Foundations of Operations Research

Master of Science in Computer Engineering

Roberto Cordone
roberto.cordone@unimi.it

Tuesday 13.15 - 15.15
Thursday 10.15 - 13.15

http://homes.di.unimi.it/~cordone/courses/2014-for/2014-for.html

Lesson 4: Optimal spanning trees Como, Fall 2013J

1/44

roberto.cordone@unimi.it
http://homes.di.unimi.it/~cordone/courses/2014-for/2014-for.html

A network design model

A telecommunication company wants to build a new fiberoptic network
between some major European cities.

All cities should be connected to each other, directly or indirectly.
A set of potential connections and the cost of building each link
(proportional to the distance) are known.

Design the fiberoptic network of minimum total cost.

A natural combinatorial model is given by an
edge-weighted undirected graph (V, E, c)

e V includes the cities
e E includes the potential links
e c: E — R provides the cost of a link

We are looking for a subgraph T = (U, X)

What kind of subgraph?

2/44

A network design model

Let us denote by T = (V, X) any feasible subgraph:
e it must include all vertices: it must be spanning
® it must include a path between any pair of vertices: it must be connected

e its total cost must be minimum: X = argmin > c.
eeX

Can it include cycles?
Given a cyclic connected subgraph, remove one edge e from a cycle:
e the result is connected
o if all cycles include an edge with c. > 0, the result is not more expensive

The optimal solution includes no cycle: T = (V, X) is an acyclic subgraph

Definitions
e a forest is an acyclic graph
® a tree is an acyclic connected graph

® a spanning tree is an acyclic connected spanning subgraph

If all cycles of G include an edge e with c. > 0, T is a minimum spanning tree

3/44

Minimum spanning tree problem

Given

e an undirected connected graph G = (V, E)
with n = |V/| vertices and m = |E| edges

e a cost function c: E — R
find a subgraph T* = (U*, X*)
@ spanning: U* contains all vertices (U* = V)
® connected: X* includes a path between each pair of vertices v and v
© acyclic: X* does not contain any cycle

O of minimum total cost:
cx~ < cx forall T = (U, X) enjoying properties 1, 2 e 3

where cx = Y ce
eeX

If G includes a cycle with all edges of negative cost, the minimum
spanning tree problem is not a good model for the previous problem

But you can apply a simple adaptation: which one?

4/44

...nonspanning

T is not an optimal
solution because it is. . .

5/44

A second model: secure message transmission

Broadcast to all stations of a communication network a secret message,
minimizing the probability of interception at the links.

We model the network as a graph G = (V, E):
e vertices for the stations
e edges for the links
e a probability of interception p, € [0;1) for each edge

What is the probability of interception using a subset X of the edges?
FX)=1-[[(2-p)
ecX
i. e. the complement of the probability not to be intercepted at any link

m)gn f(X)e m)?xlog H (1—pe) = Zlog(l — pe) & m)(inZIog

1
eeX eeX eeX (1-pe)

We are looking for a connected spanning subgraph (V, X)
(nonnegative costs: the optimal subgraph is also acyclic)

6/44

A third model: compact binary sequence representation

You have a large number n of binary sequences of huge length k,
and you want to represent them in a compact way

s :[011100011101] s, : [101101011001] s5:[110100111001]
s4 :[101001111101] s :[100100111101] s :[010101011100]

An idea is to select a reference sequence and provide the
differences (“bit flips") between the other ones and it

s 1 [011100011101] s — s : [12610] s5— 5 : [13 7 10]
ss—s51:[12467] ss—s5:[1237] ss—s1:[3612]

This pays if many sequences are similar to the reference

A better idea is to allow a connected set of differences

s : [010101011100] s —s6:[3612] s — s : [126 10]
S4—52:[4710] 55—54:[346] 53—55:[210]

7/44

A third model: compact binary sequence representation

Consider a complete undirected weighted graph:
e the vertices represent sequences
e the edges represent pairs of sequences

e the cost function is the number of bit flips between two sequences

cv |l 2 3 4 5 6
110 4 4 5 4 3
2 14 0 4 3 45
314 4 05 25
4 15 3 5 0 3 6
514 4 2 3 05
6 |3 55 6 50

We look for a subgraph, which must be
e spanning, to represent all sequences
e connected, to allow reconstructing any sequence from the reference
e of minimum cost, to save memory space

Since the costs are nonnegative, the subgraph is acyclic

8/44

Useful properties on trees

A tree contains exactly one path P,, between any pair of vertices u and v

® a tree is connected = there is at least one path

® two paths form a cycle, but a tree is acyclic =
there is at most one path

Adding an edge [u, v] to a spanning tree yields exactly one cycle

® the tree spans u and v and contains a path P,, =
[u,v] U Py is a cycle = there is at least one cycle

e jf adding [u, v] yields at least two cycles,
the original tree had two different paths between
u and v (contrary to the previous thesis)
adding = [u, v] yields at most one cycle

9/44

A general scheme

The vertex set of an optimal spanning tree is obviously V

We want to build the edge set with a scheme of this kind:

@ Find a set of edges X certainly included in the edge set of an
optimal solution

® If (V, X) is an optimal solution, terminate

© Otherwise, find an edge e* such that X U {e*} is still included in the
edge set of an optimal solution and go back to point 2

The scheme provides an optimal solution in a finite number of steps,
provided that we can always find e*

The optimal spanning tree problem is one of the few problems which
admits such a scheme

How is it possible, and why?

10/ 44

A fundamental theorem

Given the following assumptions:

@ S C Vis a nonempty proper subset of vertices and
As ={[u,v] € E:|{u,v}|NS =1} is its induced cut

® e" = arg min_ c. is one of the edges of minimum cost in A (S)
ecA(S)

there exists an optimal spanning tree whose edge set includes e*

® T* = (V,X") is an optimal spanning tree and
X C X* is a subset of its edges

0 AsNX=10
there exists an optimal spanning tree whose edge set includes X U {e*}
Such a tree can be different from T*!

One can always enrich a subset of the edges of an optimal spanning tree
with a minimum cost edge of a cut not intersecting the subset

The only condition is that the graph be connected

11/44

Examples (1)

S={vi,w}

As = {(v1,v3), (v1,va), (v1, vs5), (v, v3), (v, va) }
e* = (v1,v3)

X=0

= XU {e*} = {(Vl, V3)} - X*

12/44

Examples (2)

S ={w}
As ={(v1,), (vs, v5), (va, v5)}
e* = (v3, v5)
X ={(v1,v2), (v1,3), (v3, va)}
= XU{e*} = {(v1, va), (v1, v3), (v3, va), (v3,v5)} C X*

13/44

Examples (3)

X ={(v1,v2), (v1, v3), (v3, va)}
= X U {e*} = {(V17 V2)a (Vla V3)7 (V37 V4)a (V4; VS)}
X U{e*} € X*, but it is included in another optimal spanning tree X'*

But what if you consider S = {vs} and X = {(v3, va), (v3, v5)}?

14/44

Proof (1)

There are two possible cases
@ e* € X*: since X C X*, then X U{e*} C X* and the thesis follows
@ e =[u", v ¢ X"
the optimal solution T = (V, X*) is spanning and connected

X* includes a path P,,+ between u* and v*
P,«,~ intersects Ags in at least one edge €’

adding e* to X* produces a cycle
removing e’ from this cycle yields another spanning tree
(the extreme vertices of e’ are now connected through e*)

15/ 44

Proof (2)

(V,X*U{e*} \ {€'}) is another spanning tree

and its cost is cx+ + Ce+ — Cor (Where cx+ = > ce)
eeX*

Notice that
o T =(V,X*)isoptimal = cx+ 4 Cer — Cor > Cx+ = Cer > Cer

e e* =arg min ¢, and €’ € As = ¢+ < Cor
eclAs

which implies that c.- = co (the two edges have the same cost)

The two spanning trees have equal cost: the new spanning tree is optimal

16/ 44

Proof (3)

Given a partial optimal solution (V/, X), if we find a vertex set S C V
whose induced cut Ags does not intersect X, we can augment X
obtaining a partial optimal solution (V, X U {e*})

Sooner or later, we will obtain a complete optimal solution
If As N X # (), one cannot correctly enlarge set X:

either e* € X (and X does not grow) or e* closes a cycle with X
(and the new tree includes e* and X \ {e’}, but not X)

17/44

A general scheme (revisited)

@ Set X := () (to be included in an optimal solution)
® Find a cut As not intersecting X; if there is none, terminate
© Otherwise, set X := X Uarg min ¢, and go to step 2

eclAs

The scheme works because
e X is always included in an optimal solution (theorem)
e X is augmented step by step (since As does not intersect X)
e when every cut intersects X, (V, X) is a spanning tree
= in the end, (V, X) is an optimal spanning tree

18/ 44

Algorithms

Different algorithms apply this scheme
Prim's algorithm (1957)
o S collects the extreme vertices of the edges of X

(necessarily, As does not intersect X)

at first S is a single vertex, chosen ad libitum
e e* :=arg min ¢,
eclAs

Kruskal's algorithm (1956)
o first find the minimum cost edge e* := arg min ¢
e€c E\X
o if there is a cut including e and not intersecting X, add e* to X
(i. e. if the extreme vertices of e* are disconnected in X),
otherwise, remove e* from E

19/44

Prim’s algorithm

Prim(V,E,c)
X :=0; S:={v}
While S C V
e* =[u*,v'] = arg min ce;
X =Xu{e};
S:=5SuU{uv, v} { One of the two extremes is already in S }

Return (S, X);

20/ 44

Application of Prim's algorithm (1)

Prim(V,E,c)
X:=0;S:={v};
While SCV

e’ = (u",v") = arg min c;

X =XU{e"};
S:=SuU{u", v}

Return (S, X);

X:=0;S:={wn}

e’ = (v1, va);
X = {(v1,n)};
S:={

V1,V2};

21/44

Application of Prim's algorithm (2)

Prim(V,E,c)
X:=0;, S :={v}
While SCV

* % .
e" = (u™,v") := arg min c;
(’) geeAs ¢

X =XU{e"};
S:=SuU{u", v}

Return (S, X);

X :={(vi,»)}; S :={vi,va};
e = (v, v3);

X = {(v17 v2), (vi,v3)};

S = { Vi, V2, V3};

22/44

Application of Prim’s algorithm (3)

Prim(V,E,c)

X:=0; S :={v}

While SCV
e" = (u",v") :=arg ergiAns Ce; ?f {{‘EVM v2), (VI».V3) (v,) };
X =XU{e"}; = v, v, vl

S:=SuU{u", v}
Return (S, X);

23/44

Application of Prim’s algorithm (4)

Prim(V,E,c)

X :=0; S :={v};

While SCV
" = (u",v") = arg min Ce;
X =Xu{e};
S=SuU{u", v}

Return (S, X);

= {(v1, v2), (v1, v, (v3, va)) };
=A{vi, vo, v3, s };

* = (vs, v5);

X :={(v1,v2), (v1,v3), (vs, va) , (vs, vs) };
S:=/{

Vi, V2, V3, Va, Vs};

24/44

Application of Prim'’s algorithm (5)

Prim(V,E,c)
X:=0;S:={v};
While SCV
e = (u",v") = arg min c;
X =XU{e"};
S:=SU{u", v}
Return (S, X);

25/44

Complexity of Prim’s algorithm

Prim’s algorithm consists of an initial step of complexity T;,

and a certain number iy, of iterations of complexity i(t'gr

Imax

T=Tat+ Tik
i=1

Prim(V,E, c)

X :=0;S5:={v} Tin € O(1)

While SC V imax = n — 1 (one vertex at a time)
"= (u",v") = arg 6”61215 Ces Ti(t'gr = «a (to be determined)
X :=XU{e};
S =SU{u*, v}

Return (S, X);

Overall T € O (an)

26/ 44

Minimum cost edge identification (1)

Possible implementations

@ Scan all the edges and verify which
ones belong to Ag: O (m)

@® Maintain subset Ag

e build it: O(n) Prim(V,E,c)
e find the minimum cost element: X =0, S:={v});
O (m) L '
e update it: O(n) While S CV
©® Maintain for each v € V'\ S the e = (u",v7) = arggg‘g‘s Cer
cheapest edge in As N Ay, X :=XUuU{e};
S=Su{u, v}
€ =arg [u,v]erR!;]A{v} Ce Return (S, X);

e build &: O(n)
e find the minimum é&,: O (n)
e update &,: O(n)
— the complexity of the first implementation is T € O (mn)

27/ 44

Minimum cost edge identification (2)

Possible implementations
@ Scan all the edges and verify which

ones belong to Ag: O (m) Prim(V, E, ¢)
® Maintain subset Ag X =0, S:={v}; D= Ay
* build it: O (n) While S c V
e find the minimum cost element:
0 (m) e" = (u",v") = argmeigce;
e update it: O(n) X =Xu{e};
©® Maintain for each v € V'\ S the S=5u{u", v}
cheapest edge in As N Ay, Foreach w €S
D:=D\{(w,v")}
é, = arg min Ce For each we V\S

[u,v]€AsNAL,y D— DU {(W v*)}'

o build &: O (n) Return (S, X);
e find the minimum &,: O (n)
e update &,: O(n)

— the complexity of the second implementation is T € O (mn)

28/ 44

Minimum cost edge identification (3)

Possible implementations
@ Scan all the edges and verify Prim(V, E, ¢)
which ones belong to As: O (m) X =0 S = {7}
® Maintain subset Ag ST o
For each w e V\ {v}

e build it: O(n)
e find the minimum cost element: &y = [V, w];
O (m) While S C V

e update it: O (n)
® Maintain for each v € V' \ S the
cheapest edge in As N Ay

e" = (u",v") =arg W?\I/Qs éuw;
X :=Xu{e'};
S:=Su{u, v}
&, = arg min ¢ Foreach we V\S
[u,v]eASNAL,y If cw+ <cs,

then &, := (w,v");

e build &: O(n) Return (S, X);

e find the minimum &,: O (n)
e update &,: O(n)
— the complexity of the third implementation is T € O (nz)

29/44

Kruskal's algorithm

Start with X =0

Find the minimum cost edge e* not in X and not discarded
o if there is a cut Ag including e* and not intersecting X add e* to X

Notice that it is not required to determine S, because
IScV:e*€eAsand AsNX =0 XU{e*} is acyclic
e if S, it will not exist for any larger X = discard e* permanently

Kruskal(V, E, c)
X:=0;S:=V;
E' :=E; { Not yet discarded edges }
While E' # 0

e’ 1= arg min c;

E' =E'\{e'}

If Acyclic(X U {e*}) then X := X U {e"};
Return (S, X);

30/44

Application of Kruskal's algorithm (1)

Kruskal(V, E, c)
X:=0;S:=V;
E' = E;
While E' #0)
e’ = arg min c.
E':=FE'\{e'};
If Acyclic(X U {e"})

then X := X U {e*};

Return (S, X);

e’ = (v1, va);

|E'| =8;
XU{e"} :={(v1,)} acyclic
X :={(vi,v2)};

31/44

Application of Kruskal's algorithm (2)

Kruskal(V, E, c)
X:=0;S:=V;
E' = E;
While E' # (
e’ 1= arg min ce
E' :=E\{e'};
If Acyclic(X U{e"})

then X := X U {e"};

Return (S, X);

|E'| =8;

e’ = (vs, va);

|E'| =T,

XU{e"} :={(v1,v2),(v3,va)} acyclic
X = {(v1,v), (v3,va)};

32/44

Application of Kruskal's algorithm (3)

Kruskal(V, E, c)
X:=0;S:=V;
E' = E;
While E' # (
e’ 1= arg min ce
E':=E'\{e'};
If Acyclic(X U{e"})

then X := X U {e"};

Return (S, X);

|E'| =T,

e’ = (v1, v3);

|E'| = 6;

X U {e"} acyclic

X :={(vi,v2),(vs,va),(v1,v3)};

33/44

Application of Kruskal's algorithm (4)

Kruskal(V, E, c)
X:=0;S:=V;
E' = E;
While E' #0)
e" :=arg errenEn/ Ce
E' :=E\{e'};
If Acyclic(X U{e"})
then X := X U {e"};
Return (S, X);

|E'| =6;

e’ = (w2, v3);

|E'| =5;

X U{e"} cyclic: discard e”

X :={(vi,v2),(vs,va),(v1,v3)};

34/44

Application of Kruskal's algorithm (5)

Kruskal(V, E, c)
X:=0;S:=V;
E' = E;
While E' #0)
e" :=arg errenEn/ Ce
E' :=E\{e'};
If Acyclic(X U{e"})
then X := X U {e"};
Return (S, X);

|E'| =5;

e’ = (w2, va);

|E'| = 4

X U{e"} cyclic: discard e”

X :={(vi,v2),(vs,va),(v1,v3)};

35/44

Application of Kruskal's algorithm (6)

Kruskal(V, E, c)
X:=0;S:=V;
E' = E;
While E' #0)
e" :=arg errenEn/ Ce
E' :=E\{e'};
If Acyclic(X U{e"})
then X := X U {e"};
Return (S, X);

|E'| = 4,

e’ = (v1, va);

El == {(V1> V5)) (V37 V5)) (V47 VS)};
X U{e"} cyclic: discard e”

X = {(V17 V2) ; (V37 V4)) (Vla V3)};

36/ 44

Application of Kruskal's algorithm (7)

Kruskal(V, E, c)
X:=0;S:=V;
E' = E;
While E' #0)
e" :=arg errenEn/ Ce
E' :=E\{e'};
If Acyclic(X U{e"})
then X := X U {e"};
Return (S, X);

E' = {(V17 V5)) (V37 V5)) (V47 V5)};

e’ = (vs, v5);

E'={(v1,), (va, vs) };

X U {e"} acyclic

X :={(v1i,v2),(vz,va), (va,v3),(vs, v5)};

37/44

Anticipated termination

Given a tree, a leaf is a vertex with a single incident arc

e any acyclic graph with n > 1 vertices includes at least one leaf
Proof by contradiction: otherwise, the visit of the tree would never
terminate. . .
Consequently

e an acyclic graph with n vertices has m < n — 1 edges
Proof by induction

e an acyclic graph with n =1 vertex has m = 0 leaves

e a generic acyclic graph with n > 1 vertices has a leaf;
removing it produces an acyclic graph with n’ vertices and m’ edges
(where ' =n—1and m =m-—1);
if for that graph m' <n' —1=m<n-1

Therefore Kruskal's algorithm can terminate as soon as |[X| =n—1

38/44

Complexity of Kruskal's algorithm

Kruskal's algorithm consists of an initial step of complexity Ti,

and a certain number ., Of iterations of complexity Ti(t'e)r

Imax

T = Tin + Z Tl(th
i=1

Kruskal(V, E, ¢)

X =0 Twe0(1)
E' = E; imax < m (one edge at a time)
While |X| < |V|-1) € 0(a+B)
e* :=arg erT€1|EQ Ce (v and 3 to be determined)
E' = E'\ {e*};

If Acyclic(X U{e*})
then X := X U {e*};

Return (V,X);

Overall T € O ((a +) m)

39/44

Minimum cost edge identification (1)

Possible implementations Kruskal(V, E, c)

@ Scan all the nondiscarded edges: X =0

0 (m)
® Sort E’ by nondecreasing costs:
e build it: O (mlogm)
e extract the minimum: O (1)
©® Maintain E’ as a min-heap
e build it: O(m)
e extract the minimum: O (1)
e update it: O (log m)

E' :=E:
While [X| < |V| -1
e’ 1= arg min ce
E':=E\{e'}
If Acyclic(X U {e"})
then X := XU {e"};

Return (V,X);

— the complexity is T € O (m2 + mo’)

40/44

Minimum cost edge identification (2)

Possible implementations Kruskal(V, E, c)

© Scan all the nondiscarded edges: X =0
0 (m) E' :=E;
® Sort E’ by nondecreasing costs: Sort(E");
e build it: O (mlogm) While |X| < |V|—1
o. ext.ract the m|n|r'num: 0(1) e* = First (E');
® Maintain E’ as a min-heap E=E\{e};
e build it: O(m) If Acyclic(X U {e*})
e extract the minimum: O (1) then X := X U {e*};

e update it: O (logm) Return (V, X);

— the complexity is T € O (mlog m+ mf3)

a1/44

Minimum cost edge identification (3)

Kruskal(V, E, c)
Possible implementations X = 0

@ Scan all the nondiscarded edges: £ E
0 (m) - ,

@® Sort E’ by nondecreasing costs: BuildMinHeap(E");

e build it: O (mlogm) While |X| <[V[-1

e extract the minimum: O (1) e* := ExtractMinimum (E");
® Maintain E’ as a min-heap: Ilj_ll 3:.fE/(\Ei)e*};

e build it: O(m CabLy AL)i

e extract the(mi)nimum: 0 (1) If Acyclic(X U {e’})

e update it: O (log m) then X := X U {e"};

Return (V, X);

— the complexity is T € O (mlog m + mf3)

42/44

Acyclicity test (1)

Kruskal(V, E, c)

Possible implementations X =0
@ Visit the graph from v* and verify E':=F;
whether v* can be reached: O (n) BuildMinHeap(E’);
® Maintain X as a merge-find-set While |X| < |V|—-1
e build it: O (n) e* := ExtractMinimum (E’);
e find and compare the E = E'\ {e*};
components of u™ and v*: Heapify (E');
~ 0(1) If not Reachable(u™, v, X)

merge the components: O (1) then X = X U {e*}:
Return (V, X);

— the complexity is T € O (mlog m + mn)

43/44

Acyclicity test (2)

Possible implementations

@ Visit the graph from u* and verify
whether v* can be reached: O (n)
® Maintain X as a merge-find-set
e build it: O(n)
e find and compare the
components of u™ and v*:
~ 0(1)

e merge the components: O (1)

Kruskal(V, E, c)

X =0
C := BuildMFSet(X);
E' = E;

BuildMinHeap(E’);
While [X] < |V|—1

e* := ExtractMinimum (E’);

E':=E\{e}

Heapify (E’);

If DiffComponents(u*, v*,C)
then X := XU {e"};
Merge(u™, v*,C);

Return (V,X);

— the complexity is T € O (mlog m)

44/44

