
ex-2.1-2.3 Foundations of Operations Research Prof. E. Amaldi

2.1 Minimum-cost spanning tree

Find the minimum-cost spanning tree in the graph given in the figure by using Prim’s algorithm,
starting from the node 3.

14

1

2

3

4

5

6 7

8
9

10

11

20

15

9

8

4

10

15

5

7

17

10

9

9

19

16

21

64

4

19

7

18

2.2 Kruskal’s algorithm

In 1956 Joseph Kruskal proposed the following greedy algorithm to find a minimum-cost span-
ning tree in an arbitrary connected undirected graph G = (N,E) with a cost ce attached to each
edge e ∈ E.

1) Sort the edges of E as {e1, . . . , em} where ce1 ≤ ce2 ≤ . . . ≤ cem

2) Let i = 1 and initialize the subgraph G′ = (N,F) of G with F = ∅ (G′ consists of n
connected components1 corresponding to the isolated nodes)

3) WHILE |F | < n− 1 DO

IF the two endpoints of the edge ei belong to different connected components of the current
subgraph G′ THEN F := F ∪ {ei} and merge the two connected components

i := i+ 1

END

4) Return the spanning tree G′ = (N,F)

In other words, we order the edges by increasing (non-decreasing) cost, we consider the edges
in that order and, at each step, we select the current edge (which is one of the cheapest edges
still available) only if it does not create a cycle with the previously selected edges. The algorithm
terminates when n− 1 edges have been selected.

1A connected component of an undirected graph is a subgraph in which any two nodes are connected, and

which is connected to no other nodes.

Document prepared by L. Liberti, S. Bosio, S. Coniglio, and C. Iuliano. Translation to English by S. Coniglio 1

ex-2.1-2.3 Foundations of Operations Research Prof. E. Amaldi

a) Describe an efficient way to identify/keep track of the connected components of the sub-
graph G′ and to check that a new edge is creating a cycle with the previously selected
edges (is connecting two distinct connected components of G′).

b) Determine the overall computational complexity of this simple implementation of Kruskal’s
algorithm.

c) By invoking the optimality condition for minimum-cost spanning trees, verify that Kruskal’s
algorithm is exact, i.e., is guaranteed to provide an optimal solution for any undirected
graph with costs on the edges.

d) Find the maximum-cost spanning tree in the graph of the previous exercise by using a
straightforward adaptation of Kruskal’s algorithm.

2.3 Optimality check

Without applying any one of Prim’s and Kruskal’s algorithms, verify whether the following
spanning tree is of minimum cost.

1 2

345

8 7

6

2

12
9

4 10

5

12
17

10

11

9

14

11

10

15

Document prepared by L. Liberti, S. Bosio, S. Coniglio, and C. Iuliano. Translation to English by S. Coniglio 2

ex-2.1-2.3 Foundations of Operations Research Prof. E. Amaldi

Solution

2.1 Minimum-cost spanning tree. We apply Prim’s algorithm, starting at node 3. At
each iteration, the set S of the nodes in which the edges selected so far are incident is
highlighted in red. The partial spanning tree is highlighted in light green. Among all
edges in the cut δ(S), induced by S, the edge, among those of minimum cost, that is going
to be added to the partial spanning tree is highlighted in dark green.

14

1

2

3

4

5

6 7

8
9

10

11

20

15

9

8

4

10

15

5

7

17

10

9

9

19

16

21

64

4

19

7

18

14

1

2

3

4

5

6 7

8
9

10

11

20

15

9

8

4

10

15

5

7

17

10

9

9

19

16

21

64

4

19

7

18

14

1

2

3

4

5

6 7

8
9

10

11

20

15

9

8

4

10

15

5

7

17

10

9

9

19

16

21

64

4

19

7

18

14

1

2

3

4

5

6 7

8
9

10

11

20

15

9

8

4

10

15

5

7

17

10

9

9

19

16

21

64

4

19

7

18

14

1

2

3

4

5

6 7

8
9

10

11

20

15

9

8

4

10

15

5

7

17

10

9

9

19

16

21

64

4

19

7

18

14

1

2

3

4

5

6 7

8
9

10

11

20

15

9

8

4

10

15

5

7

17

10

9

9

19

16

21

64

4

19

7

18

Document prepared by L. Liberti, S. Bosio, S. Coniglio, and C. Iuliano. Translation to English by S. Coniglio 3

ex-2.1-2.3 Foundations of Operations Research Prof. E. Amaldi

14

1

2

3

4

5

6 7

8
9

10

11

20

15

9

8

4

10

15

5

7

17

10

9

9

19

16

21

64

4

19

7

18

14

1

2

3

4

5

6 7

8
9

10

11

20

15

9

8

4

10

15

5

7

17

10

9

9

19

16

21

64

4

19

7

18

14

1

2

3

4

5

6 7

8
9

10

11

20

15

9

8

4

10

15

5

7

17

10

9

9

19

16

21

64

4

19

7

18

14

1

2

3

4

5

6 7

8
9

10

11

20

15

9

8

4

10

15

5

7

17

10

9

9

19

16

21

64

4

19

7

18

The edges are added in the following order

reached nodes edge cost iteration

3 (2,3) 5 1
2,3 (3,8) 7 2
2,3,8 (7,8) 4 3
2,3,7,8 (8,9) 4 4
2,3,7,8,9 (6,7) 7 5
2,3,6,7,8,9 (5,6) 8 6
2,3,5,6,7,8,9 (4,5) 4 7
2,3,4,5,6,7,8,9 (2,10) 9 8
2,3,4,5,6,7,8,9,10 (1,4) 9 9
1,2,3,4,5,6,7,8,9,10 (9,11) 16 10=n-1 → HALT

Since S = V , i.e., every node has been reached, the algorithm halts. The minimum-cost
spanning tree that has been found has total cost 73. It is shown in the following figure.

Document prepared by L. Liberti, S. Bosio, S. Coniglio, and C. Iuliano. Translation to English by S. Coniglio 4

ex-2.1-2.3 Foundations of Operations Research Prof. E. Amaldi

14

1

2

3

4

5

6 7

8
9

10

11

20

15

9

8

4

10

15

5

7

17

10

9

9

19

16

21

64

4

19

7

18

2.2 Kruskal’s algorithm.

a) To identify/keep track of the connected components (subtrees) of the subgraph G′,
we use a vector v with as many components as vertices in the graph, where v[i]
indicates the index of the connected component containing node i. At the beginning
of the algorithm, we start with v[i] = i for i = 1, . . . , n. When an edge e = {i, j}
is considered for addition to G′, we compare the values v[i] and v[j]. If v[i] 6= v[j],
then we can add the edge e to G′ because it does not create a cycle. Since the two
connected components of indices v[i] and v[j] are merged, the indices are updated as
follows: in the vector v we substitute each occurrence of the index of node i with that
of node j. If v[i] = v[j], edge e is skipped because it would create a cycle.

b) Them edges can be ordered by non-decreasing cost inO(m logm), which isO(m log n)
since m logm ≤ m logn2 = 2m log n. At most m edges are considered for addition
to the current subgraph G′. At each iteration, an edge e = {i, j} is considered and
the vector v is updated (in O(n)) only if v[i] 6= v[j]. Since a merging operation occur
exactly n− 1 times (a spanning tree contains n− 1 edges), the overall complexity is
O(m logn+m+ n2) = O(m log n+ n2).

c) To verify that Kruskal’s algorithm is exact, we just need to recall that the edges are
considered in order of non-decreasing cost and to invoke the optimality condition for
minimum-cost spanning tree. Since each edge e that has been discarded (not added
to F) has a cost ce which is at least as large as the cost of all the previously selected
edges, it is not a cost-decreasing edge, i.e., ce ≥ cf for every edge f in the unique
cycle that would have been created if e was added to F . According to the optimality
condition for minimum-cost spanning trees, the resulting spanning tree (with edge
set F) is of minimum total cost because no cost-decreasing edge exists.

d) To determine a maximum-cost spanning tree in the given undirected graph G =
(V,E), we sort all the edges of G by nonincreasing cost and consider them one by
one in that order. Let e be the edge considered at the current iteration and F be the
set of edges selected so far. If adding e to F creates a cycle, e is dropped. Otherwise,
e is added to F , and a new iteration is performed. The algorithm terminates when
n− 1 edges have been selected, namely, when |F | = n− 1.

The edges are considered in the following order

Document prepared by L. Liberti, S. Bosio, S. Coniglio, and C. Iuliano. Translation to English by S. Coniglio 5

ex-2.1-2.3 Foundations of Operations Research Prof. E. Amaldi

connected components edge cost iteration

(7,11) 21 1
{7, 11} (1,2) 20 2
{1, 2} , {7, 11} (6,8) 19 3
{1, 2} , {7, 11} , {6, 8} (10,11) 19 4
{1, 2} , {7, 10, 11} , {6, 8} (4,6) 18 5
{1, 2} , {7, 10, 11} , {4, 6, 8} (4,8) NO (introduces a cycle)
{1, 2} , {7, 10, 11} , {4, 6, 8} (9,11) 16 6
{1, 2} , {7, 9, 10, 11} , {4, 6, 8} (1,3) 15 7
{1, 2, 3} , {7, 9, 10, 11} , {4, 6, 8} (2,9) 15 8
{1, 2, 3, 7, 9, 10, 11} , {4, 6, 8} (1,5) 14 9
{1, 2, 3, 5, 7, 9, 10, 11} , {4, 6, 8} (3,9) NO (introduces a cycle)
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} (3,4) 10 10=n-1 → HALT

A spanning tree of maximum cost, of value 167, is shown in green in the following figure.
The dropped edges are highlighted in red.

14

1

2

3

4

5

6 7

8
9

10

11

20

15

9

8

4

10

15

5

7

17

10

9

9

19

16

21

64

4

19

7

18

2.3 Optimality proofs. It suffices to verify that there exists a diminishing edge. By in-
spection, we observe that, by adding edge (1, 5) to the tree, the cycle (1, 5, 4, 3, 2, 1) is
introduced. In such cycle, edge (4, 3) has a strictly larger cost than (1, 5).

1 2

345

8 7

6

2

12
9

4 10

5

12
17

10

11

9

14

11

10

15

Therefore, by removing edge (4, 3) and adding edge (1, 5), a spanning tree of strictly smaller
total cost is obtained. It is shown in the following figure.

Document prepared by L. Liberti, S. Bosio, S. Coniglio, and C. Iuliano. Translation to English by S. Coniglio 6

ex-2.1-2.3 Foundations of Operations Research Prof. E. Amaldi

1 2

345

8 7

6

2

12
9

4 10

5

12
17

10

11

9

14

11

10

15

Document prepared by L. Liberti, S. Bosio, S. Coniglio, and C. Iuliano. Translation to English by S. Coniglio 7

