Solved exercises for the course of

Foundations of Operations Research

Roberto Cordone

Optimal spanning tree problem

A provider of fiberoptic connectivity wants to establish a fiberoptic network
among a set of seven places, indicated by the letters from A to G. For tech-
nical reasons, the links must follow the road network described in the following
figure. The value on each road provides its length in km.

The network must be built with the minimum total expense. The cost of building
a link is K = 100 000 euros/km, except for the links which connect place E to the
adjacent ones, for which the cost is 20% larger. Moreover, F' and G are already
connected by a link owned by the provider, whereas C' and D are connected by
a competitor, who is keen to sell the link for a total cost equal to C' = 1200000
euros.

Formulate the problem as a graph optimization model.

Solve the model with an appropriate algorithm.

Solution

The figure represents as a graph the map of the land on which the network must
be established. This makes it obvious that we are facing a graph optimization
problem, and that the solution consists of a suitable subgraph, having minimum
cost and respecting the constraints imposed by the problem.

Since we are linking a set of places represented as vertices, choosing the links
among a set of potential connections represented as edges, we are looking for a
connected subgraph. Since all places must be connected, the subgraph is span-
ning. The links are bidirectional and symmetrical, so that the graph is undirected,
just as the road network. Finally, it is quite clear that the required subgraph mu-
st be acyclic, because otherwise the cycles could be broken removing edges: the
solution would still be connected, and less expensive. Therefore, cyclic solutions
are feasible, but certainly not optimal. We can consider them as unfeasible.

Since we are looking for a connected acyclic spanning subgraph, the correct
model of the problem is the minimum spanning tree problem.

Besides a graph topology, this problem requires to associate a cost function to
the edges. The text of the problem does not provide the costs required to build
the fiberoptic links, but it provides the length d. for each potential link and the
cost per km, K. Most of the time, the cost required to activate a link is equal to
Kd.. However, on the edges of Ay, i. e. the edges incident to vertex E, the cost
must be increased by 20%. Moreover, link (F,G) is given for free, whereas link
(C, D) can be built from scratch, with the cost defined above, or bought from a
competitor, with a cost equal to C. Of course, one will choose the less expensive
between the two choices, which is the former. The cost of each potential link,
therefore, is:

e ¢;; = Kd;; for each edge (1,7) € E\{(C,E),(F,E), (G, F)}
e ¢;; = 1.2Kd;; for the edges (i,7) € {(C,E), (F, E)}

e ¢;; =0 for edge (i,j) = (G, F)

e ¢;; = min (Kd,;;, 1200200) for edge (i,5) = (C, D)

30

\?@%/

We are not required to provide the mathematical programming formulation.
Should we, we could easily guess that the decision variables of the problem are
binary variables indicating for each edge whether it belongs or not to the solution.
The problem can be solved applying Prim’s algorithm or Kruskal’s algorithm on
graph G = (V, E) with cost function c..

Prim’s algorithm

The intuitive idea of this algorithm is to start with the simplest possible acyclic
connected subgraph: a single vertex wv;, chosen arbitrarily, and to approach a
spanning subgraph, modifying the partial solution step by step at minimum cost.

Prim(V, E, ¢, vy, X)
S :={v.}; X :=0;
While SCV do

U, V| ;= arg min Cy,;
(.] gues,v¢s w

X = X U{[u,v]};
S:=SuU{v};

EndWhile

Return T'(V, X)

At each step, one selects the minimum cost edge in the cut induced by the
subset S of the vertices already connected. Then, one adds the edge to the
tree, together with the extreme vertex previously not connected to S. Only the
edges in the cut are considered because the edges of Eg (that is, between vertices
internal to S) would produce cycles, while the edges between vertices external to
S would produce a disconnected subgraph.

Iteration 1 Let us assume that the starting vertex be v, = G. The choice is
between edges (F,G) (crg = 0), (D,G) (cpe = 10K) and (A, D) (cpg = 15K).
The cheapest is the first one, which is accepted: (F,G) := argming,eg vgs Cuv, SO
that X := QU {(F,G)} and S := {G} U{F}.

Iteration 2 The cut induced by S contains edges (A, G) (with ca¢ = 15K),
(D,G) (Wlth Cpg — 10K), (D,F) (Wlth Cpr = QOK) and (E, F) (Wlth CEF
12K). The cheapest one is (D,G), so that X = {(F,G),(D,G)} e S :

(D,F,GY.
B2k

30K

Iteration 3 The cut induced by S contains edges (A, G) (with cag = 15K),
(D, Q) (with ¢pe = 10K), (D, F) (with cpp = 20K) and (E, F) (with cgp =
12K). the cheapest one is (D, G), so that X := {(F,G),(D,G)}e S :={D, F,G}.

Iteration 4 The cut induced by S contains edges (A, G) (with ca¢ = 15K),
(D,G) (Wlth Cpg — 10K), (D,F) (Wlth Cpr = QOK) and (E, F) (Wlth CErp =

4

12K). The cheapest one is (D, G), so that X := {(F,G),(D,G)} and S :=

(D,F.G}.
DEET
(A) 20K !

Iteration 5 The cut induced by S contains edges (A, G) (with ca¢ = 15K),
(D, Q) (with ¢pe = 10K), (D, F) (with cpp = 20K) and (E, F) (with cgp =
12K). The cheapest one is (D,G), so that X = {(F,G),(D,G)} e S =
{D, F,G}.

Iteration 6 The cut induced by S contains edges (A, G) (with ca¢ = 15K),
(D,G) (Wlth Cpg — 10K), (D,F) (Wlth Cprp — QOK) and (E, F) (Wlth CErp —
12K). The cheapest one is (D,G), so that X = {(F,G),(D,G)} e S =
{D, F,G}.

Termination Now, the subgraph is spanning (S = V), so that the algorithm
terminates. The following figure reports he result, whose total cost is cx =

>4 Ciiij = 6800000 euros,
(B)_2x

10K

30K

24K

20K 12K

Kruskal’s algorithm

The intuitive idea of this algorithm is to start with the simplest possible acyclic
spanning subgraph: the whole vertex set V', with no edge at all, and to approach
a connected subgraph modifying the partial solution step by step at minimum
cost.

Kruskal(V, E, ¢, X)
Sort E/ by nondecreasing costs: e, €x,, ..., €r,.
X = 0;
For i:=1 to m do

If (X Ue,,) does not contain cycles then X := X U{e,, };
EndFor

Return 7' (V, X)

Once the edges are sorted by nondecreasing costs, each step of the algorithm
considers the current edge and adds it to the solution, provided that this does
not induce any cycle with the edges added previously.

An efficient implementation

In order to verify acyclicity, it is useful to maintain an efficient representation of
the connected components of the graph. Such a representation could consist of a
simple vector, associating each vertex of the graph to the index of the component
which includes it, or to the index of a “representative” vertex of that component.

This data structure would allow to determine in constant time whether a new
edge induces cycles. In that case, in fact, the two extreme vertices of the new
edge would be already connected by a path, and therefore would belong to the
same connected component. The drawback of such a representation is that, after
adding a new edge, the two corresponding components should be merged into
a single one, and the index of all the vertices in at least one of them should
be updated. Such an update would require O (n) time. Consequently, the time
gained in the acyclicity test would be completely lost in the update of the data
structure.

A more efficient solution is, on the contrary, to define a vector associating
each vertex of the graph not directly to the representative vertex, but to another
vertex of the graph, which could refer to a third one, and so on, until the repre-
sentative vertex is reached. This yields a tree structure, which allows to merge
two components in a trivial way, when their representative vertices are known:
one of them must be simply “appended” to the other writing the index of the
other in the vector. This can be done in constant time. For example, in order to
merge the component represented by vertex B with the component represented
by vertex F', one simply writes F' in position B of the vector. The acyclicity test
becomes slightly different, because it requires to follow two chains of references,
starting from the extreme vertices of the new edge to the representative vertices
of the two components. It can be proved that, if we also save in another vector
the number of elements of each component, and if we always append to smaller
component to the larger one, the reference chains keep limited with respect to the
size of the graph. To save space, one can even save the number of elements in the
same vector as the references, in the position corresponding to the representative
vertices (with a negative sign, to distinguish them).

Initialization The edges of the graph, sorted by nondecreasing costs, are:
(F,G), (C,D), (D, F), (E,F), (A,G), (A, D), (D,F), (B,D), (B,C), (C,E),
(A, B). Notice that some edges have the same cost, and their order is completely
arbitrary.

The auxiliary vertex is initialized so as to describe the fact that each vertex
is a connected component of cardinality 1, represented by the vertex itself. The-
refore, the vector contains —1 in each position, to signify that the vertex is a
representative (negative sign) and that the cardinality of the component is 1.

A B CDEF G
-1 -1 -1 -1 -1 -1 -1]

Iteration 1 The cheapest edge is (F, G), with cost cpg = 0. It does not induce
cycles with X = (), and therefore is directly added to the solution. In fact, the
auxiliary vector contains negative values in positions F' and G, suggesting that
the two vertices are representatives of different connected components.

7

2K

20K

30K

» /

15K 10K

After adding the new edge, the auxiliary vector is updated appending com-
ponent {G} to component {F'}. The two components have the same cardinality,
so that the choice is arbitrary. In order to perform the append, one writes F' in

position G and writes the (negative) sum of the two cardinalities —1 — 1 = —2
in position F"

A B CDEF G
-1 -1 -1 -1 -1 -2 F|

Iteration 2 The second edge is (C, D), with cost ccp = 10K. It does not
induce cycles, because the positions corresponding to C' and D both contain ne-
gative values, so that the two vertices belong to different connected components.
Therefore, the edge is added to the solution.

2K
30K I

21K 24K
@ 20K 10K \@

15K 10K

20K 12K

The auxiliary vector is updated appending component {D} to component
{C}, once again with an arbitrary choice, writing C' in position D and the
(negative) sum of the two cardinalities —1 — 1 = —2 in position C.

A B CDE F G
-1 -1 2 C -1 -2 F|

Iteration 3 The third edge is (D, G), with cost cpe = 10K. It does not induce
cycles, because vertex D refers to vertex C, which is a representative (the vector
contains a negative value in position C'). Vertex G refers to vertex F', which is
also a representative. Since the two representatives are different, the two vertices
belong to different connected compnonents, the edge induces no cycles and it is

added to the solution.
2K
30K T

21K 24K
A @

15K 10K

20K 12K

0

The auxiliary vector is updated appending component {F, G} to component
{C, D}, once again with an arbitrary choice (same cardinality), and writing C'
in position F' and the (negative) sum of the two cardinalities —2 — 2 = —4 in
position C'.

A B C D E
-1 -1 4 C -

F G
C F

—_

Iteration 4 The fourth edge is (E, F), with cost cgr = 12K. It does not
induce cycles, so that it is added to the solution. In fact, vertex E is an isolated
component, while vertex F' refers to vertex C, which is a representative.

2K
30K i
21K

24K
@ 20K 10K \@

15K

10K 20K 12K

0

The auxiliary vector is updated appending component {E} to component
{C, D, F, G}, since the former has smaller cardinality (one vertex versus four). We
write C'in position E and the (negative) sum of the two cardinalities —4—1 = —5
in position C.

A B CDEF G
-1 -1 5 C C C F

Ne}

Iteration 5 The fifth edge is (A4, G), with cost cag = 15K. It does not induce
cycles, so that it is added to the solution. In fact, vertex A is isolated, whereas
vertex GG refers to vertex F', which refers to the representative vertex C'.

2K

30K T

21K 24K
e 20K 10K
)

10K 20K 12K
0

The auxiliary vector is updated appending component {A} to component
{C, D, E, F,G}, since the former is smaller (one vertex versus five). We write C'

in position A and the (negative) sum of the two cardinalities —5 — 1 = —6 in
position C'.
A B CDE F G
|IC -1 6 C C C F|

Iteration 6 The sixth edge is (A, D), with cost cap = 20K. It induces cy-
cle (A, D,G), so that it is discarded. In fact, vertices A and D both refer to

representative C'.
22K
(B 2k

21K 24K

30K

10K

20K 12K

Iteration 7 The seventh edge is (D, F'), with cost cpr = 20K. It induces
cycle (D, F,G), so that it is discarded. In fact, vertices D and F' both refer to
representative C'.

10

21K 24K

12K

Iteration 8 The eighth edge is (B, D), with cost cgp = 21K. It does not
induce any cycle, so that it is added to the solution. In fact, vertex B is isolated,
whereas vertex D refers to vertex C', which is a representative.

22K
OS=-3

10K

30K
24K

20K 12K

The auxiliary vector is updated appending component {B} to component
{A,C, D, E, F,G}, since it is smaller (one vertex versus six). We write C' in

position B and the (negative) sum of the two cardinalities —6 — 1 = —7 in
position C'.

A B CDE F G

/C C -1 C C C F|

Si noti come quasi tutti i vertici puntino direttamente al capocomponente
C, riducendo fortemente il tempo necessario a determinare se due di loro sono
connessi o no.

Termination We could proceed with the following edges, finding that all of
them induce cycles. However, the current solution is already spanning and con-
nected, since it contains n = 7 vertices and mn — 1 = 6 edges and it is acyclic by
construction. Therefore, the algorithm terminates. The following figure reports
the solution, whose total cost is C' = Zij cijx;; = 6800000 euros.

11

12

10K

24K

12K

