oven 20
F Add butter to the mixture 8
G Add apples to the mixture 4
H Cook the mixture in the oven 40
I Whip the cream 10
L Garnish 5

Draw the graph of the priorities, determine the Tmin and Tmax times by which each activity
must begin and end, so as to minimize the time by which the whole project is completed, and
identify the critical path. Draw the ’at the earliest’ Gantt diagram.
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Solution

2.6 Shortest paths with nonnegative costs

The Dijkstra algorithm determines all the shortest paths from a given node s to all the
other nodes in the graph. It can be applied to any (directed) graph, even if containing
cycles, with nonnegative edge costs.

• Data structures: S (subset of nodes with fixed labels), initialized to {s}; L(i) (cost
of the shortest path from s to i), initialized to L(s) = 0; p(i) (predecessor of node i

in the shortest path from s to i), initialized to p(s) = s.

• Description: at each iteration, from the cut induced by S, we identify an arc (v, h),
such that L(v) + cvh is minimum (cvh is the cost of the arc (v, h)). S ← S ∪ {h},
L(h)← L(v) + cvh, p(h)← v. The algorithm halts when S = V .

Iterations:

• Initialization: S = {0}, L(0) = 0, p(0) = 0;

• (v, h) = (0, 1), L(1) = 1, p(1) = 0, S = {0, 1};

• (v, h) = (0, 2), L(2) = 1, p(2) = 0, S = {0, 1, 2};

• (v, h) = (0, 5), L(5) = 2, p(5) = 0, S = {0, 1, 2, 5};

• (v, h) = (0, 4), L(4) = 3, p(4) = 0, S = {0, 1, 2, 4, 5};

• (v, h) = (1, 3), L(3) = 3, p(3) = 1, S = {0, 1, 2, 3, 4, 5};

• (v, h) = (3, 7), L(7) = 3, p(7) = 3, S = {0, 1, 2, 3, 4, 5, 7};

• (v, h) = (5, 6), L(6) = 4, p(6) = 5, S = G: STOP;

We can plot the behaviour of the algorithm as follows. In the pictures, a node is highlighted
if it is in S, while an arc is represented with a dashed line if it can be selected in the current
iteration, and in a solid line when it is chosen. The labels on the nodes in S indicate the
cost of the shortest path from node 0. When a dashed arc is incident to two nodes in S,
it is removed. This way, the dashed arcs always belongs to the cut induced by S. The arc
(i, j) that is selected is always that with minimum cost L(i) + cij .
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A topological order can be introduced as follows. At iteration i, for i = {1, . . . , n}, pick a
node with no incident arcs, label it as ’node i’, remove it from the graph, iterate until all
nodes are removed, or there is no node with no incident arcs –in this case the graph is not
acyclic.

The graph we are dealing with is acyclic, and its node indices already induce its topological
order. The Dynamic Programming technique can therefore be applied. It has complexity
O(m), smaller than that of the Dijkstra algorithm of O(n2 +m).

• L(0) = 0, p(0) = 0;

• L(1) = L(0) + c01 = 1, p(1) = 0;

• L(2) = min{L(0) + c02, L(1) + c12} = min{0 + 1, 1 + 2} = 1, p(2) = 0;

• L(3) = min{L(1) + c13, L(2) + c23} = min{1 + 2, 1 + 4} = 3, p(3) = 1;

• L(4) = min{L(0) + c04, L(3) + c34} = min{0 + 3, 3 + 1} = 3, p(4) = 0;

• L(5) = min{L(0) + c05, L(4) + c45} = min{0 + 2, 3 + 3} = 3, p(5) = 0;

• L(6) = min{L(4) + c46, L(5) + c56} = min{3 + 3, 2 + 2} = 3, p(6) = 5;

• L(7) = min{L(3)+c37, L(4)+c47, L(6)+c67} = min{3+0, 3+1, 4+4} = 3, p(7) = 3;

2.7 Shortest paths with negative costs
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This algorithm finds a shortest path for all pairs of nodes in a (directed) graph with arc
costs unrestricted in sign. The graph can contain cycles, but such cycles have to be of
nonnegative cost. It has complexity O(n3), where n is the number of nodes in the graph.

• Data structures: let D be a matrix such that element dij is, at the beginning of the
algorithm, the cost of arc (i, j) and, at the end, the cost of a shortest path from i to
j. Let P be a matrix of precedecessors (P = (pij), where pij is the precedecessor of
node j in the shortest path from i to j).

• Description: at each iteration, we select a node with index h ≤ n and compute the
length of the paths via h for all pairs of nodes (i, j) different from h1.

If the path from i to j, passing through h, is shorter than that the original one from
i to j, matrices D and P are updated: dij is set to the cost of the path through h,
and pij is updated to phj . The algorithm halts when one of the following conditions
holds

(1) all nodes have been selected for the triangulations

(2) there is a circuit of negative cost: the problem of finding a shortest path (not
necessarily simple!) it not well defined. Indeed, it is possible to go through the
negative cost circuit an arbitrary number of times, reducing the cost of the path
containing such circuit at each iteration. The problem is, evidently, unbounded.

(a) Initial configuration
D 1 2 3

1 0 4 3
2 2 0 5
3 -2 -4 0

P 1 2 3

1 1 1 1
2 2 2 2
3 3 3 3

(b) Iteration h = 1 (triangulation on node 1)

d21 + d12 = 2 + 4 = 6 > d22 = 0

d21 + d13 = 2 + 3 = 5 = d23 = 5

d31 + d13 = −2 + 3 = 1 > d33 = 0

d31 + d12 = −2 + 4 = 2 > d32 = −4

D 1 2 3

1 0 4 3
2 2 0 5
3 -2 -4 0

P 1 2 3

1 1 1 1
2 2 2 2
3 3 3 3

(c) Iteration h = 2 (triangulation on node 2)

d12 + d21 = 4 + 2 = 6 > d11 = 0

d12 + d23 = 4 + 5 = 9 > d13 = 3

d32 + d23 = −4 + 5 = 1 > d33 = 0

d32 + d21 = −4 + 2 = −2 = d31 = −2

D 1 2 3

1 0 4 3
2 2 0 5
3 -2 -4 0

P 1 2 3

1 1 1 1
2 2 2 2
3 3 3 3

(d) Iteration h = 3 (triangulation on node 3)

1In considering all pairs of nodes i, j, including those where i or j equals h, some useless iterations are

performed. Indeed, they amount to check whether a path from i to h is shorter than that from i to h plus that

from h to itself
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d13 + d31 = 3− 2 = 1 > d11 = 0

d13 + d32 = 3− 4 = −1 < d12 = 4

⇒ update d12, p12

d23 + d32 = 5− 4 = 1 > d22 = 0

d23 + d31 = 5− 2 = 3 > d21 = 2

D 1 2 3

1 0 -1 3
2 2 0 5
3 -2 -4 0

P 1 2 3

1 1 3 1
2 2 2 2
3 3 3 3

2.8 Shortest paths with negative costs and ill-posedness.

(a) Initial configuration
D 1 2 3 4

1 0 3 8 3
2 5 0 4 10
3 -2 ∞ 0 4
4 ∞ -7 ∞ 0

P 1 2 3 4

1 1 1 1 1
2 2 2 2 2
3 3 3 3 3
4 4 4 4 4
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(b) Iteration h = 1 (triangulation on node 1)

d21 + d12 = 8 > d22 = 0

d21 + d13 = 13 > d23 = 4

d21 + d14 = 8 < d24 = 10

⇒ update d24, p24

d31 + d12 = 1 < d32 =∞

⇒ update d32, p32

d31 + d13 = 6 > d33 = 0

d31 + d14 = 1 < d34 = 4

⇒ update d34, p34

d41 + dij =∞(∀i, j)

D 1 2 3 4

1 0 3 8 3
2 5 0 4 8

3 -2 1 0 1

4 ∞ -7 ∞ 0

P 1 2 3 4

1 1 1 1 1
2 2 2 2 1

3 3 1 3 1

4 4 4 4 4

(c) Iteration h = 2 (triangulation on node 2)

d12 + d21 = 8 > d11 = 0

d12 + d23 = 7 < d13 = 8

⇒ update d13, p13

d12 + d24 = 11 > d24 = 3

d32 + d21 = 6 > d31 = −2

d32 + d23 = 5 > d33 = 0

d32 + d24 = 9 > d34 = 1

d42 + d21 = −2 < d41 =∞

⇒ update d41, p41

d42 + d23 = −3 < d43 =∞

⇒ update d43, p43

d42 + d24 = 1 > d44 = 0

D 1 2 3 4

1 0 3 7 3
2 5 0 4 8
3 -2 1 0 1
4 -2 -7 -3 0

P 1 2 3 4

1 1 1 2 1
2 2 2 2 1
3 3 1 3 1
4 2 4 2 4
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(d) Iteration h = 3 (triangulation on node 3)

d13 + d31 = 5 > d11 = 0

d13 + d32 = 8 > d12 = 3

d13 + d34 = 8 > d14 = 3

d23 + d31 = 2 < d21 = 5

⇒ update d21, p21

d23 + d32 = 5 > d22 = 0

d23 + d34 = 5 < d24 = 8

⇒ update d24, p24

d43 + d31 = −5 < d41 = −2

⇒ update d41, p41

d43 + d32 = −2 > d42 = −7

d43 + d34 = −2 < d44 = 0

⇒ update d44, p44

D 1 2 3 4

1 0 3 7 3
2 2 0 4 5

3 -2 1 0 1
4 -5 -7 -3 -2

P 1 2 3 4

1 1 1 2 1
2 3 2 2 3

3 3 1 3 1
4 3 4 2 1

We obtain d44 = −2 < 0 and the algorithm halts: we found a circuit of total negative
cost of -1 (4→ 2→ 3→ 1→ 4).

2.9 Shortest paths application

Consider a directed graph with 6 nodes: nodes from 1 to 5 are associated to the beginning
of each year, while node 6 indicates the end of the period of interest. For each pair i, j,
i, j = 1, . . . , 5, i < j, arc (i, j) represents the choice of reselling, at the beginning of year
j, a machine that was bought at the beginning of year i. The cost cij is defined as

cij = a+

j−i−1∑

k=i

mk − rj−i,

where a is the buying cost of 12000 Euro, mk is the maintenance cost for year k, and rj is
the price at which the machine is sold. We obtain the following directed acyclic graph

7 7 7 7 7
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21

21

21

31

31

44

1 2 3 5 64

Any path from 1 to 6 corresponds to a plan, with a cost equivalent to that of the path.

Document prepared by L. Liberti, S. Bosio, S. Coniglio, and C. Iuliano. Translation to English by S. Coniglio 9



ex-2.6-2.10 Foundations of Operations Research Instructor: Dr. S. Coniglio

Therefore, we need to look for a shortest path from 1 to 6. We apply the Dynamic
Programming algorithm, obtaining

(a) L(1) = 0;

(b) L(2) = 7, p(2) = 1;

(c) L(3) = 12, p(3) = 1;

(d) L(4) = 19, p(4) = 3;

(e) L(5) = 24, p(5) = 3;

(f) L(6) = 31, p(6) = 5.

A shortest path (of cost 31) is 1→ 3→ 5→ 6. It amounts to buying a new machine every
2 years. Note that there are other optimal solution, such as 1→ 3→ 4→ 6.

2.10 Project planning

The table indicates lengths and prerequisites for each activity

Activities Length Predecessors

A Weight the ingredients 5 -
B Meld the butter down 3 A
C Mix flour, eggs, and sugar 5 A
D Peel and cut the apples into slices 10 A
E Heaten the oven 20 -
F Add butter to the mixture 8 B,C
G Add apples to the mixture 4 D,F
H Cook the mixture in the oven 40 E,G
I Whip the cream 10 G
L Garnish 5 H,I

We derive the prerequisites graph. For each activity, we introduce two nodes, representing
the beginning and the end of the activity, and an arc of cost equivalent to the length of the
activity. For each prerequisite relationship Ai < Aj , and arc (i, j) is introduced (dashed
lines) between the ending node of Ai and the beginning node of j. We add a node s,
connected to the beginning node of each activity, with cost 0, for all activities with no
prerequisites. Similarly, we add a node t, and connect to it all the ending nodes for all the
activities that are not a prerequisite for any other activities, with cost 0.

A C

B

D

E

F

G

H

I

L t
s

The graph can be reduced to a smaller one as shown in the lectures. The following graph
is obtained.
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We use the Critical Path Method (CPM) to determine Tmin and Tmax for each node of
the graph.

The algorithm is composed of two phases, were the Dynamic Programing technique is
applied to find longest and shortest paths in the graph. The algorithm is outlined as
follows.

(a) Tmin(1) = 0;

(b) sort the nodes in topological order;

(c) for each h = 2, . . . , n:
let Tmin(h) = max{Tmin(i) + dih | (i, h) ∈ δ−(h)};

(d) Tmax(n) = Tmin(n);

(e) for each h = n− 1, . . . , 1:
let Tmax(h) = min{Tmax(i)− dih | (i, h) ∈ δ+(h)}.

We obtain the following solution

A C

B

D

E

F

G

H

I

L
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3

5

10

8

4
10

20 40

5

[0,0] [5,5]

[10,10]

[10,10]

[18,18] [22,22]

[22,22]

[62,62] [67,67]

t

s

The slacks for the activities are

(a) σ(A) = Tmax(2)− Tmin(1)− d12 = 5− 0− 5 = 0

(b) σ(B) = Tmax(4)− Tmin(2)− d24 = 10− 5− 3 = 2

(c) σ(C) = Tmax(3)− Tmin(2)− d23 = 10− 5− 5 = 0
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(d) σ(D) = Tmax(5)− Tmin(2)− d25 = 18− 5− 10 = 3

(e) σ(E) = Tmax(6)− Tmin(1)− d16 = 22− 0− 20 = 2

(f) σ(F ) = Tmax(5)− Tmin(4)− d45 = 18− 10− 8 = 0

(g) σ(G) = Tmax(6)− Tmin(5)− d56 = 22− 18− 4 = 0

(h) σ(H) = Tmax(8)− Tmin(7)− d78 = 62− 22− 40 = 0

(i) σ(I) = Tmax(8)− Tmin(6)− d68 = 62− 22− 10 = 30

(j) σ(I) = Tmax(9)− Tmin(8)− d89 = 67− 62− 7 = 0

The critical activities are A,C, F,G,H,L.

The ’at the earliest’ Gantt diagram is

5 10 15 20 25 30 35 40 45 50 55 60 65 67

B

D

E

I

A C F G H L
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