Foundations of Operations Research

Master of Science in Computer Engineering

Roberto Cordone
roberto.cordone@unimi.it

Tuesday 13.15-15.15
Thursday 10.15-13.15
http://homes.di.unimi.it/~cordone/courses/2014-for/2014-for.html

Lesson 4: Optimal spanning trees

A network design model

A telecommunication company wants to build a new fiberoptic network between some major European cities.

All cities should be connected to each other, directly or indirectly. A set of potential connections and the cost of building each link (proportional to the distance) are known.

Design the fiberoptic network of minimum total cost.

A natural combinatorial model is given by an edge-weighted undirected graph (V, E, c)

- V includes the cities
- E includes the potential links
- $c: E \rightarrow \mathbb{R}^{+}$provides the cost of a link

We are looking for a subgraph $T=(U, X)$
What kind of subgraph?

A network design model

Let us denote by $T=(V, X)$ any feasible subgraph:

- it must include all vertices: it must be spanning
- it must include a path between any pair of vertices: it must be connected
- its total cost must be minimum: $X=\arg \min \sum_{e \in X} c_{e}$

Can it include cycles?
Given a cyclic connected subgraph, remove one edge e from a cycle:

- the result is connected
- if all cycles include an edge with $c_{e} \geq 0$, the result is not more expensive

The optimal solution includes no cycle: $T=(V, X)$ is an acyclic subgraph
Definitions

- a forest is an acyclic graph
- a tree is an acyclic connected graph
- a spanning tree is an acyclic connected spanning subgraph

If all cycles of G include an edge e with $c_{e} \geq 0, T$ is a minimum spanning tree

Minimum spanning tree problem

Given

- an undirected connected graph $G=(V, E)$ with $n=|V|$ vertices and $m=|E|$ edges
- a cost function $c: E \rightarrow \mathbb{R}$
find a subgraph $T^{*}=\left(U^{*}, X^{*}\right)$
(1) spanning: U^{*} contains all vertices $\left(U^{*}=V\right)$
(2) connected: X^{*} includes a path between each pair of vertices u and v
(3) acyclic: X^{*} does not contain any cycle
(4) of minimum total cost:

$$
c_{X^{*}} \leq c_{X} \text { for all } T=(U, X) \text { enjoying properties } 1,2 \text { e } 3
$$

where $c_{X}=\sum_{e \in X} c_{e}$
If G includes a cycle with all edges of negative cost, the minimum spanning tree problem is not a good model for the previous problem

But you can apply a simple adaptation: which one?

Examples

... nonspanning

T is not an optimal solution because it is. . .

T^{*} is optimal $\left(c_{X^{*}}=3\right)$

A second model: secure message transmission

Broadcast to all stations of a communication network a secret message, minimizing the probability of interception at the links.

We model the network as a graph $G=(V, E)$:

- vertices for the stations
- edges for the links
- a probability of interception $p_{e} \in[0 ; 1)$ for each edge

What is the probability of interception using a subset X of the edges?

$$
f(X)=1-\prod_{e \in X}\left(1-p_{e}\right)
$$

i. e. the complement of the probability not to be intercepted at any link
$\min _{X} f(X) \Leftrightarrow \max _{X} \log \prod_{e \in X}\left(1-p_{e}\right)=\sum_{e \in X} \log \left(1-p_{e}\right) \Leftrightarrow \min _{X} \sum_{e \in X} \log \frac{1}{\left(1-p_{e}\right)}$
We are looking for a connected spanning subgraph (V, X) (nonnegative costs: the optimal subgraph is also acyclic)

A third model: compact binary sequence representation

You have a large number n of binary sequences of huge length k, and you want to represent them in a compact way

$$
\begin{array}{lll}
s_{1}:[011100011101] & s_{2}:[101101011001] & s_{3}:[110100111001] \\
s_{4}:[101001111101] & s_{5}:[100100111101] & s_{6}:[010101011100]
\end{array}
$$

An idea is to select a reference sequence and provide the differences ("bit flips") between the other ones and it

$$
\left.\begin{array}{lll}
s_{1}:\left[\begin{array}{lll}
011100011101
\end{array}\right] & s_{2}-s_{1}:\left[\begin{array}{llll}
1 & 2 & 6 & 1
\end{array}\right] & s_{3}-s_{1}:\left[\begin{array}{lll}
1 & 3 & 7
\end{array}\right]
\end{array}\right]
$$

This pays if many sequences are similar to the reference
A better idea is to allow a connected set of differences

$$
\left.\begin{array}{lll}
s_{6}:\left[\begin{array}{lll}
010101011100
\end{array}\right] & s_{1}-s_{6}:\left[\begin{array}{lll}
3 & 6 & 12
\end{array}\right] & s_{2}-s_{1}:\left[\begin{array}{lll}
1 & 2 & 6
\end{array} 10\right.
\end{array}\right]
$$

A third model: compact binary sequence representation

Consider a complete undirected weighted graph:

- the vertices represent sequences
- the edges represent pairs of sequences
- the cost function is the number of bit flips between two sequences

$c_{u v}$	1	2	3	4	5	6
1	0	4	4	5	4	3
2	4	0	4	3	4	5
3	4	4	0	5	2	5
4	5	3	5	0	3	6
5	4	4	2	3	0	5
6	3	5	5	6	5	0

We look for a subgraph, which must be

- spanning, to represent all sequences
- connected, to allow reconstructing any sequence from the reference
- of minimum cost, to save memory space

Since the costs are nonnegative, the subgraph is acyclic

Useful properties on trees

A tree contains exactly one path $P_{u v}$ between any pair of vertices u and v

- a tree is connected \Rightarrow there is at least one path
- two paths form a cycle, but a tree is acyclic \Rightarrow there is at most one path

Adding an edge $[u, v]$ to a spanning tree yields exactly one cycle

- the tree spans u and v and contains a path $P_{u v} \Rightarrow$ $[u, v] \cup P_{u v}$ is a cycle \Rightarrow there is at least one cycle
- if adding $[u, v]$ yields at least two cycles, the original tree had two different paths between u and v (contrary to the previous thesis) adding $\Rightarrow[u, v]$ yields at most one cycle

A general scheme

The vertex set of an optimal spanning tree is obviously V
We want to build the edge set with a scheme of this kind:
(1) Find a set of edges X certainly included in the edge set of an optimal solution
(2) If (V, X) is an optimal solution, terminate
(3) Otherwise, find an edge e^{*} such that $X \cup\left\{e^{*}\right\}$ is still included in the edge set of an optimal solution and go back to point 2

The scheme provides an optimal solution in a finite number of steps, provided that we can always find e^{*}

The optimal spanning tree problem is one of the few problems which admits such a scheme

How is it possible, and why?

A fundamental theorem

Given the following assumptions:
(1) $S \subset V$ is a nonempty proper subset of vertices and $\Delta_{S}=\{[u, v] \in E:|\{u, v\}| \cap S=1\}$ is its induced cut
(2) $e^{*}=\arg \min _{e \in \Delta(S)} c_{e}$ is one of the edges of minimum cost in $\Delta(S)$
there exists an optimal spanning tree whose edge set includes e^{*}
(3) $T^{*}=\left(V, X^{*}\right)$ is an optimal spanning tree and $X \subseteq X^{*}$ is a subset of its edges
(4) $\Delta_{S} \cap X=\emptyset$
there exists an optimal spanning tree whose edge set includes $X \cup\left\{e^{*}\right\}$
Such a tree can be different from T^{*} !
One can always enrich a subset of the edges of an optimal spanning tree with a minimum cost edge of a cut not intersecting the subset
The only condition is that the graph be connected

Examples (1)

$S=\left\{v_{1}, v_{2}\right\}$
$\Delta_{S}=\left\{\left(v_{1}, v_{3}\right),\left(v_{1}, v_{4}\right),\left(v_{1}, v_{5}\right),\left(v_{2}, v_{3}\right),\left(v_{2}, v_{4}\right)\right\}$
$e^{*}=\left(v_{1}, v_{3}\right)$
$X=\emptyset$

$$
\Rightarrow X \cup\left\{e^{*}\right\}=\left\{\left(v_{1}, v_{3}\right)\right\} \subseteq X^{*}
$$

Examples (2)

$S=\left\{v_{5}\right\}$
$\Delta_{S}=\left\{\left(v_{1}, v_{5}\right),\left(v_{3}, v_{5}\right),\left(v_{4}, v_{5}\right)\right\}$
$e^{*}=\left(v_{3}, v_{5}\right)$
$X=\left\{\left(v_{1}, v_{2}\right),\left(v_{1}, v_{3}\right),\left(v_{3}, v_{4}\right)\right\}$
$\Rightarrow X \cup\left\{e^{*}\right\}=\left\{\left(v_{1}, v_{2}\right),\left(v_{1}, v_{3}\right),\left(v_{3}, v_{4}\right),\left(v_{3}, v_{5}\right)\right\} \subseteq X^{*}$

$$
\begin{aligned}
& S=\left\{v_{5}\right\} \\
& \Delta_{S}=\left\{\left(v_{1}, v_{5}\right),\left(v_{3}, v_{5}\right),\left(v_{4}, v_{5}\right)\right\} \\
& e^{*}=\left(v_{4}, v_{5}\right) \\
& X=\left\{\left(v_{1}, v_{2}\right),\left(v_{1}, v_{3}\right),\left(v_{3}, v_{4}\right)\right\} \\
& \quad \Rightarrow X \cup\left\{e^{*}\right\}=\left\{\left(v_{1}, v_{2}\right),\left(v_{1}, v_{3}\right),\left(v_{3}, v_{4}\right),\left(v_{4}, v_{5}\right)\right\}
\end{aligned}
$$

$X \cup\left\{e^{*}\right\} \nsubseteq X^{*}$, but it is included in another optimal spanning tree $X^{\prime *}$
But what if you consider $S=\left\{v_{5}\right\}$ and $X=\left\{\left(v_{3}, v_{4}\right),\left(v_{3}, v_{5}\right)\right\} ?$

There are two possible cases
(1) $e^{*} \in X^{*}$: since $X \subseteq X^{*}$, then $X \cup\left\{e^{*}\right\} \subseteq X^{*}$ and the thesis follows
(2) $e^{*}=\left[u^{*}, v^{*}\right] \notin X^{*}$:
the optimal solution $T=\left(V, X^{*}\right)$ is spanning and connected X^{*} includes a path $P_{u^{*} v^{*}}$ between u^{*} and v^{*}
$P_{u^{*} v^{*}}$ intersects Δ_{S} in at least one edge e^{\prime}

adding e^{*} to X^{*} produces a cycle removing e^{\prime} from this cycle yields another spanning tree (the extreme vertices of e^{\prime} are now connected through e^{*})
$\left(V, X^{*} \cup\left\{e^{*}\right\} \backslash\left\{e^{\prime}\right\}\right)$ is another spanning tree
and its cost is $c_{X^{*}}+c_{e^{*}}-c_{e^{\prime}}\left(\right.$ where $\left.c_{X^{*}}=\sum_{e \in X^{*}} c_{e}\right)$

Notice that

- $T=\left(V, X^{*}\right)$ is optimal $\Rightarrow c_{X^{*}}+c_{e^{*}}-c_{e^{\prime}} \geq c_{X^{*}} \Rightarrow c_{e^{*}} \geq c_{e^{\prime}}$
- $e^{*}=\arg \min _{e \in \Delta_{S}} c_{e}$ and $e^{\prime} \in \Delta_{S} \Rightarrow c_{e^{*}} \leq c_{e^{\prime}}$
which implies that $c_{e^{*}}=c_{e^{\prime}}$ (the two edges have the same cost)
The two spanning trees have equal cost: the new spanning tree is optimal

Given a partial optimal solution (V, X), if we find a vertex set $S \subset V$ whose induced cut Δ_{S} does not intersect X, we can augment X obtaining a partial optimal solution $\left(V, X \cup\left\{e^{*}\right\}\right)$

Sooner or later, we will obtain a complete optimal solution
If $\Delta_{S} \cap X \neq \emptyset$, one cannot correctly enlarge set X : either $e^{*} \in X$ (and X does not grow) or e^{*} closes a cycle with X (and the new tree includes e^{*} and $X \backslash\left\{e^{\prime}\right\}$, but not X)

A general scheme (revisited)

(1) Set $X:=\emptyset$ (to be included in an optimal solution)
(2) Find a cut Δ_{S} not intersecting X; if there is none, terminate
(3) Otherwise, set $X:=X \cup \arg \min _{e \in \Delta_{s}} c_{e}$ and go to step 2

The scheme works because

- X is always included in an optimal solution (theorem)
- X is augmented step by step (since Δ_{S} does not intersect X)
- when every cut intersects $X,(V, X)$ is a spanning tree
\Rightarrow in the end, (V, X) is an optimal spanning tree

Algorithms

Different algorithms apply this scheme
Prim's algorithm (1957)

- S collects the extreme vertices of the edges of X (necessarily, Δ_{S} does not intersect X) at first S is a single vertex, chosen ad libitum
- $e^{*}:=\arg \min _{e \in \Delta_{s}} c_{e}$

Kruskal's algorithm (1956)

- first find the minimum cost edge $e^{*}:=\arg \min _{e \in E \backslash X} c_{e}$
- if there is a cut including e and not intersecting X, add e^{*} to X (i. e. if the extreme vertices of e^{*} are disconnected in X), otherwise, remove e^{*} from E

Prim's algorithm

$\operatorname{Prim}(V, E, c)$
$X:=\emptyset ; S:=\{\bar{v}\} ;$
While $S \subset V$
$e^{*}=\left[u^{*}, v^{*}\right]:=\arg \min _{e \in \Delta_{s}} c_{e} ;$
$X:=X \cup\left\{e^{*}\right\} ;$
$S:=S \cup\left\{u^{*}, v^{*}\right\} ; \quad\{$ One of the two extremes is already in $S\}$
Return (S, X);

Application of Prim's algorithm (1)

$\operatorname{Prim}(V, E, c)$

$$
X:=\emptyset ; S:=\left\{v_{1}\right\} ;
$$

$X:=\emptyset ; S:=\{\bar{v}\} ;$
While $S \subset V$
$\begin{array}{ll}e^{*}:=\left(u^{*}, v^{*}\right):=\arg \min _{e \in \Delta_{S}} c_{e} ; & X:=\left\{\left(v_{1}, v_{2}\right)\right\} ; \\ X:=X:=\left\{v_{1}, v_{2}\right\} ;\end{array}$
$X:=X \cup\left\{e^{*}\right\}$;
$e^{*}:=\left(v_{1}, v_{2}\right) ;$
$S:=S \cup\left\{u^{*}, v^{*}\right\} ;$
Return (S, X);

Application of Prim's algorithm (2)

$\operatorname{Prim}(V, E, c)$

$X:=\emptyset ; S:=\{\bar{v}\} ;$

$$
X:=\left\{\left(v_{1}, v_{2}\right)\right\} ; S:=\left\{v_{1}, v_{2}\right\} ;
$$

While $S \subset V$
$e^{*}:=\left(v_{1}, v_{3}\right) ;$
$e^{*}:=\left(u^{*}, v^{*}\right):=\arg \min _{e \in \Delta_{S}} c_{e} ;$
$X:=\left\{\left(v_{1}, v_{2}\right),\left(v_{1}, v_{3}\right)\right\} ;$
$X:=X \cup\left\{e^{*}\right\} ;$
$S:=\left\{v_{1}, v_{2}, v_{3}\right\} ;$
$S:=S \cup\left\{u^{*}, v^{*}\right\} ;$
Return (S, X);

Application of Prim's algorithm (3)

$\operatorname{Prim}(V, E, c)$
$X:=\emptyset ; S:=\{\bar{v}\} ;$
While $S \subset V$

$$
\begin{aligned}
& e^{*}:=\left(u^{*}, v^{*}\right):=\arg \min _{e \in \Delta_{S}} c_{e} ; \\
& X:=X \cup\left\{e^{*}\right\} \\
& S:=S \cup\left\{u^{*}, v^{*}\right\}
\end{aligned}
$$

Return (S, X);

Application of Prim's algorithm (4)

$\operatorname{Prim}(V, E, c)$

$X:=\emptyset ; S:=\{\bar{v}\} ;$

$$
X:=\left\{\left(v_{1}, v_{2}\right),\left(v_{1}, v_{3},\left(v_{3}, v_{4}\right)\right)\right\} ;
$$

$$
S:=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\} ;
$$

While $S \subset V$

$$
e^{*}:=\left(v_{3}, v_{5}\right) ;
$$

$$
\begin{array}{ll}
e^{*}:=\left(u^{*}, v^{*}\right):=\arg \min _{e \in \Delta_{S}} c_{e} ; & X:=\left\{\left(v_{1}, v_{2}\right),\left(v_{1}, v_{3}\right),\left(v_{3}, v_{4}\right),\left(v_{3}, v_{5}\right)\right\} ; \\
X:=X \cup\left\{e^{*}\right\} ; & \left.S: v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\} ;
\end{array}
$$

Return (S, X);

Application of Prim's algorithm (5)

$\operatorname{Prim}(V, E, c)$
$X:=\emptyset ; S:=\{\bar{v}\} ;$

While $S \subset V$

$$
\begin{aligned}
& e^{*}=\left(u^{*}, v^{*}\right):=\arg \min _{e \in \Delta_{S}} c_{e} ; \\
& X:=X \cup\left\{e^{*}\right\} ; \\
& S:=S \cup\left\{u^{*}, v^{*}\right\} ;
\end{aligned}
$$

Return (S, X);

Complexity of Prim's algorithm

Prim's algorithm consists of an initial step of complexity $T_{\text {in }}$ and a certain number $i_{\max }$ of iterations of complexity $T_{\text {iter }}^{(i)}$

$$
T=T_{\text {in }}+\sum_{i=1}^{i_{\text {max }}} T_{\text {iter }}^{(i)}
$$

$\operatorname{Prim}(V, E, c)$
$X:=\emptyset ; S:=\{\bar{v}\} ;$

$$
T_{\mathrm{in}} \in O(1)
$$

While $S \subset V$

$$
i_{\max }=n-1 \text { (one vertex at a time) }
$$

$e^{*}:=\left(u^{*}, v^{*}\right):=\arg \min _{e \in \Delta_{s}} c_{e} ; \quad T_{\text {iter }}^{(i)}=\alpha$ (to be determined)
$X:=X \cup\left\{e^{*}\right\}$;
$S:=S \cup\left\{u^{*}, v^{*}\right\} ;$
Return (S, X);
Overall $T \in O(\alpha n)$

Minimum cost edge identification (1)

Possible implementations
(1) Scan all the edges and verify which ones belong to $\Delta_{S}: O(m)$
(2) Maintain subset Δ_{S}

- build it: $O(n)$
- find the minimum cost element:
$O(m)$
- update it: $O(n)$
(3) Maintain for each $v \in V \backslash S$ the cheapest edge in $\Delta_{S} \cap \Delta_{\{v\}}$

$$
\tilde{e}_{v}=\arg \min _{[u, v] \in \Delta_{s} \cap \Delta_{\{v\}}} c_{e}
$$

$\operatorname{Prim}(V, E, c)$
$X:=\emptyset ; S:=\{\bar{v}\} ;$
While $S \subset V$

$$
\begin{aligned}
& e^{*}=\left(u^{*}, v^{*}\right):=\arg \min _{e \in \Delta_{S}} c_{e} ; \\
& X:=X \cup\left\{e^{*}\right\} ; \\
& S:=S \cup\left\{u^{*}, v^{*}\right\} ; \\
& \text { Return (} S, X \text {); }
\end{aligned}
$$

- build $\tilde{e}_{v}: O(n)$
- find the minimum $\tilde{e}_{v}: O(n)$
- update $\tilde{e}_{v}: O(n)$
\rightarrow the complexity of the first implementation is $T \in O(\mathrm{mn})$

Minimum cost edge identification (2)

Possible implementations
(1) Scan all the edges and verify which ones belong to $\Delta_{S}: O(m)$
(2) Maintain subset Δ_{S}

- build it: $O(n)$
- find the minimum cost element:
$O(m)$
- update it: $O(n)$
(3) Maintain for each $v \in V \backslash S$ the cheapest edge in $\Delta_{S} \cap \Delta_{\{v\}}$

$$
\tilde{e}_{v}=\arg \min _{[u, v] \in \Delta_{s} \cap \Delta_{\{v\}}} c_{e}
$$

- build $\tilde{e}_{v}: O(n)$
- find the minimum $\tilde{e}_{v}: O(n)$
- update $\tilde{e}_{v}: O(n)$
\rightarrow the complexity of the second implementation is $T \in O(\mathrm{mn})$

Minimum cost edge identification (3)

Possible implementations
(1) Scan all the edges and verify which ones belong to $\Delta_{S}: O(m)$
(2) Maintain subset Δ_{S}

- build it: $O(n)$
- find the minimum cost element:
$O(m)$
- update it: $O(n)$
(3) Maintain for each $v \in V \backslash S$ the cheapest edge in $\Delta_{S} \cap \Delta_{\{v\}}$

$$
\tilde{e}_{v}=\arg \min _{[u, v] \in \Delta_{s} \cap \Delta_{\{v\}}} c_{e}
$$

- build $\tilde{e}_{v}: O(n)$
- find the minimum $\tilde{e}_{v}: O(n)$
- update $\tilde{e}_{v}: O(n)$
\rightarrow the complexity of the third implementation is $T \in O\left(n^{2}\right)$

Kruskal's algorithm

Start with $X=\emptyset$
Find the minimum cost edge e^{*} not in X and not discarded

- if there is a cut Δ_{S} including e^{*} and not intersecting X add e^{*} to X

Notice that it is not required to determine S, because

$$
\exists S \subset V: e^{*} \in \Delta_{S} \text { and } \Delta_{S} \cap X=\emptyset \Leftrightarrow X \cup\left\{e^{*}\right\} \text { is acyclic }
$$

- if $\# S$, it will not exist for any larger $X \Rightarrow$ discard e^{*} permanently

$$
\begin{aligned}
& \text { Kruskal }(V, E, c) \\
& X:=\emptyset ; S:=V ; \\
& E^{\prime}:=E ; \\
& \text { While } E^{\prime} \neq \emptyset \\
& \qquad e^{*}:=\arg \min _{e \in \prime^{\prime}} c_{e} ; \\
& E^{\prime}:=E^{\prime} \backslash\left\{e^{*}\right\} ; \\
& \text { If Acyclic }\left(X \cup\left\{e^{*}\right\}\right) \text { then discarded edges } X:=X \cup\left\{e^{*}\right\} ; \\
& \text { Return }(S, X) ;
\end{aligned}
$$

Application of Kruskal's algorithm (1)

Kruskal (V, E, c)
$X:=\emptyset ; S:=V$;
$E^{\prime}:=E$;

$$
\begin{aligned}
& X:=\emptyset ; \\
& \left|E^{\prime}\right|=9 ;
\end{aligned}
$$

While $E^{\prime} \neq \emptyset$

$$
\begin{array}{ll}
e^{*}:=\arg \min _{e \in E^{\prime}} c_{e} & e^{*}:=\left(v_{1}, v_{2}\right) ; \\
E^{\prime}:=E^{\prime} \backslash\left\{e^{*}\right\} ; & \left|E^{\prime}\right|=8 ; \\
\text { If Acyclic }\left(X \cup\left\{e^{*}\right\}\right) & X \cup\left\{e^{*}\right\}:=\left\{\left(v_{1}, v_{2}\right)\right\} \text { acyclic } \\
\text { then } X:=X \cup\left\{e^{*}\right\} ; & X:=\left\{\left(v_{1}, v_{2}\right)\right\} ;
\end{array}
$$

Return (S, X);

Application of Kruskal's algorithm (2)

Kruskal (V, E, c)

$X:=\emptyset ; S:=V$;
$E^{\prime}:=E$;
$\left|E^{\prime}\right|=8 ;$
While $E^{\prime} \neq \emptyset$

$$
\begin{array}{ll}
e^{*}:=\arg \min _{e \in E^{\prime}} c_{e} & e^{*}:=\left(v_{3}, v_{4}\right) ; \\
E^{\prime}:=E^{\prime} \backslash\left\{e^{*}\right\} ; & \left|E^{\prime}\right|=7 ; \\
\text { If Acyclic }\left(X \cup\left\{e^{*}\right\}\right) & X \cup\left\{e^{*}\right\}:=\left\{\left(v_{1}, v_{2}\right),\left(v_{3}, v_{4}\right)\right\} \text { acyclic } \\
\text { then } X:=X \cup\left\{e^{*}\right\} ; & X:=\left\{\left(v_{1}, v_{2}\right),\left(v_{3}, v_{4}\right)\right\} ;
\end{array}
$$

Return (S, X);

Application of Kruskal's algorithm (3)

Kruskal (V, E, c)

$X:=\emptyset ; S:=V$;
$E^{\prime}:=E$;
$\left|E^{\prime}\right|=7 ;$
While $E^{\prime} \neq \emptyset$

$$
\begin{array}{ll}
e^{*}:=\arg \min _{e \in E^{\prime}} c_{e} & e^{*}:=\left(v_{1}, v_{3}\right) ; \\
E^{\prime}:=E^{\prime} \backslash\left\{e^{*}\right\} ; & \left|E^{\prime}\right|=6 ; \\
\text { If } \operatorname{Acyclic}\left(X \cup\left\{e^{*}\right\}\right) & X \cup\left\{e^{*}\right\} \text { acyclic } \\
\text { then } X:=X \cup\left\{e^{*}\right\} ; & X:=\left\{\left(v_{1}, v_{2}\right),\left(v_{3}, v_{4}\right),\left(v_{1}, v_{3}\right)\right\} ;
\end{array}
$$

Return (S, X);

Application of Kruskal's algorithm (4)

Kruskal (V, E, c)

$X:=\emptyset ; S:=V$;
$E^{\prime}:=E$;
$\left|E^{\prime}\right|=6 ;$
While $E^{\prime} \neq \emptyset$

$$
\begin{array}{ll}
e^{*}:=\arg \min _{e \in E^{\prime}} c_{e} & e^{*}:=\left(v_{2}, v_{3}\right) ; \\
E^{\prime}:=E^{\prime} \backslash\left\{e^{*}\right\} ; & \left|E^{\prime}\right|=5 ; \\
\text { If Acyclic }\left(X \cup\left\{e^{*}\right\}\right) & X \cup\left\{e^{*}\right\} \text { cyclic: discard } e^{*} \\
\text { then } X:=X \cup\left\{e^{*}\right\} ; & X:=\left\{\left(v_{1}, v_{2}\right),\left(v_{3}, v_{4}\right),\left(v_{1}, v_{3}\right)\right\} ;
\end{array}
$$

Return (S, X);

Application of Kruskal's algorithm (5)

Kruskal (V, E, c)

$X:=\emptyset ; S:=V$;
$E^{\prime}:=E$;
$\left|E^{\prime}\right|=5 ;$
While $E^{\prime} \neq \emptyset$

$$
\begin{array}{ll}
e^{*}:=\arg \min _{e \in E^{\prime}} c_{e} & e^{*}:=\left(v_{2}, v_{4}\right) ; \\
E^{\prime}:=E^{\prime} \backslash\left\{e^{*}\right\} ; & \left|E^{\prime}\right|=4 ; \\
\text { If } \operatorname{Acyclic}\left(X \cup\left\{e^{*}\right\}\right) & X \cup\left\{e^{*}\right\} \text { cyclic: discard } e^{*} \\
\text { then } X:=X \cup\left\{e^{*}\right\} ; & X:=\left\{\left(v_{1}, v_{2}\right),\left(v_{3}, v_{4}\right),\left(v_{1}, v_{3}\right)\right\} ;
\end{array}
$$

Return (S, X);

Application of Kruskal's algorithm (6)

Kruskal (V, E, c)

$X:=\emptyset ; S:=V$;
$E^{\prime}:=E$;

$$
\left|E^{\prime}\right|=4 ;
$$

While $E^{\prime} \neq \emptyset$

$$
\begin{aligned}
e^{*}:=\arg \min _{e \in E^{\prime}} c_{e} & e^{*}:=\left(v_{1}, v_{4}\right) ; \\
E^{\prime}:=E^{\prime} \backslash\left\{e^{*}\right\} ; & E^{\prime}=\left\{\left(v_{1}, v_{5}\right),\left(v_{3}, v_{5}\right),\left(v_{4}, v_{5}\right)\right\} ; \\
\text { If } \operatorname{Acyclic}\left(X \cup\left\{e^{*}\right\}\right) & X \cup\left\{e^{*}\right\} \text { cyclic: discard } e^{*} \\
\text { then } X:=X \cup\left\{e^{*}\right\} ; & X:=\left\{\left(v_{1}, v_{2}\right),\left(v_{3}, v_{4}\right),\left(v_{1}, v_{3}\right)\right\} ;
\end{aligned}
$$

Return (S, X);

Application of Kruskal's algorithm (7)

Kruskal (V, E, c)

$X:=\emptyset ; S:=V$;
$E^{\prime}:=E$;

$$
E^{\prime}=\left\{\left(v_{1}, v_{5}\right),\left(v_{3}, v_{5}\right),\left(v_{4}, v_{5}\right)\right\} ;
$$

While $E^{\prime} \neq \emptyset$

$$
\begin{array}{ll}
e^{*}:=\arg \min _{e \in E^{\prime}} c_{e} & e^{*}:=\left(v_{3}, v_{5}\right) ; \\
E^{\prime}:=E^{\prime} \backslash\left\{e^{*}\right\} ; & E^{\prime}=\left\{\left(v_{1}, v_{5}\right),\left(v_{4}, v_{5}\right)\right\} ; \\
\text { If Acyclic }\left(X \cup\left\{e^{*}\right\}\right) & X \cup\left\{e^{*}\right\} \text { acyclic } \\
\text { then } X:=X \cup\left\{e^{*}\right\} ; & X:=\left\{\left(v_{1}, v_{2}\right),\left(v_{3}, v_{4}\right),\left(v_{1}, v_{3}\right),\left(v_{3}, v_{5}\right)\right\} ;
\end{array}
$$

Return (S, X);

Anticipated termination

Given a tree, a leaf is a vertex with a single incident arc

- any acyclic graph with $n>1$ vertices includes at least one leaf Proof by contradiction: otherwise, the visit of the tree would never terminate...

Consequently

- an acyclic graph with n vertices has $m \leq n-1$ edges

Proof by induction

- an acyclic graph with $n=1$ vertex has $m=0$ leaves
- a generic acyclic graph with $n>1$ vertices has a leaf; removing it produces an acyclic graph with n^{\prime} vertices and m^{\prime} edges (where $n^{\prime}=n-1$ and $m^{\prime}=m-1$);
if for that graph $m^{\prime} \leq n^{\prime}-1 \Rightarrow m \leq n-1$
Therefore Kruskal's algorithm can terminate as soon as $|X|=n-1$

Complexity of Kruskal's algorithm

Kruskal's algorithm consists of an initial step of complexity $T_{\text {in }}$ and a certain number $i_{\max }$ of iterations of complexity $T_{\text {iter }}^{(i)}$

$$
T=T_{\text {in }}+\sum_{i=1}^{i_{\max }} T_{\mathrm{iter}}^{(i)}
$$

Kruskal (V, E, c)

$$
\begin{aligned}
& X:=\emptyset ; \\
& E^{\prime}:=E ;
\end{aligned}
$$

While $|X|<|V|-1$

$$
\begin{aligned}
& e^{*}:=\arg \min _{e \in E^{\prime}} c_{e} \\
& E^{\prime}:=E^{\prime} \backslash\left\{e^{*}\right\} ; \\
& \text { If Acyclic }\left(X \cup\left\{e^{*}\right\}\right) \\
& \text { then } X:=X \cup\left\{e^{*}\right\} ;
\end{aligned}
$$

Return (V, X);

$$
\begin{aligned}
& T_{\text {in }} \in O(1) \\
& i_{\max } \leq m(\text { one edge at a time }) \\
& T_{\text {iter }}^{(i)} \in O(\alpha+\beta) \\
& (\alpha \text { and } \beta \text { to be determined })
\end{aligned}
$$

Overall $T \in O((\alpha+\beta) \underset{\underline{\underline{\underline{E}}}}{ })$

Minimum cost edge identification (1)

Possible implementations
(1) Scan all the nondiscarded edges:
$O(m)$
(2) Sort E^{\prime} by nondecreasing costs:

- build it: $O(m \log m)$
- extract the minimum: $O(1)$
(3) Maintain E^{\prime} as a min-heap
- build it: $O(m)$
- extract the minimum: $O(1)$
- update it: $O(\log m)$

Kruskal (V, E, c)
$X:=\emptyset$;
$E^{\prime}:=E$;
While $|X|<|V|-1$

$$
\begin{aligned}
& e^{*}:=\arg \min _{e \in E^{\prime}} c_{e} \\
& E^{\prime}:=E^{\prime} \backslash\left\{e^{*}\right\} \\
& \text { If Acyclic }\left(X \cup\left\{e^{*}\right\}\right) \\
& \quad \text { then } X:=X \cup\left\{e^{*}\right\}
\end{aligned}
$$

Return (V, X);
\rightarrow the complexity is $T \in O\left(m^{2}+m \beta\right)$

Minimum cost edge identification (2)

Possible implementations
(1) Scan all the nondiscarded edges: $O(m)$
(2) Sort E^{\prime} by nondecreasing costs:

- build it: $O(m \log m)$
- extract the minimum: $O(1)$
(3) Maintain E^{\prime} as a min-heap
- build it: $O(m)$
- extract the minimum: $O(1)$
- update it: $O(\log m)$
$\operatorname{Kruskal}(V, E, c)$
$X:=\emptyset$;
$E^{\prime}:=E$;
Sort(E^{\prime});
While $|X|<|V|-1$

$$
\begin{aligned}
& e^{*}:=\text { First }\left(E^{\prime}\right) ; \\
& E^{\prime}:=E^{\prime} \backslash\left\{e^{*}\right\} ; \\
& \text { If Acyclic }\left(X \cup\left\{e^{*}\right\}\right) \\
& \text { then } X:=X \cup\left\{e^{*}\right\} ;
\end{aligned}
$$

Return (V, X);
\rightarrow the complexity is $T \in O(m \log m+m \beta)$

Minimum cost edge identification (3)

Possible implementations
(1) Scan all the nondiscarded edges: $O(m)$
(2) Sort E^{\prime} by nondecreasing costs:

- build it: $O(m \log m)$
- extract the minimum: $O(1)$
(3) Maintain E^{\prime} as a min-heap:
- build it: $O(m)$
- extract the minimum: $O(1)$
- update it: $O(\log m)$

Kruskal (V, E, c)
$X:=\emptyset$;
$E^{\prime}:=E$;
BuildMinHeap $\left(E^{\prime}\right)$;
While $|X|<|V|-1$

$$
\begin{aligned}
& e^{*}:=\text { ExtractMinimum }\left(E^{\prime}\right) ; \\
& E^{\prime}:=E^{\prime} \backslash\left\{e^{*}\right\} ; \\
& \text { Heapify }\left(E^{\prime}\right) ; \\
& \text { If Acyclic }\left(X \cup\left\{e^{*}\right\}\right) \\
& \text { then } X:=X \cup\left\{e^{*}\right\} ;
\end{aligned}
$$

Return (V, X);
\rightarrow the complexity is $T \in O(m \log m+m \beta)$

Acyclicity test (1)

Possible implementations
(1) Visit the graph from u^{*} and verify whether v^{*} can be reached: $O(n)$
(2) Maintain X as a merge-find-set

- build it: $O(n)$
- find and compare the components of u^{*} and v^{*} : $\approx O(1)$
- merge the components: $O(1)$

Kruskal (V, E, c)
$X:=\emptyset$;
$E^{\prime}:=E ;$
BuildMinHeap (E^{\prime});
While $|X|<|V|-1$
$e^{*}:=$ ExtractMinimum (E^{\prime});
$E^{\prime}:=E^{\prime} \backslash\left\{e^{*}\right\}$;
Heapify (E^{\prime});
If not Reachable $\left(u^{*}, v^{*}, X\right)$ then $X:=X \cup\left\{e^{*}\right\} ;$
Return (V, X);
\rightarrow the complexity is $T \in O(m \log m+m n)$

Acyclicity test (2)

Possible implementations
(1) Visit the graph from u^{*} and verify whether v^{*} can be reached: $O(n)$
(2) Maintain X as a merge-find-set

- build it: $O(n)$
- find and compare the components of u^{*} and v^{*} : $\approx O(1)$
- merge the components: $O(1)$

Kruskal(V, E, c)
$X:=\emptyset$;
$\mathcal{C}:=$ BuildMFSet (X);
$E^{\prime}:=E$;
BuildMinHeap (E^{\prime});
While $|X|<|V|-1$

$$
\begin{aligned}
& e^{*}:=\text { ExtractMinimum }\left(E^{\prime}\right) ; \\
& E^{\prime}:=E^{\prime} \backslash\left\{e^{*}\right\} ; \\
& \text { Heapify }\left(E^{\prime}\right) ; \\
& \text { If DiffComponents }\left(u^{*}, v^{*}, \mathcal{C}\right) \\
& \quad \text { then } X:=X \cup\left\{e^{*}\right\} ; \\
& \quad \text { Merge }\left(u^{*}, v^{*}, \mathcal{C}\right) ;
\end{aligned}
$$

Return (V, X);
\rightarrow the complexity is $T \in O(m \log m)$

