
Foundations of Operations Research
Master of Science in Computer Engineering

Roberto Cordone
roberto.cordone@unimi.it

Tuesday 13.15 - 15.15

Thursday 10.15 - 13.15

http://homes.di.unimi.it/~cordone/courses/2014-for/2014-for.html

Lesson 4: Optimal spanning trees Como, Fall 2013

1 / 44

roberto.cordone@unimi.it
http://homes.di.unimi.it/~cordone/courses/2014-for/2014-for.html

A network design model

A telecommunication company wants to build a new fiberoptic network
between some major European cities.

All cities should be connected to each other, directly or indirectly.
A set of potential connections and the cost of building each link
(proportional to the distance) are known.

Design the fiberoptic network of minimum total cost.

A natural combinatorial model is given by an
edge-weighted undirected graph (V ,E , c)

• V includes the cities

• E includes the potential links

• c : E → R+ provides the cost of a link

We are looking for a subgraph T = (U,X)

What kind of subgraph?

2 / 44

A network design model

Let us denote by T = (V ,X) any feasible subgraph:

• it must include all vertices: it must be spanning

• it must include a path between any pair of vertices: it must be connected

• its total cost must be minimum: X = arg min
∑
e∈X

ce

Can it include cycles?

Given a cyclic connected subgraph, remove one edge e from a cycle:

• the result is connected

• if all cycles include an edge with ce ≥ 0, the result is not more expensive

The optimal solution includes no cycle: T = (V ,X) is an acyclic subgraph

Definitions

• a forest is an acyclic graph

• a tree is an acyclic connected graph

• a spanning tree is an acyclic connected spanning subgraph

If all cycles of G include an edge e with ce ≥ 0, T is a minimum spanning tree

3 / 44

Minimum spanning tree problem

Given

• an undirected connected graph G = (V ,E)
with n = |V | vertices and m = |E | edges

• a cost function c : E → R
find a subgraph T ∗ = (U∗,X ∗)

1 spanning: U∗ contains all vertices (U∗ = V)

2 connected: X ∗ includes a path between each pair of vertices u and v

3 acyclic: X ∗ does not contain any cycle

4 of minimum total cost:

cX∗ ≤ cX for all T = (U,X) enjoying properties 1, 2 e 3

where cX =
∑
e∈X

ce

If G includes a cycle with all edges of negative cost, the minimum
spanning tree problem is not a good model for the previous problem

But you can apply a simple adaptation: which one?

4 / 44

Examples

. . . nonspanning . . . cyclic

T is not an optimal
solution because it is. . .

. . . nonconnected . . . nonminimal (cX = 4) T∗ is optimal (cX∗ = 3)

5 / 44

A second model: secure message transmission

Broadcast to all stations of a communication network a secret message,
minimizing the probability of interception at the links.

We model the network as a graph G = (V ,E):

• vertices for the stations

• edges for the links

• a probability of interception pe ∈ [0; 1) for each edge

What is the probability of interception using a subset X of the edges?

f (X) = 1−
∏
e∈X

(1− pe)

i. e. the complement of the probability not to be intercepted at any link

min
X

f (X)⇔ max
X

log
∏
e∈X

(1− pe) =
∑
e∈X

log (1− pe)⇔ min
X

∑
e∈X

log
1

(1− pe)

We are looking for a connected spanning subgraph (V ,X)
(nonnegative costs: the optimal subgraph is also acyclic)

6 / 44

A third model: compact binary sequence representation

You have a large number n of binary sequences of huge length k,
and you want to represent them in a compact way

s1 : [011100011101] s2 : [101101011001] s3 : [110100111001]
s4 : [101001111101] s5 : [100100111101] s6 : [010101011100]

An idea is to select a reference sequence and provide the
differences (“bit flips”) between the other ones and it

s1 : [011100011101] s2 − s1 : [1 2 6 10] s3 − s1 : [1 3 7 10]
s4 − s1 : [1 2 4 6 7] s5 − s1 : [1 2 3 7] s6 − s1 : [3 6 12]

This pays if many sequences are similar to the reference

A better idea is to allow a connected set of differences

s6 : [010101011100] s1 − s6 : [3 6 12] s2 − s1 : [1 2 6 10]
s4 − s2 : [4 7 10] s5 − s4 : [3 4 6] s3 − s5 : [2 10]

7 / 44

A third model: compact binary sequence representation

Consider a complete undirected weighted graph:

• the vertices represent sequences

• the edges represent pairs of sequences

• the cost function is the number of bit flips between two sequences

cuv 1 2 3 4 5 6
1 0 4 4 5 4 3
2 4 0 4 3 4 5
3 4 4 0 5 2 5
4 5 3 5 0 3 6
5 4 4 2 3 0 5
6 3 5 5 6 5 0

We look for a subgraph, which must be

• spanning, to represent all sequences

• connected, to allow reconstructing any sequence from the reference

• of minimum cost, to save memory space

Since the costs are nonnegative, the subgraph is acyclic

8 / 44

Useful properties on trees

A tree contains exactly one path Puv between any pair of vertices u and v

• a tree is connected ⇒ there is at least one path

• two paths form a cycle, but a tree is acyclic ⇒
there is at most one path

Adding an edge [u, v] to a spanning tree yields exactly one cycle

• the tree spans u and v and contains a path Puv ⇒
[u, v] ∪ Puv is a cycle ⇒ there is at least one cycle

• if adding [u, v] yields at least two cycles,
the original tree had two different paths between
u and v (contrary to the previous thesis)
adding ⇒ [u, v] yields at most one cycle

9 / 44

A general scheme

The vertex set of an optimal spanning tree is obviously V

We want to build the edge set with a scheme of this kind:

1 Find a set of edges X certainly included in the edge set of an
optimal solution

2 If (V ,X) is an optimal solution, terminate

3 Otherwise, find an edge e∗ such that X ∪ {e∗} is still included in the
edge set of an optimal solution and go back to point 2

The scheme provides an optimal solution in a finite number of steps,
provided that we can always find e∗

The optimal spanning tree problem is one of the few problems which
admits such a scheme

How is it possible, and why?

10 / 44

A fundamental theorem

Given the following assumptions:

1 S ⊂ V is a nonempty proper subset of vertices and
∆S = {[u, v] ∈ E : |{u, v}| ∩ S = 1} is its induced cut

2 e∗ = arg min
e∈∆(S)

ce is one of the edges of minimum cost in ∆ (S)

there exists an optimal spanning tree whose edge set includes e∗

3 T ∗ = (V ,X ∗) is an optimal spanning tree and
X ⊆ X ∗ is a subset of its edges

4 ∆S ∩ X = ∅
there exists an optimal spanning tree whose edge set includes X ∪ {e∗}

Such a tree can be different from T ∗!

One can always enrich a subset of the edges of an optimal spanning tree
with a minimum cost edge of a cut not intersecting the subset

The only condition is that the graph be connected

11 / 44

Examples (1)

S , ∆S , e∗, X T ∗

S = {v1, v2}

∆S = {(v1, v3), (v1, v4), (v1, v5), (v2, v3), (v2, v4)}

e∗ = (v1, v3)

X = ∅

⇒ X ∪ {e∗} = {(v1, v3)} ⊆ X ∗

12 / 44

Examples (2)

S , ∆S , e∗, X T ∗

S = {v5}

∆S = {(v1, v5), (v3, v5), (v4, v5)}

e∗ = (v3, v5)

X = {(v1, v2), (v1, v3), (v3, v4)}

⇒ X ∪ {e∗} = {(v1, v2), (v1, v3), (v3, v4), (v3, v5)} ⊆ X ∗

13 / 44

Examples (3)

S , ∆S , e∗, X T ∗

S = {v5}

∆S = {(v1, v5), (v3, v5), (v4, v5)}

e∗ = (v4, v5)

X = {(v1, v2), (v1, v3), (v3, v4)}

⇒ X ∪ {e∗} = {(v1, v2), (v1, v3), (v3, v4), (v4, v5)}

X ∪ {e∗} * X ∗, but it is included in another optimal spanning tree X ′∗

But what if you consider S = {v5} and X = {(v3, v4), (v3, v5)}?
14 / 44

Proof (1)

There are two possible cases

1 e∗ ∈ X ∗: since X ⊆ X ∗, then X ∪ {e∗} ⊆ X ∗ and the thesis follows

2 e∗ = [u∗, v∗] /∈ X ∗:
the optimal solution T = (V ,X ∗) is spanning and connected
X ∗ includes a path Pu∗v∗ between u∗ and v∗

Pu∗v∗ intersects ∆S in at least one edge e′

adding e∗ to X ∗ produces a cycle
removing e′ from this cycle yields another spanning tree
(the extreme vertices of e′ are now connected through e∗)

15 / 44

Proof (2)

(V ,X ∗ ∪ {e∗} \ {e′}) is another spanning tree
and its cost is cX∗ + ce∗ − ce′ (where cX∗ =

∑
e∈X∗

ce)

Notice that

• T = (V ,X ∗) is optimal ⇒ cX∗ + ce∗ − ce′ ≥ cX∗ ⇒ ce∗ ≥ ce′

• e∗ = arg min
e∈∆S

ce and e′ ∈ ∆S ⇒ ce∗ ≤ ce′

which implies that ce∗ = ce′ (the two edges have the same cost)

The two spanning trees have equal cost: the new spanning tree is optimal

16 / 44

Proof (3)

Given a partial optimal solution (V ,X), if we find a vertex set S ⊂ V
whose induced cut ∆S does not intersect X , we can augment X
obtaining a partial optimal solution (V ,X ∪ {e∗})

Sooner or later, we will obtain a complete optimal solution

If ∆S ∩ X 6= ∅, one cannot correctly enlarge set X :
either e∗ ∈ X (and X does not grow) or e∗ closes a cycle with X
(and the new tree includes e∗ and X \ {e′}, but not X)

17 / 44

A general scheme (revisited)

1 Set X := ∅ (to be included in an optimal solution)

2 Find a cut ∆S not intersecting X ; if there is none, terminate

3 Otherwise, set X := X ∪ arg min
e∈∆S

ce and go to step 2

The scheme works because

• X is always included in an optimal solution (theorem)

• X is augmented step by step (since ∆S does not intersect X)

• when every cut intersects X , (V ,X) is a spanning tree

⇒ in the end, (V ,X) is an optimal spanning tree

18 / 44

Algorithms

Different algorithms apply this scheme

Prim’s algorithm (1957)

• S collects the extreme vertices of the edges of X
(necessarily, ∆S does not intersect X)
at first S is a single vertex, chosen ad libitum

• e∗ := arg min
e∈∆S

ce

Kruskal’s algorithm (1956)

• first find the minimum cost edge e∗ := arg min
e∈E\X

ce

• if there is a cut including e and not intersecting X , add e∗ to X
(i. e. if the extreme vertices of e∗ are disconnected in X),
otherwise, remove e∗ from E

19 / 44

Prim’s algorithm

Prim(V ,E , c)

X := ∅; S := {v̄};
While S ⊂ V

e∗ = [u∗, v∗] := arg min
e∈∆S

ce ;

X := X ∪ {e∗};
S := S ∪ {u∗, v∗}; { One of the two extremes is already in S }

Return (S ,X);

20 / 44

Application of Prim’s algorithm (1)

Prim(V ,E , c)

X := ∅; S := {v̄};
While S ⊂ V

e∗ := (u∗, v∗) := arg min
e∈∆S

ce ;

X := X ∪ {e∗};
S := S ∪ {u∗, v∗};

Return (S ,X);

X := ∅; S := {v1};

e∗ := (v1, v2);

X := {(v1, v2)};
S := {v1, v2};

21 / 44

Application of Prim’s algorithm (2)

Prim(V ,E , c)

X := ∅; S := {v̄};
While S ⊂ V

e∗ := (u∗, v∗) := arg min
e∈∆S

ce ;

X := X ∪ {e∗};
S := S ∪ {u∗, v∗};

Return (S ,X);

X := {(v1, v2)}; S := {v1, v2};
e∗ := (v1, v3);

X := {(v1, v2) , (v1, v3)};
S := {v1, v2, v3};

22 / 44

Application of Prim’s algorithm (3)

Prim(V ,E , c)

X := ∅; S := {v̄};
While S ⊂ V

e∗ := (u∗, v∗) := arg min
e∈∆S

ce ;

X := X ∪ {e∗};
S := S ∪ {u∗, v∗};

Return (S ,X);

X := {(v1, v2) , (v1, v3)};
S := {v1, v2, v3};
e∗ := (v3, v4);

X := {(v1, v2) , (v1, v3) , (v3, v4)};
S := {v1, v2, v3, v4};

23 / 44

Application of Prim’s algorithm (4)

Prim(V ,E , c)

X := ∅; S := {v̄};
While S ⊂ V

e∗ := (u∗, v∗) := arg min
e∈∆S

ce ;

X := X ∪ {e∗};
S := S ∪ {u∗, v∗};

Return (S ,X);

X := {(v1, v2) , (v1, v3, (v3, v4))};
S := {v1, v2, v3, v4};
e∗ := (v3, v5);

X := {(v1, v2) , (v1, v3) , (v3, v4) , (v3, v5)};
S := {v1, v2, v3, v4, v5};

24 / 44

Application of Prim’s algorithm (5)

Prim(V ,E , c)

X := ∅; S := {v̄};
While S ⊂ V

e∗ = (u∗, v∗) := arg min
e∈∆S

ce ;

X := X ∪ {e∗};
S := S ∪ {u∗, v∗};

Return (S ,X);

X := {(v1, v2) , (v1, v3, (v3, v4)) , (v3, v5)};
S := {v1, v2, v3, v4, v5} = V ;

25 / 44

Complexity of Prim’s algorithm

Prim’s algorithm consists of an initial step of complexity Tin

and a certain number imax of iterations of complexity T
(i)
iter

T = Tin +
imax∑
i=1

T
(i)
iter

Prim(V ,E , c)

X := ∅; S := {v̄};
While S ⊂ V

e∗ := (u∗, v∗) := arg min
e∈∆S

ce ;

X := X ∪ {e∗};
S := S ∪ {u∗, v∗};

Return (S ,X);

Tin ∈ O (1)

imax = n − 1 (one vertex at a time)

T
(i)
iter = α (to be determined)

Overall T ∈ O (αn)

26 / 44

Minimum cost edge identification (1)

Possible implementations

1 Scan all the edges and verify which
ones belong to ∆S : O (m)

2 Maintain subset ∆S

• build it: O (n)
• find the minimum cost element:

O (m)
• update it: O (n)

3 Maintain for each v ∈ V \ S the
cheapest edge in ∆S ∩∆{v}

ẽv = arg min
[u,v]∈∆S∩∆{v}

ce

• build ẽv : O (n)
• find the minimum ẽv : O (n)
• update ẽv : O (n)

Prim(V ,E , c)

X := ∅; S := {v̄};
While S ⊂ V

e∗ = (u∗, v∗) := arg min
e∈∆S

ce ;

X := X ∪ {e∗};
S := S ∪ {u∗, v∗};

Return (S ,X);

→ the complexity of the first implementation is T ∈ O (mn)

27 / 44

Minimum cost edge identification (2)

Possible implementations

1 Scan all the edges and verify which
ones belong to ∆S : O (m)

2 Maintain subset ∆S

• build it: O (n)
• find the minimum cost element:

O (m)
• update it: O (n)

3 Maintain for each v ∈ V \ S the
cheapest edge in ∆S ∩∆{v}

ẽv = arg min
[u,v]∈∆S∩∆{v}

ce

• build ẽv : O (n)
• find the minimum ẽv : O (n)
• update ẽv : O (n)

Prim(V ,E , c)

X := ∅; S := {v̄}; D := ∆v̄ ;

While S ⊂ V

e∗ = (u∗, v∗) := arg min
e∈D

ce ;

X := X ∪ {e∗};
S := S ∪ {u∗, v∗};
For each w ∈ S

D := D \ {(w , v∗)};
For each w ∈ V \ S

D := D ∪ {(w , v∗)};
Return (S ,X);

→ the complexity of the second implementation is T ∈ O (mn)

28 / 44

Minimum cost edge identification (3)

Possible implementations

1 Scan all the edges and verify
which ones belong to ∆S : O (m)

2 Maintain subset ∆S

• build it: O (n)
• find the minimum cost element:

O (m)
• update it: O (n)

3 Maintain for each v ∈ V \ S the
cheapest edge in ∆S ∩∆{v}

ẽv = arg min
[u,v]∈∆S∩∆{v}

ce

• build ẽv : O (n)
• find the minimum ẽv : O (n)
• update ẽv : O (n)

Prim(V ,E , c)

X := ∅; S := {v̄};
For each w ∈ V \ {v̄}

ẽw := [v̄ ,w];

While S ⊂ V

e∗ = (u∗, v∗) := arg min
w∈V\S

ẽw ;

X := X ∪ {e∗};
S := S ∪ {u∗, v∗};
For each w ∈ V \ S

If cwv∗ < cẽw

then ẽw := (w , v∗);

Return (S ,X);

→ the complexity of the third implementation is T ∈ O
(
n2
)

29 / 44

Kruskal’s algorithm

Start with X = ∅

Find the minimum cost edge e∗ not in X and not discarded

• if there is a cut ∆S including e∗ and not intersecting X add e∗ to X

Notice that it is not required to determine S , because

∃S ⊂ V : e∗ ∈ ∆S and ∆S ∩ X = ∅ ⇔ X ∪ {e∗} is acyclic

• if @S , it will not exist for any larger X ⇒ discard e∗ permanently

Kruskal(V ,E , c)

X := ∅; S := V ;

E ′ := E ; { Not yet discarded edges }
While E ′ 6= ∅

e∗ := arg min
e∈E ′

ce ;

E ′ := E ′ \ {e∗};
If Acyclic(X ∪ {e∗}) then X := X ∪ {e∗};

Return (S ,X);

30 / 44

Application of Kruskal’s algorithm (1)

Kruskal(V ,E , c)

X := ∅; S := V ;

E ′ := E ;

While E ′ 6= ∅
e∗ := arg min

e∈E ′
ce

E ′ := E ′ \ {e∗};
If Acyclic(X ∪ {e∗})

then X := X ∪ {e∗};
Return (S ,X);

X := ∅;
|E ′| = 9;

e∗ := (v1, v2);

|E ′| = 8;

X ∪ {e∗} := {(v1, v2)} acyclic

X := {(v1, v2)};

31 / 44

Application of Kruskal’s algorithm (2)

Kruskal(V ,E , c)

X := ∅; S := V ;

E ′ := E ;

While E ′ 6= ∅
e∗ := arg min

e∈E ′
ce

E ′ := E ′ \ {e∗};
If Acyclic(X ∪ {e∗})

then X := X ∪ {e∗};
Return (S ,X);

|E ′| = 8;

e∗ := (v3, v4);

|E ′| = 7;

X ∪ {e∗} := {(v1, v2) , (v3, v4)} acyclic

X := {(v1, v2) , (v3, v4)};

32 / 44

Application of Kruskal’s algorithm (3)

Kruskal(V ,E , c)

X := ∅; S := V ;

E ′ := E ;

While E ′ 6= ∅
e∗ := arg min

e∈E ′
ce

E ′ := E ′ \ {e∗};
If Acyclic(X ∪ {e∗})

then X := X ∪ {e∗};
Return (S ,X);

|E ′| = 7;

e∗ := (v1, v3);

|E ′| = 6;

X ∪ {e∗} acyclic

X := {(v1, v2) , (v3, v4) , (v1, v3)};

33 / 44

Application of Kruskal’s algorithm (4)

Kruskal(V ,E , c)

X := ∅; S := V ;

E ′ := E ;

While E ′ 6= ∅
e∗ := arg min

e∈E ′
ce

E ′ := E ′ \ {e∗};
If Acyclic(X ∪ {e∗})

then X := X ∪ {e∗};
Return (S ,X);

|E ′| = 6;

e∗ := (v2, v3);

|E ′| = 5;

X ∪ {e∗} cyclic: discard e∗

X := {(v1, v2) , (v3, v4) , (v1, v3)};

34 / 44

Application of Kruskal’s algorithm (5)

Kruskal(V ,E , c)

X := ∅; S := V ;

E ′ := E ;

While E ′ 6= ∅
e∗ := arg min

e∈E ′
ce

E ′ := E ′ \ {e∗};
If Acyclic(X ∪ {e∗})

then X := X ∪ {e∗};
Return (S ,X);

|E ′| = 5;

e∗ := (v2, v4);

|E ′| = 4;

X ∪ {e∗} cyclic: discard e∗

X := {(v1, v2) , (v3, v4) , (v1, v3)};

35 / 44

Application of Kruskal’s algorithm (6)

Kruskal(V ,E , c)

X := ∅; S := V ;

E ′ := E ;

While E ′ 6= ∅
e∗ := arg min

e∈E ′
ce

E ′ := E ′ \ {e∗};
If Acyclic(X ∪ {e∗})

then X := X ∪ {e∗};
Return (S ,X);

|E ′| = 4;

e∗ := (v1, v4);

E ′ = {(v1, v5) , (v3, v5) , (v4, v5)};
X ∪ {e∗} cyclic: discard e∗

X := {(v1, v2) , (v3, v4) , (v1, v3)};

36 / 44

Application of Kruskal’s algorithm (7)

Kruskal(V ,E , c)

X := ∅; S := V ;

E ′ := E ;

While E ′ 6= ∅
e∗ := arg min

e∈E ′
ce

E ′ := E ′ \ {e∗};
If Acyclic(X ∪ {e∗})

then X := X ∪ {e∗};
Return (S ,X);

E ′ = {(v1, v5) , (v3, v5) , (v4, v5)};

e∗ := (v3, v5);

E ′ = {(v1, v5) , (v4, v5)};
X ∪ {e∗} acyclic

X := {(v1, v2) , (v3, v4) , (v1, v3) , (v3, v5)};

37 / 44

Anticipated termination

Given a tree, a leaf is a vertex with a single incident arc

• any acyclic graph with n > 1 vertices includes at least one leaf

Proof by contradiction: otherwise, the visit of the tree would never
terminate. . .

Consequently

• an acyclic graph with n vertices has m ≤ n − 1 edges

Proof by induction

• an acyclic graph with n = 1 vertex has m = 0 leaves

• a generic acyclic graph with n > 1 vertices has a leaf;
removing it produces an acyclic graph with n′ vertices and m′ edges
(where n′ = n − 1 and m′ = m − 1);
if for that graph m′ ≤ n′ − 1⇒ m ≤ n − 1

Therefore Kruskal’s algorithm can terminate as soon as |X | = n − 1

38 / 44

Complexity of Kruskal’s algorithm

Kruskal’s algorithm consists of an initial step of complexity Tin

and a certain number imax of iterations of complexity T
(i)
iter

T = Tin +
imax∑
i=1

T
(i)
iter

Kruskal(V ,E , c)

X := ∅;
E ′ := E ;

While |X | < |V | − 1

e∗ := arg min
e∈E ′

ce

E ′ := E ′ \ {e∗};
If Acyclic(X ∪ {e∗})
then X := X ∪ {e∗};

Return (V ,X);

Tin ∈ O (1)

imax ≤ m (one edge at a time)

T
(i)
iter ∈ O (α + β)

(α and β to be determined)

Overall T ∈ O ((α + β)m)

39 / 44

Minimum cost edge identification (1)

Possible implementations

1 Scan all the nondiscarded edges:
O (m)

2 Sort E ′ by nondecreasing costs:
• build it: O (m logm)
• extract the minimum: O (1)

3 Maintain E ′ as a min-heap
• build it: O (m)
• extract the minimum: O (1)
• update it: O (logm)

Kruskal(V ,E , c)

X := ∅;
E ′ := E ;

While |X | < |V | − 1

e∗ := arg min
e∈E ′

ce

E ′ := E ′ \ {e∗};
If Acyclic(X ∪ {e∗})

then X := X ∪ {e∗};
Return (V ,X);

→ the complexity is T ∈ O
(
m2 + mβ

)

40 / 44

Minimum cost edge identification (2)

Possible implementations

1 Scan all the nondiscarded edges:
O (m)

2 Sort E ′ by nondecreasing costs:
• build it: O (m logm)
• extract the minimum: O (1)

3 Maintain E ′ as a min-heap
• build it: O (m)
• extract the minimum: O (1)
• update it: O (logm)

Kruskal(V ,E , c)

X := ∅;
E ′ := E ;

Sort(E ′);

While |X | < |V | − 1

e∗ := First (E ′);
E ′ := E ′ \ {e∗};
If Acyclic(X ∪ {e∗})

then X := X ∪ {e∗};
Return (V ,X);

→ the complexity is T ∈ O (m logm + mβ)

41 / 44

Minimum cost edge identification (3)

Possible implementations

1 Scan all the nondiscarded edges:
O (m)

2 Sort E ′ by nondecreasing costs:
• build it: O (m logm)
• extract the minimum: O (1)

3 Maintain E ′ as a min-heap:
• build it: O (m)
• extract the minimum: O (1)
• update it: O (logm)

Kruskal(V ,E , c)

X := ∅;
E ′ := E ;

BuildMinHeap(E ′);

While |X | < |V | − 1

e∗ := ExtractMinimum (E ′);
E ′ := E ′ \ {e∗};
Heapify (E ′);
If Acyclic(X ∪ {e∗})

then X := X ∪ {e∗};
Return (V ,X);

→ the complexity is T ∈ O (m logm + mβ)

42 / 44

Acyclicity test (1)

Possible implementations

1 Visit the graph from u∗ and verify
whether v∗ can be reached: O (n)

2 Maintain X as a merge-find-set
• build it: O (n)
• find and compare the

components of u∗ and v∗:
≈ O (1)

• merge the components: O (1)

Kruskal(V ,E , c)

X := ∅;
E ′ := E ;

BuildMinHeap(E ′);

While |X | < |V | − 1

e∗ := ExtractMinimum (E ′);
E ′ := E ′ \ {e∗};
Heapify (E ′);
If not Reachable(u∗, v∗,X)

then X := X ∪ {e∗};
Return (V ,X);

→ the complexity is T ∈ O (m logm + mn)

43 / 44

Acyclicity test (2)

Possible implementations

1 Visit the graph from u∗ and verify
whether v∗ can be reached: O (n)

2 Maintain X as a merge-find-set
• build it: O (n)
• find and compare the

components of u∗ and v∗:
≈ O (1)

• merge the components: O (1)

Kruskal(V ,E , c)

X := ∅;
C := BuildMFSet(X);

E ′ := E ;

BuildMinHeap(E ′);

While |X | < |V | − 1

e∗ := ExtractMinimum (E ′);
E ′ := E ′ \ {e∗};
Heapify (E ′);
If DiffComponents(u∗, v∗, C)

then X := X ∪ {e∗};

Merge(u∗, v∗, C);

Return (V ,X);

→ the complexity is T ∈ O (m logm)

44 / 44

