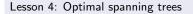
Foundations of Operations Research

Master of Science in Computer Engineering

Roberto Cordone roberto.cordone@unimi.it

Tuesday 13.15 - 15.15 Thursday 10.15 - 13.15

http://homes.di.unimi.it/~cordone/courses/2014-for/2014-for.html



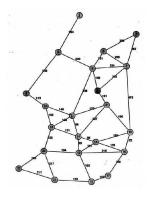
1/44

A network design model

A telecommunication company wants to build a new fiberoptic network between some major European cities.

All cities should be connected to each other, directly or indirectly. A set of potential connections and the cost of building each link (proportional to the distance) are known.

Design the fiberoptic network of minimum total cost.



A natural combinatorial model is given by an edge-weighted undirected graph (V, E, c)

- V includes the cities
- *E* includes the potential links
- $c: E \to \mathbb{R}^+$ provides the cost of a link

We are looking for a subgraph T = (U, X)

What kind of subgraph?

A network design model

Let us denote by T = (V, X) any feasible subgraph:

- it must include all vertices: it must be spanning
- it must include a path between any pair of vertices: it must be connected
- its total cost must be minimum: $X = \arg \min \sum_{e \in X} c_e$

Can it include cycles?

Given a cyclic connected subgraph, remove one edge *e* from a cycle:

• the result is connected

• if all cycles include an edge with $c_e \ge 0$, the result is not more expensive The optimal solution includes no cycle: T = (V, X) is an acyclic subgraph

Definitions

- a forest is an acyclic graph
- a tree is an acyclic connected graph
- a spanning tree is an acyclic connected spanning subgraph

If all cycles of G include an edge e with $c_e \ge 0$, T is a minimum spanning tree

3/44

Minimum spanning tree problem

Given

- an undirected connected graph G = (V, E)with n = |V| vertices and m = |E| edges
- a cost function $c: E \to \mathbb{R}$

find a subgraph $T^* = (U^*, X^*)$

- **1** spanning: U^* contains all vertices $(U^* = V)$
- **2** connected: X^* includes a path between each pair of vertices u and v

3 acyclic: X^* does not contain any cycle

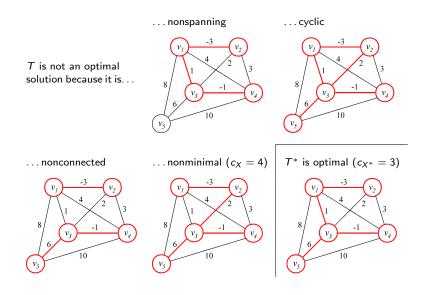
4 of minimum total cost:

 $c_{X^*} \leq c_X$ for all T = (U, X) enjoying properties 1, 2 e 3

where
$$c_X = \sum_{e \in X} c_e$$

If G includes a cycle with all edges of negative cost, the minimum spanning tree problem is not a good model for the previous problem

But you can apply a simple adaptation: which one?



A second model: secure message transmission

Broadcast to all stations of a communication network a secret message, minimizing the probability of interception at the links.

We model the network as a graph G = (V, E):

- vertices for the stations
- edges for the links
- a probability of interception $p_e \in [0; 1)$ for each edge

What is the probability of interception using a subset X of the edges?

$$f(X) = 1 - \prod_{e \in X} (1 - p_e)$$

i. e. the complement of the probability not to be intercepted at any link

$$\min_{X} f\left(X\right) \Leftrightarrow \max_{X} \log \prod_{e \in X} \left(1 - p_{e}\right) = \sum_{e \in X} \log \left(1 - p_{e}\right) \Leftrightarrow \min_{X} \sum_{e \in X} \log \frac{1}{\left(1 - p_{e}\right)}$$

We are looking for a connected spanning subgraph (V, X)(nonnegative costs: the optimal subgraph is also acyclic)

6/44

A third model: compact binary sequence representation

You have a large number n of binary sequences of huge length k, and you want to represent them in a compact way

 $\begin{array}{lll} s_1:[011100011101] & s_2:[101101011001] & s_3:[110100111001] \\ s_4:[101001111101] & s_5:[100100111101] & s_6:[010101011100] \end{array}$

An idea is to select a reference sequence and provide the differences ("bit flips") between the other ones and it

 $\begin{array}{lll} s_1: \begin{bmatrix} 011100011101 \end{bmatrix} & s_2-s_1: \begin{bmatrix} 1 \ 2 \ 6 \ 10 \end{bmatrix} & s_3-s_1: \begin{bmatrix} 1 \ 3 \ 7 \ 10 \end{bmatrix} \\ s_4-s_1: \begin{bmatrix} 1 \ 2 \ 4 \ 6 \ 7 \end{bmatrix} & s_5-s_1: \begin{bmatrix} 1 \ 2 \ 3 \ 7 \end{bmatrix} & s_6-s_1: \begin{bmatrix} 3 \ 6 \ 12 \end{bmatrix} \\ \end{array}$

This pays if many sequences are similar to the reference

A better idea is to allow a connected set of differences

7/44

・ロン ・日ン ・ヨン・

A third model: compact binary sequence representation

Consider a complete undirected weighted graph:

- the vertices represent sequences
- the edges represent pairs of sequences
- the cost function is the number of bit flips between two sequences

C _{uv}	1	2	3	4	5	6
1	0	4	4	5	4	3
2	4	0	4	3	4	5
3	4	4	0	5	2	5
4	5	3	5	0	3	6
5	4	4	2	3	0	5
1 2 3 4 5 6	3	5	5	6	5	0

We look for a subgraph, which must be

- spanning, to represent all sequences
- connected, to allow reconstructing any sequence from the reference
- of minimum cost, to save memory space

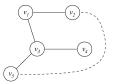
Since the costs are nonnegative, the subgraph is acyclic

イロン 不良 とくほど 不良 とうほう

Useful properties on trees

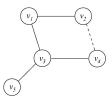
A tree contains exactly one path P_{uv} between any pair of vertices u and v

- a tree is connected \Rightarrow there is at least one path
- two paths form a cycle, but a tree is acyclic ⇒ there is at most one path



Adding an edge [u, v] to a spanning tree yields exactly one cycle

- the tree spans u and v and contains a path P_{uv} ⇒
 [u, v] ∪ P_{uv} is a cycle ⇒ there is at least one cycle
- if adding [u, v] yields at least two cycles, the original tree had two different paths between u and v (contrary to the previous thesis) adding ⇒ [u, v] yields at most one cycle



The vertex set of an optimal spanning tree is obviously V

We want to build the edge set with a scheme of this kind:

- Find a set of edges X certainly included in the edge set of an optimal solution
- **2** If (V, X) is an optimal solution, terminate
- Otherwise, find an edge e^{*} such that X ∪ {e^{*}} is still included in the edge set of an optimal solution and go back to point 2

The scheme provides an optimal solution in a finite number of steps, provided that we can always find e^*

The optimal spanning tree problem is one of the few problems which admits such a scheme

How is it possible, and why?

A fundamental theorem

Given the following assumptions:

• $S \subset V$ is a nonempty proper subset of vertices and $\Delta_S = \{[u, v] \in E : |\{u, v\}| \cap S = 1\}$ is its induced cut

 $e^* = \arg \min_{e \in \Delta(S)} c_e \text{ is one of the edges of minimum cost in } \Delta(S)$

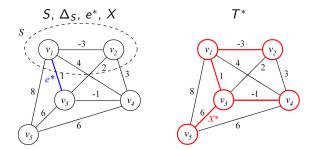
there exists an optimal spanning tree whose edge set includes e^*

there exists an optimal spanning tree whose edge set includes $X \cup \{e^*\}$

Such a tree can be different from T^* !

One can always enrich a subset of the edges of an optimal spanning tree with a minimum cost edge of a cut not intersecting the subset The only condition is that the graph be connected

Examples (1)



$$S = \{v_1, v_2\}$$

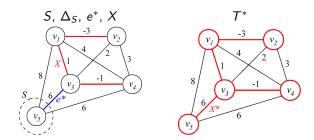
$$\Delta_S = \{(v_1, v_3), (v_1, v_4), (v_1, v_5), (v_2, v_3), (v_2, v_4)\}$$

$$e^* = (v_1, v_3)$$

$$X = \emptyset$$

$$\Rightarrow X \cup \{e^*\} = \{(v_1, v_3)\} \subseteq X^*$$

Examples (2)



$$S = \{v_5\}$$

$$\Delta_S = \{(v_1, v_5), (v_3, v_5), (v_4, v_5)\}$$

$$e^* = (v_3, v_5)$$

$$X = \{(v_1, v_2), (v_1, v_3), (v_3, v_4)\}$$

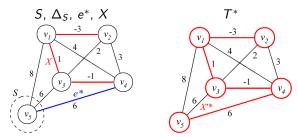
$$\Rightarrow X \cup \{e^*\} = \{(v_1, v_2), (v_1, v_3), (v_3, v_4), (v_3, v_5)\} \subseteq X^*$$

▲□▶ ▲圖▶ ▲≧▶ ▲≧▶

Э

13/44

Examples (3)



$$S = \{v_5\}$$

$$\Delta_S = \{(v_1, v_5), (v_3, v_5), (v_4, v_5)\}$$

$$e^* = (v_4, v_5)$$

$$X = \{(v_1, v_2), (v_1, v_3), (v_3, v_4)\}$$

$$\Rightarrow X \cup \{e^*\} = \{(v_1, v_2), (v_1, v_3), (v_3, v_4), (v_4, v_5)\}$$

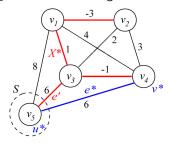
 $X \cup \{e^*\} \nsubseteq X^*$, but it is included in another optimal spanning tree X'^*

But what if you consider
$$S = \{v_5\}$$
 and $X = \{(v_3, v_4), (v_3, v_5)\}$?

Proof (1)

There are two possible cases

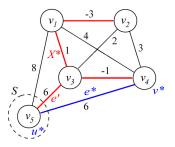
- **1** $e^* \in X^*$: since $X \subseteq X^*$, then $X \cup \{e^*\} \subseteq X^*$ and the thesis follows
- **2** $e^* = [u^*, v^*] \notin X^*$: the optimal solution $T = (V, X^*)$ is spanning and connected X^* includes a path $P_{u^*v^*}$ between u^* and v^* $P_{u^*v^*}$ intersects Δ_S in at least one edge e'



adding e^* to X^* produces a cycle removing e' from this cycle yields another spanning tree (the extreme vertices of e' are now connected through e^*)

Proof (2)

 $(V, X^* \cup \{e^*\} \setminus \{e'\})$ is another spanning tree and its cost is $c_{X^*} + c_{e^*} - c_{e'}$ (where $c_{X^*} = \sum_{e \in X^*} c_e$)



Notice that

- $T = (V, X^*)$ is optimal $\Rightarrow c_{X^*} + c_{e^*} c_{e'} \ge c_{X^*} \Rightarrow c_{e^*} \ge c_{e'}$
- $e^* = \arg\min_{e \in \Delta_S} c_e$ and $e' \in \Delta_S \Rightarrow c_{e^*} \leq c_{e'}$

which implies that $c_{e^*} = c_{e'}$ (the two edges have the same cost)

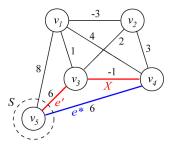
The two spanning trees have equal cost: the new spanning tree is optimal

Proof (3)

Given a partial optimal solution (V, X), if we find a vertex set $S \subset V$ whose induced cut Δ_S does not intersect X, we can augment X obtaining a partial optimal solution $(V, X \cup \{e^*\})$

Sooner or later, we will obtain a complete optimal solution

If $\Delta_S \cap X \neq \emptyset$, one cannot correctly enlarge set X: either $e^* \in X$ (and X does not grow) or e^* closes a cycle with X (and the new tree includes e^* and $X \setminus \{e'\}$, but not X)



- **1** Set $X := \emptyset$ (to be included in an optimal solution)
- **2** Find a cut Δ_S not intersecting X; if there is none, terminate
- **3** Otherwise, set $X := X \cup \arg\min_{e \in A} c_e$ and go to step 2

The scheme works because

- X is always included in an optimal solution (theorem)
- X is augmented step by step (since Δ_S does not intersect X)
- when every cut intersects X, (V, X) is a spanning tree

 \Rightarrow in the end, (V, X) is an optimal spanning tree

Different algorithms apply this scheme

Prim's algorithm (1957)

- S collects the extreme vertices of the edges of X (necessarily, Δ_S does not intersect X) at first S is a single vertex, chosen ad libitum
- $e^* := \arg\min_{e \in \Delta_S} c_e$

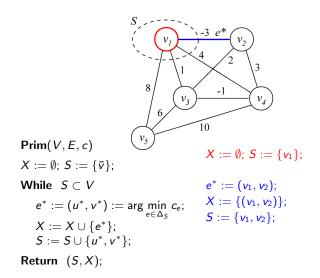
Kruskal's algorithm (1956)

- first find the minimum cost edge $e^* := \arg \min_{e \in E \setminus X} c_e$
- if there is a cut including e and not intersecting X, add e* to X (i. e. if the extreme vertices of e* are disconnected in X), otherwise, remove e* from E

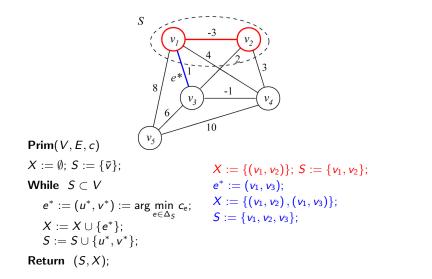
◆ロ ▶ ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ の ♀

$$\begin{aligned} &\mathsf{Prim}(V, E, c) \\ &X := \emptyset; \ S := \{\bar{v}\}; \\ &\mathsf{While} \quad S \subset V \\ &e^* = [u^*, v^*] := \arg\min_{e \in \Delta_S} c_e; \\ &X := X \cup \{e^*\}; \\ &S := S \cup \{u^*, v^*\}; \\ & \mathsf{Feturn} \quad (S, X); \end{aligned}$$

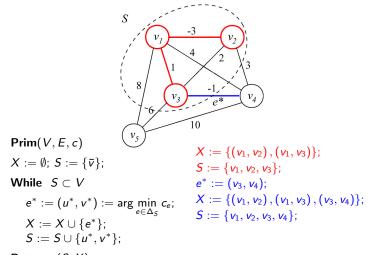
Application of Prim's algorithm (1)



Application of Prim's algorithm (2)

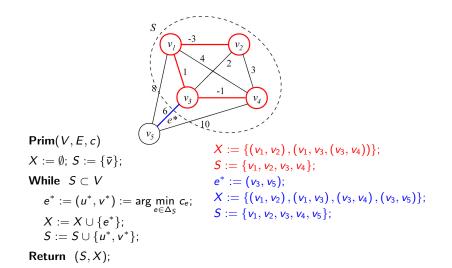


Application of Prim's algorithm (3)



Return (S, X);

Application of Prim's algorithm (4)



<ロ> < 部> < き> < き> き のへで 24/44

Application of Prim's algorithm (5)

Prim(V, E, c)

$$X := \emptyset; S := \{\bar{v}\};$$

While $S \subset V$
 $e^* = (u^*, v^*) := \arg\min_{e \in \Delta_S} c_e;$
 $X := S \cup \{u^*, v^*\};$
Return $(S, X);$

<□ > < 部 > < 差 > < 差 > 差 ● Q ペ 25/44

Complexity of Prim's algorithm

Prim's algorithm consists of an initial step of complexity T_{in} and a certain number i_{max} of iterations of complexity $T_{iter}^{(i)}$

$$T = T_{\mathrm{in}} + \sum_{i=1}^{i_{\mathrm{max}}} T_{\mathrm{iter}}^{(i)}$$

$$\begin{aligned} & \operatorname{Prim}(V, E, c) \\ & X := \emptyset; \ S := \{ \overline{v} \}; \\ & \operatorname{While} \quad S \subset V \\ & e^* := (u^*, v^*) := \arg\min_{e \in \Delta_S} c_e; \\ & X := X \cup \{ e^* \}; \\ & S := S \cup \{ u^*, v^* \}; \\ & \operatorname{Return} \quad (S, X); \end{aligned} \qquad \begin{aligned} & T_{\mathrm{in}} \in O(1) \\ & i_{\max} = n - 1 \text{ (one vertex at a} \\ & T_{\mathrm{iter}}^{(i)} = \alpha \text{ (to be determined)} \end{aligned}$$

Overall $T \in O(\alpha n)$

・ロト < 部 ト < 差 ト < 差 ト 差 の Q (P)
26 / 44

a time)

Minimum cost edge identification (1)

Possible implementations

- Scan all the edges and verify which ones belong to Δ_S : O(m)
- 2 Maintain subset Δ_S
 - build it: *O*(*n*)
 - find the minimum cost element: O(m)
 - update it: O(n)
- **3** Maintain for each $v \in V \setminus S$ the cheapest edge in $\Delta_S \cap \Delta_{\{v\}}$

$$\widetilde{e}_{v} = \arg\min_{[u,v]\in\Delta_{\mathcal{S}}\cap\Delta_{\{v\}}} c_{e}$$

$$X := \emptyset; S := \{\bar{v}\};$$

While $S \subset V$
 $e^* = (u^*, v^*) := \arg\min_{e \in \Delta_S} X$
 $X := X \cup \{e^*\};$
 $S := S \cup \{u^*, v^*\};$

Return (S, X);

Prim(V, E, c)

- build \tilde{e}_v : O(n)
- find the minimum \tilde{e}_{v} : O(n)
- update \tilde{e}_v : O(n)

 \rightarrow the complexity of the first implementation is $T \in O(mn)$

 C_e ;

Minimum cost edge identification (2)

Possible implementations

- Scan all the edges and verify which ones belong to Δ_S: O(m)
- **2** Maintain subset Δ_S
 - build it: O(n)
 - find the minimum cost element: O(m)
 - update it: O(n)
- **3** Maintain for each $v \in V \setminus S$ the cheapest edge in $\Delta_S \cap \Delta_{\{v\}}$

$$\widetilde{e}_v = \arg\min_{[u,v]\in\Delta_S\cap\Delta_{\{v\}}}c_e$$

- build \tilde{e}_v : O(n)
- find the minimum \tilde{e}_{v} : O(n)
- update \tilde{e}_v : O(n)

Prim(V, E, c) $X := \emptyset; S := \{\overline{v}\}; D := \Delta_{\overline{v}};$ While $S \subset V$ $e^* = (u^*, v^*) := \arg\min_{e \in D} c_e;$ $X := X \cup \{e^*\}:$ $S := S \cup \{u^*, v^*\};$ For each $w \in S$ $D := D \setminus \{(w, v^*)\};$ For each $w \in V \setminus S$ $D := D \cup \{(w, v^*)\};$ **Return** (S, X);

 \rightarrow the complexity of the second implementation is $T \in O(mn)$

Minimum cost edge identification (3)

Possible implementations

- Scan all the edges and verify which ones belong to Δ_S : O(m)
- **2** Maintain subset Δ_S
 - build it: *O*(*n*)
 - find the minimum cost element: O(m)
 - update it: O(n)
- Maintain for each v ∈ V \ S the cheapest edge in Δ_S ∩ Δ_{v}

$$\widetilde{e}_{v} = \arg\min_{[u,v]\in\Delta_{S}\cap\Delta_{\{v\}}}c_{e}$$

- build \tilde{e}_v : O(n)
- find the minimum \tilde{e}_{v} : O(n)
- update \tilde{e}_v : O(n)

Prim(V, E, c) $X := \emptyset; S := \{\bar{v}\};$ For each $w \in V \setminus \{\bar{v}\}$ $\tilde{e}_w := [\bar{v}, w];$ While $S \subset V$ $e^* = (u^*, v^*) := \arg\min_{w \in V \setminus S} \tilde{e}_w;$ $X := X \cup \{e^*\};$ $S := S \cup \{u^*, v^*\};$ For each $w \in V \setminus S$ If $c_{wv^*} < c_{\tilde{e}_w}$ then $\tilde{e}_w := (w, v^*)$; **Return** (S, X);

 \rightarrow the complexity of the third implementation is $T \in O(n^2)$

Kruskal's algorithm

Start with $X = \emptyset$

Find the minimum cost edge e^* not in X and not discarded

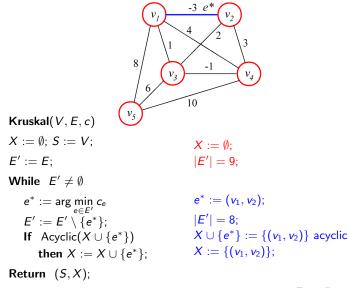
if there is a cut Δ_S including e^{*} and not intersecting X add e^{*} to X
 Notice that it is not required to determine S, because

 $\exists S \subset V : e^* \in \Delta_S \text{ and } \Delta_S \cap X = \emptyset \Leftrightarrow X \cup \{e^*\}$ is acyclic

• if $\nexists S$, it will not exist for any larger $X \Rightarrow$ discard e^* permanently

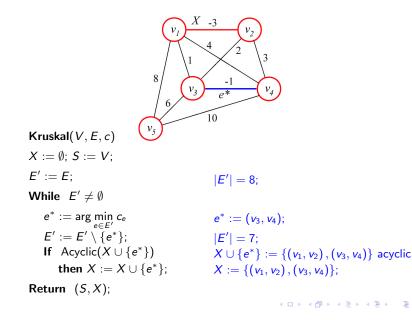
Kruskal(V, E, c) $X := \emptyset; S := V;$ E' := E; { Not yet discarded edges } While $E' \neq \emptyset$ $e^* := \arg\min_{e \in E'} c_e;$ $E' := E' \setminus \{e^*\};$ If Acyclic($X \cup \{e^*\}$) then $X := X \cup \{e^*\};$ Return (S, X);

Application of Kruskal's algorithm (1)

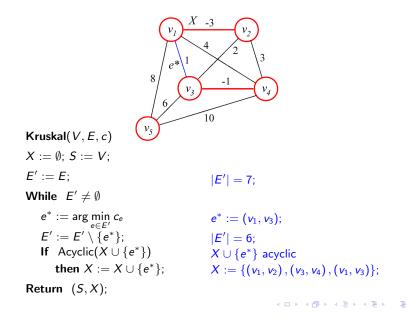


<ロ > < (日) > < (H) >

Application of Kruskal's algorithm (2)

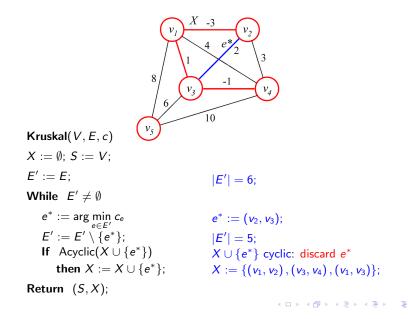


Application of Kruskal's algorithm (3)



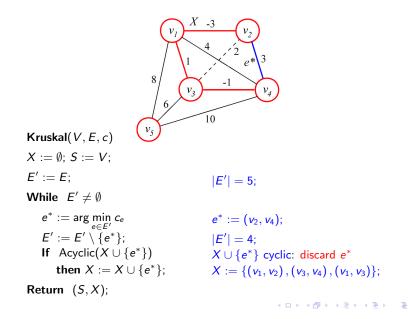
4) Q (↓ 33 / 44

Application of Kruskal's algorithm (4)

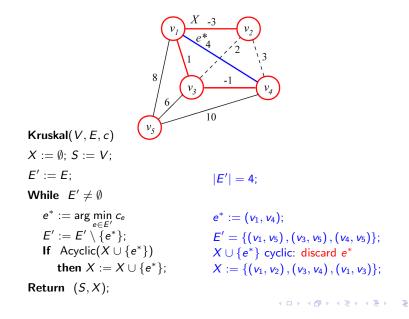


34 / 44

Application of Kruskal's algorithm (5)

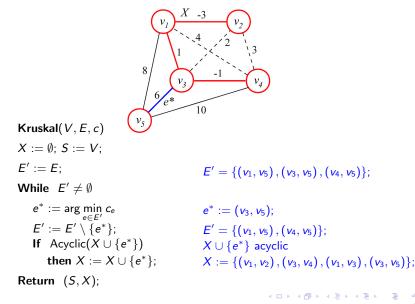


Application of Kruskal's algorithm (6)



36 / 44

Application of Kruskal's algorithm (7)



37 / 44

Given a tree, a leaf is a vertex with a single incident arc

• any acyclic graph with n > 1 vertices includes at least one leaf Proof by contradiction: otherwise, the visit of the tree would never terminate...

Consequently

• an acyclic graph with *n* vertices has $m \le n-1$ edges

Proof by induction

- an acyclic graph with n = 1 vertex has m = 0 leaves
- a generic acyclic graph with n > 1 vertices has a leaf; removing it produces an acyclic graph with n' vertices and m' edges (where n' = n − 1 and m' = m − 1); if for that graph m' ≤ n' − 1 ⇒ m ≤ n − 1

Therefore Kruskal's algorithm can terminate as soon as |X| = n - 1

Complexity of Kruskal's algorithm

Kruskal's algorithm consists of an initial step of complexity T_{in} and a certain number i_{max} of iterations of complexity $T_{iter}^{(i)}$

$$T = T_{\mathrm{in}} + \sum_{i=1}^{t_{\mathrm{max}}} T_{\mathrm{iter}}^{(i)}$$

Kruskal(V, E, c) $X := \emptyset;$ E' := E;While |X| < |V| - 1 $e^* := \underset{e \in E'}{\operatorname{arg min} c_e}$ $E' := E' \setminus \{e^*\};$ If $\operatorname{Acyclic}(X \cup \{e^*\})$ then $X := X \cup \{e^*\};$ Return (V, X);

 $T_{in} \in O(1)$ $i_{max} \leq m \text{ (one edge at a time)}$ $T_{iter}^{(i)} \in O(\alpha + \beta)$ (\$\alpha\$ and \$\beta\$ to be determined)

$$\begin{array}{ccc} \text{verall} & T \in O\left((\alpha + \beta) m\right) \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & &$$

 \cap

39/44

Minimum cost edge identification (1)

Possible implementations

- Scan all the nondiscarded edges: O(m)
- **2** Sort E' by nondecreasing costs:
 - build it: $O(m \log m)$
 - extract the minimum: O(1)
- 3 Maintain E' as a min-heap
 - build it: *O*(*m*)
 - extract the minimum: O(1)
 - update it: $O(\log m)$

Kruskal(V, E, c) $X := \emptyset;$ E' := E;While |X| < |V| - 1 $e^* := \arg\min_{e \in E'} c_e$ $E' := E' \setminus \{e^*\};$ If Acyclic(X \cup \{e^*\})
then $X := X \cup \{e^*\};$

(日) (四) (王) (王) (王)

40 / 44

Return (V, X);

 \rightarrow the complexity is $T \in O(m^2 + m\beta)$

Minimum cost edge identification (2)

Possible implementations

- Scan all the nondiscarded edges: O(m)
- **2** Sort E' by nondecreasing costs:
 - build it: $O(m \log m)$
 - extract the minimum: O(1)
- **3** Maintain E' as a min-heap
 - build it: *O*(*m*)
 - extract the minimum: O(1)
 - update it: $O(\log m)$

Kruskal(V, E, c) $X := \emptyset$: E' := E:Sort(E');While |X| < |V| - 1 $e^* := \operatorname{First}(E');$ $E' := E' \setminus \{e^*\}:$ If Acyclic($X \cup \{e^*\}$) then $X := X \cup \{e^*\}$: **Return** (V, X);

 \rightarrow the complexity is $T \in O(m \log m + m\beta)$

Minimum cost edge identification (3)

Possible implementations

- Scan all the nondiscarded edges: O(m)
- **2** Sort E' by nondecreasing costs:
 - build it: $O(m \log m)$
 - extract the minimum: O(1)
- 3 Maintain E' as a min-heap:
 - build it: O(m)
 - extract the minimum: O(1)
 - update it: $O(\log m)$

Kruskal(V, E, c) $X := \emptyset$: E' := E:BuildMinHeap(E'); While |X| < |V| - 1 $e^* := \text{ExtractMinimum}(E');$ $E' := E' \setminus \{e^*\}:$ Heapify (E'); If Acyclic($X \cup \{e^*\}$) then $X := X \cup \{e^*\}$; **Return** (V, X);

(ロ) (部) (注) (注) (三) (000)

42 / 44

 \rightarrow the complexity is $T \in O(m \log m + m\beta)$

Possible implementations

• Visit the graph from u^* and verify whether v^* can be reached: O(n)

2 Maintain X as a merge-find-set

- build it: *O*(*n*)
- find and compare the components of u^{*} and v^{*}:
 ≈ O(1)

• merge the components: O(1)

Kruskal(V, E, c) $X := \emptyset$: E' := E:BuildMinHeap(E'); While |X| < |V| - 1 $e^* := \text{ExtractMinimum}(E');$ $E' := E' \setminus \{e^*\}:$ Heapify (E'); If not Reachable(u^*, v^*, X) then $X := X \cup \{e^*\}$; **Return** (V, X);

 \rightarrow the complexity is $T \in O(m \log m + mn)$

 Possible implementations

- Visit the graph from u* and verify whether v* can be reached: O(n)
- **2** Maintain X as a merge-find-set
 - build it: *O*(*n*)
 - find and compare the components of u^{*} and v^{*}:
 ≈ O(1)

• merge the components: O(1)

Kruskal(V, E, c) $X := \emptyset$: $\mathcal{C} := \text{BuildMFSet}(X);$ E' := E:BuildMinHeap(E'); While |X| < |V| - 1 $e^* := \text{ExtractMinimum}(E');$ $E' := E' \setminus \{e^*\};$ Heapify (E'); If DiffComponents (u^*, v^*, C) then $X := X \cup \{e^*\};$ $Merge(u^*, v^*, C)$; **Return** (V, X);

 \rightarrow the complexity is $T \in O(m \log m)$