
1) Minimum spanning tree

Given the weighed undirected graph whose cost function is reported in the fol-
lowing table (where a dash represent the absence of an edge), determine the
minimum spanning tree with Kruskal’s algorithm.

1 2 3 4 5 6
1 - 9 15 13 11 -
2 9 - 4 - 5 -
3 15 4 - - - 2
4 13 - - - - 12
5 11 5 - - - 3
6 - - 2 12 3 -

Determine it with Prim’s algorithm, starting from each vertex.

Solution

Kruskal’s algorithm :
c36 = 2 (OK) c56 = 3 (OK) c23 = 4 (OK) c25 = 5 (NO)
c21 = 9 (OK) c15 = 11 (NO) c46 = 12 (NO) c14 = 13 (NO)

Checking (1, 4) is unnecessary

Total cost: f ∗ = 30

Prim’s algorithm (starting from vertex 1) :
c12 = 9 c23 = 4 c36 = 2 c56 = 3 c46 = 12 ⇒ f ∗ = 30

Prim’s algorithm (starting from vertex 2) :
c23 = 4 c36 = 2 c56 = 3 c12 = 9 c46 = 12 ⇒ f ∗ = 30

Prim’s algorithm (starting from vertex 3) :
c36 = 2 c56 = 3 c23 = 4 c12 = 9 c46 = 12 ⇒ f ∗ = 30

Prim’s algorithm (starting from vertex 4) :
c46 = 12 c36 = 2 c56 = 3 c23 = 4 c12 = 9 ⇒ f ∗ = 30

Prim’s algorithm (starting from vertex 5) :
c56 = 3 c36 = 2 c23 = 4 c12 = 9 c46 = 12 ⇒ f ∗ = 30

Prim’s algorithm (starting from vertex 6) :
c36 = 2 c56 = 3 c23 = 4 c12 = 9 c46 = 12 ⇒ f ∗ = 30



2) Shortest path (nonnegative costs)

Given a weighted directed graph whose cost function is reported in the following
table (where a dash represents the absence of an arc), determine the set of all
shortest paths from node 2 to the other nodes.

1 2 3 4 5 6
1 - 3 2 4 4 5
2 3 - - 2 - 5
3 2 - - - 1 2
4 4 2 - - 10 16
5 4 - 1 10 - 4
6 5 5 2 16 4 -

Solution

1. Set d2 = 0 and mark node 2

2. From node 2 reach nodes 1 (update d1 = 3), 4 (update d4 = 2) and 6
(update d6 = 5); mark node 4

3. From node 4 reach nodes 1, 2, 5 (update d5 = 12) and 6; mark node 1

4. From node 1 reach nodes 2, 3 (update d3 = 5), 4, 5 (update d5 = 7), and
6; mark node 3

5. From node 3 reach nodes 1, 5 (update d5 = 6), and 6; mark node 6

6. From node 6 reach nodes 1, 2, 3, 4, and 5; mark node 5

7. All nodes have been reached: terminate

Shortest path arborescence:
i 1 2 3 4 5 6
di 3 0 5 2 6 5
πi 2 - 1 2 3 2



3) Shortest path (general costs)

Given a weighted directed graph whose cost function is reported in the following
table (where a dash represents the absence of an arc), determine the set of all
shortest paths from node B to the other nodes.

A B C D
A - 8 - -6
B 8 - 6 2
C - 2 - -
D 6 5 - -

Solution

Floyd-Warshall’s algorithm starts with the direct paths (arcs).

A B C D
A - 8 - -6
B 8 - 6 2
C - 2 - -
D 6 5 - -

Then, for each node k ∈ N , it scans all pairs (i, j) evaluating whether the
alternative path (i, k, j) is better than the current path (i, j).

k = A Of course for i = A and j = A nothing changes; for the other 3 · 3 paths
something might change:

TO BE CONTINUED1

1This exercise is very long (Floyd-Warshall’s complexity is O
(

n3
)

): in an exam, only one
or two steps with respect to k will be required.



4) Project planning

Given a project composed of 6 activities with durations and precedences reported
in the following table:

Activity Duration Precedences
A 8 -
B 9 -
C 10 A
D 11 A
E 9 B
F 11 C,D
G 8 D,E
H 8 F,G

draw the activity-on-nodes representation of the project.

Determine the overall duration of the project and its critical paths.

What is the slack of activities B and G?

Solution

The alphabetic order already provides a topological ordering of the nodes (but
other ones could be possible, and would provide the same solution).

i s A B C D E F G H t
ei 0 0 0 8 8 9 19 19 30 38
li 0 0 4 9 8 13 19 22 30 38
σi 0 0 4 1 0 4 0 3 0 0

There is only one critical path: (s, A,D, F,H, t).



5) Maximum flow

Solve the maximum flow problem from the source node s to the sink node t of
the graph whose arcs have the capacities reported in the following table (a dash
indicates the absence of an arc between the row and column nodes).

s 1 2 3 4 t
s - 15 - - 5 -
1 - - 3 13 - -
2 - - - 7 - 8
3 - - - - - 10
4 - 4 9 10 - -
t - - - - - -

Solution

There are many possible solution processes and optimal final solutions. One is
the following:

1. Use augmenting path (s, 1, 2, t) with δ = 3

2. Use augmenting path (s, 1, 3, t) with δ = 10

3. Use augmenting path (s, 4, 2, t) with δ = 5

Now the sink t is no longer reachable from s; the reachable subset is S =
{s, 1, 3}.

The current flow function is given by the following table:

(i, j) (s, 1) (s, 4) (1, 2) (1, 3) (2, 3) (2, t) (3, t) (4, 1) (4, 2) (4, 3)
xij 13 5 3 10 7 8 10 0 5 10

The flow value for S is φS = φ+

S − φ−

S = 18− 0, where φ+

S = xs4 + x12 + x3t =
5 + 3 + 10 = 18 and φ−

S = x41 + x23 = 0 + 0 = 0.

The capacity of the cut induced by S is kS = ks4+k12+k3t = 5+3+10 = 18.
Since flow and cut are identical, they are both optimal (maximum flow and
minimum cut).



6) Standard form of LP

Given the following linear programming problem:

max z = 2x1 + x2

x1 + x2 ≤ 4

3x1 − 2x2 ≥ 9

2x1 + x2 = 16

x1 ≥ 5

x2 ≤ 0

express the problem in standard form.

Solution

There are several ways to reduce the problem in standard form. In particular:

1. constraint x1 ≥ 5 can be seen as an additional constraint on a nonnegati-
ve variable x1, or as a disguised nonnegativity constraint on an auxiliary
variable x′

1 = x1 − 5;

2. constraint x2 ≤ 0 can be seen as an additional constraint on a free variable
x2, or as a disguised nonnegativity constraint on an auxiliary variable x′

2 =
−x2;

3. constraint 2x1 + x2 = 16 can be left as it is, or it can be used to remove a
free variable so as to simplify the problem.

A smart reduction is to choose the second option in cases 1 and 2. In this
case, we cannot choose the second option in case 3, since there is no free variable
left.

min z′ = −2x′

1 + x′

2 − 10

x′

1 − x′

2 + x3 = −1

3x′

1 + 2x′

2 − x4 = −6

2x′

1 − x′

2 = 6

x′

1, x
′

2, x3, x4 ≥ 0

An alternative smart reduction chooses the second option in cases 1 and 3,
thus forcing the first option in case 2. In other words, x1 would be replaced by
x′ +5, but x2 would be treated as a free variable, and replaced by the expression
derived from constraint 2x1 + x2 = 16 (x2 = 16 − 2x1 = 6 − 2x′

1). However,
constraint x2 ≤ 0 should not be neglected.



7) Graphical solution of LP

Solve the following LP problem with the graphical method:

max z = 2x1 + 3x2

2x1 + x2 ≤ 5

2x1 − 3x2 ≤ 3

−4x1 + x2 ≤ 2

x1, x2 ≥ 0

Solution

The graphical representation of the feasible region is the irregular pentangle with
vertices (0, 0), (3/2, 0), (9/4, 1/2), (1/2, 4) and (0, 1).

The optimal solution is x∗ = (1/2, 4) with f ∗ = 2x∗

1 + 3x∗

2 = 13.



8) Simplex algorithm

1) Solve the following LP problem with the simplex algorithm:

max z = 2x1 − x2

3x1 − 2x2 ≤ 0

x1 + 2x2 ≤ 8

x1, x2 ≥ 0

2) Solve the following LP problem with the simplex algorithm:

min z = x1 − 2x2

−3x1 + 3x2 ≤ 1

+x1 − x2 ≤ 5

x1, x2 ≥ 0

What can be deduced about the dual problem? Write the dual problem and solve
it graphically to confirm the deduction.

Solution 1

0 -2 1 0 0
0 3 -2 1 0
8 1 2 0 1

Pivot on element (1, 2): the basis changes, but the solution is the same
(degenerate basic solution).

0 0 -1/3 2/3 0
0 1 -2/3 1/3 0
8 0 8/3 -1/3 1

Pivot on element (2, 2): this time, both the basis and the solution change.

1 0 0 5/8 1/8
2 1 0 1/4 1/4
3 0 1 -1/8 3/8

The current solution is (2, 3) and it is optimal (basic, feasible and with non-
negative reduced costs). Its value is −1 (+1 for the original objective function).



Solution 2

0 1 -2 0 0
1 -3 3 1 0
5 1 -1 0 1

Pivot on element (1, 2)

2/3 -1 0 2/3 0
1/3 -1 1 1/3 0
16/3 0 0 1/3 1

The problem is unbounded (first column non positive). Correspondingly, the
dual problem is unfeasible. In fact, the dual problem is

maxw = y3 + 5y4

−3y3 + y4 ≤ 1

+3y3 − y4 ≤ −2

y3, y4 ≤ 0

and its two constraints are incompatible: −3y3+y4 ≤ 1 is equivalent to 3y3−y4 ≥
−1, but the second constaint requires that 3y3 − y4 ≤ −2.



9) Duality

Write the dual of the following LP problem:

max z = 2x1 + 3x2

2x1 + x2 ≤ 5

2x1 − 3x2 ≤ 3

−4x1 + x2 ≤ 2

x1, x2 ≥ 0

Find a lower and an upper bound on the optimum of the problem.

Solution

minw = 5y3 + 3y4 + 2y5

2y3 + 2y4 − 4y5 ≥ 2

y3 − 3y4 + y5 ≥ 3

y3, y4, y5 ≥ 0

• Any feasible solution of the maximization problem provides a lower bound
on the optimum; for example, x = (0, 0) ⇒ z = 0 ≤ z∗

• Any feasible solution of the minimization problem provides an upper bound
on the optimum; for example, y = (3, 0, 0) ⇒ w = 15 ≥ w∗



10) Complementary slackness

Given the following LP problem:

min z = x1 + 4x2 + 7x3 + x4

−2x1 + 2x2 + x3 + x4 ≥ 2

x1 + x3 + x4 ≥ 3

x1 − x2 + x3 − x4 ≥ 1

x1, x2, x3 ≥ 0, x4 free

write the dual problem and solve it graphically. Find the optimal primal solution
through the complementary slackness conditions.

Solution

The given problem has an objective function to be minimized, constraints of
the ≥ type, three nonnegative variables and a free variable (the fourth one).
Consequently, the dual problem is a maximization problem, with nonnegative
variables, three constraints of the ≤ type and an equality constraint (the fourth
one).

maxw = 2y1 + 3y2 + 1y3

−2y1 + y2 + y3 ≤ 1

2y1 − y3 ≤ 4

y1 + y2 + y3 ≤ 7

y1 + y2 − y3 = 1

y1, y2, y3 ≥ 0

Since one of the constraints is an equality, it is possible to compute one of its
variables as a function of the other ones, provided that the nonnegativity constraint

is still taken into account (the removed variable is not free). Thus, y1+y2−y3 = 1
with y3 ≥ 0 yields y3 = y1 + y2 − 1 ≥ 0, that is

maxw = 3y1 + 4y2 − 1

−y1 + 2y2 ≤ 2

y1 − y2 ≤ 3

2y1 + 2y2 ≤ 8

−y1 − y2 ≤ −1

y1, y2 ≥ 0



The choice of the variable to remove is arbitrary. A free variable is better,
because it does not require to transform the nonnegativity constraint, but in the
present case there was none.

The optimal solution of the dual problem is A = (2, 2), while E = (0, 1) is a
degenerate basic solution because three variables assume zero value (y1 and the
two slack variables of constraints g1 and g4). Two separating hyperplanes are
parallel, implying that one of the possible susets of m = 4 columns is not a basis.
We could say that three of the basis solutions coincide and one of them is at
infinity.

The complementary slackness conditions guarantee that, given two correspon-
ding basic solutions of the primal and the dual problem, all products of corre-
sponding variables in the two problem are zero. We use the original unsimplified
formulation of the dual problem because the primal problem corresponds to it,
and not to the simplified version.

x∗

1 (1 + 2y∗1 − y∗2 − y∗3) = 0

x∗

2 (4− 2y∗1 + y∗3) = 0

x∗

3 (7− y∗1 − y∗2 − y∗3) = 0

x∗

4 (1− y∗1 − y∗2 + y∗3) = 0

y∗1 (−2x∗

1 + 2x∗

2 + x∗

3 + x∗

4 − 2) = 0

y∗2 (x
∗

1 + x∗

3 + x∗

4 − 3) = 0

y∗3 (x
∗

1 − x∗

2 + x∗

3 − x∗

4 − 1) = 0

Since the optimal solution of the dual problem is y∗ = yA = (2, 2, 3)

x∗

1 (1 + 4− 2− 3) = 0

x∗

2 (4− 4 + 3) = 0

x∗

3 (7− 2− 2− 3) = 0

x∗

4 (1− 2− 2 + 3) = 0

2 (−2x∗

1 + 2x∗

2 + x∗

3 + x∗

4 − 2) = 0

2 (x∗

1 + x∗

3 + x∗

4 − 3) = 0

3 (x∗

1 − x∗

2 + x∗

3 − x∗

4 − 1) = 0



from which

0 = 0

2x∗

2 = 0

0 = 0

0 = 0

−2x∗

1 + 2x∗

2 + x∗

3 + x∗

4 − 2 = 0

x∗

1 + x∗

3 + x∗

4 − 3 = 0

x∗

1 − x∗

2 + x∗

3 − x∗

4 − 1 = 0

which implies

x∗

2 = 0

−2x∗

1 + x∗

3 + x∗

4 − 2 = 0

x∗

1 + x∗

3 + x∗

4 − 3 = 0

x∗

1 + x∗

3 − x∗

4 − 1 = 0

and (summing and subtracting the last two constraints)

x∗

2 = 0

−2x∗

1 + x∗

3 = 1

x∗

1 + x∗

3 = 2

x∗

4 = 1

and finally x∗ = (1/3, 0, 5/3, 1).
The solution is certainly optimal for the primal, because it is feasible and

the corresponding dual solution is also feasible and has the same value, which is
optimal for the dual.



11) Gomory cuts

Given the following ILP problem:

max z = x1 − x2

2x1 − 3x2 ≤ 0

2x1 + 3x2 ≤ 6

x1, x2 ≥ 0 e interi

and the optimal tableau of its continuous relaxation:

1/2 0 0 5/12 1/12
3/2 1 0 1/4 1/4
1 0 1 -1/6 1/6

generate a Gomory cut both in integer and fractionary form.

Add the cut to the tableau and reoptimize the problem.

Solution

1/2 0 0 5/12 1/12
3/2 1 0 1/4 1/4
1 0 1 -1/6 1/6

The optimal relaxed solution is x∗ = (3/2, 1) and its value is z∗ = 1/2.

The Gomory cut derived from row 1 is 1/4x3+1/4x4 ≥ 1/2 (which corresponds
to x1 ≤ 1 in the graphical representation).

1/2 0 0 5/12 1/12 1
3/2 1 0 1/4 1/4 0
1 0 1 -1/6 1/6 0

-1/2 0 0 -1/4 -1/4 1

The pivot element is a34 = −1/4 and the modified tableau becomes

1/3 0 0 1/3 0 1/3
1 1 0 0 0 1
2/3 0 1 -1/3 0 2/3
2 0 0 1 1 -4

The optimal relaxed solution is x∗ = (1, 2/3) and its value is z∗ = 1/3.

The Gomory cut derived from row 1 is 2/3x3+2/3x5 ≥ 2/3 (which corresponds
to x1 ≤ x2 in the graphical representation).



1/3 0 0 1/3 0 1/3 0
1 1 0 0 0 1 0
2/3 0 1 -1/3 0 2/3 0
2 0 0 1 1 -4 0

-2/3 0 0 -2/3 0 -2/3 1

The pivot element can be either a43 = −2/3 or a45 = −2/3 indifferently (same
ratio); we choose the former.

0 0 0 0 0 0 1/2
1 1 0 0 0 1 0
1 0 1 0 0 1 -1/2
1 0 0 0 1 -5 3/2
1 0 0 1 0 1 -3/2

The optimal relaxed solution is x∗ = (1, 1) and its value is z∗ = 0. Since it
is integer, it is optimal also for the original problem. Gomory’s cutting plane
algorithm terminates.

Note: To better understand the solution process, it is adviceable to draw
the graphical representation of the problem, the basic solutions visited and the
Gomory cuts generated. This is not required to solve the problem, but it helps
understanding.



12) Branch-and-bound

Given the following ILP problem:

max z = x1 − x2

2x1 − 3x2 ≤ 0

2x1 + 3x2 ≤ 6

x1, x2 ≥ 0 e interi

determine its optimal solution with the branch-and-bound method, solving gra-
phically the continuous relaxation of its various subproblems. Draw the corre-
sponding branching tree.

Solution

First notice that the problem is a maximization problem. This means that, with
respect to the lesson slides, the superoptimal value is an upper bound instead
of a lower bound. Conversely, the value of the heuristic solutions provide lower
bounds, instead of upper ones. To avoid any confusion, it is possible to change
the sign of the objective function at the beginning, solve the problem and go back
to the original function at the end of the process. We will, on the contrary, keep
the given function and adapt the terminology to the situation.

The continuous relaxation of the original problem P0 has optimal solution
(3/2, 1), yielding an upper bound on the optimum equal to UB0 = 3/2−1 = 1/2
(they can be found graphically).

Branching on x1 produces subproblems:

1. P1: x1 ≤ ⌊3/2⌋ = 1, whose continuous relaxation has optimal solution
(1, 2/3) yielding an upper bound on the optimum: UB1 = 1− 2/3 = 1/3;

2. P2: x1 ≤ ⌈3/2⌉ = 2, whose continuous relaxation is unfeasible.

The only open branching node is P1, which is further split into:

1. P3: x2 ≤ ⌊2/3⌋ = 0, whose continuous relaxation has a single (optimal)
solution (0, 0) yielding an upper bound on the optimum: UB3 = 0− 0 = 0;
this is also a lower bound, because both variables are integer: LB = 0;

2. P4: x2 ≤ ⌈2/3⌉ = 1, whose continuous relaxation has optimal solution
(1, 1), yielding an upper bound on the optimum: UB4 = 0 − 0 = 0; this
is also a lower bound, because both variables are integer, but it does not
improve the current lower bound (it is equal); anyway, the upper bound
is not larger than the current lower bound, so the branching node can be
closed.



No other branching node is open: the best known solution is optimal. This
is (0.0) and its value is LB = 0. Another optimal solution is (1, 1), but it was
found later and the algorithm will return the first one.



13) Modelling and interpretation

A large bakery must define the production levels for its four main products:
Biscuits, Fruitcakes, Plumcakes and Cakes. The selling prices of each product
have already been fixed, respectively, to 2.5 Euros, 4 Euros, 4.3 Euros and 4.5
Euros, while the maximum demand is estimated to be 4 000 units for Biscuits,
2 000 units for Fruitcakes, 1 000 units for Plumcakes and 4 000 units for Cakes.
The bakery employs five main ingredients: Flour, Milk, Jam, Eggs and Sugar.
The composition of the products is reported in the following table:

Biscuits Fruitcakes Plumcakes Cakes
Flour 70% 40% 30% 55%
Milk 10% 10% 15% 20%
Jam 0% 40% 20% 0%
Egg 5% 0% 20% 10%
Sugar 15% 10% 15% 15%

The bakery has a limited availability of each ingredient: 5 000 units of Flour,
2 000 units of Milk, 2 500 units of Jam, 500 units of Eggs and 3 000 units of Sugar.

Provide a mathematical programming formulation for the problem of maxi-
mizing the income of the bakery.

Write the model in AMPL.

Given the AMPL output attached, answer the following questions:

a. how much Flour is still available in the end?

b. what’s the value of the slack variable for the demand constraint on Plumcakes?

c. how much should the selling price of the Plumcakes increase in order to make
their production profitable?

d. if 5 more Eggs were available, how much would the bakery income change?

e. is it profitable to invest in advertising to increase the demand of Biscuits?

f. if the demand estimate for Cakes were decreased to 2 000 units, should the
production plan change?



Output

Level [*] :=

Biscuits 3411.76

Cakes 3294.12

Fruitcakes 2000

Plumcakes 0

;

Level.rc [*] :=

Biscuits 0

Cakes 0

Fruitcakes 0

Plumcakes -4.22941

;

AvailabilityConstraints.slack [*] :=

Eggs 0

Flour 0

Jam 1700

Milk 800

Sugar 1794.12

;

AvailabilityConstraints.dual [*] :=

Eggs 41.7647

Flour 0.588235

Jam 0

Milk 0

Sugar 0

;

DemandConstraints.slack [*] :=

Biscuits 588.235

Cakes 705.882

Fruitcakes 0

Plumcakes 1000

;

DemandConstraints.dual [*] :=

Biscuits 0

Cakes 0

Fruitcakes 3.76471

Plumcakes 0

;

Solution (AMPL model)

Model file

set Ingredients;



set Products;

param Price{Products};

param Demand{Products};

param Availability{Ingredients};

param Composition{Ingredients,Products};

var Level{Products} >= 0;

maximize Income : sum{p in Products} Price[p] * Level[p];

subject to AvailabilityConstraints {i in Ingredients} :

sum{p in Products} Composition[i,p] * Level[p] <= Availability[i];

subject to DemandConstraints {p in Products} :

Level[p] <= Demand[p];

end;

Data file

set Ingredients := Flour Milk Jam Eggs Sugar;

set Products := Biscuits Fruitcakes Plumcakes Cakes;

param Price :=

Biscuits 2.5

Fruitcakes 4.0

Plumcakes 4.3

Cakes 4.5

;

param Demand :=

Biscuits 4000

Fruitcakes 2000

Plumcakes 1000

Cakes 4000

;

param Availability :=

Flour 5000

Milk 2000

Jam 2500

Eggs 500

Sugar 3000

;



param Composition :

Biscuits Fruitcakes Plumcakes Cakes :=

Flour 0.70 0.40 0.30 0.55

Milk 0.10 0.10 0.15 0.20

Jam 0.00 0.40 0.20 0.00

Eggs 0.05 0.00 0.20 0.10

Sugar 0.15 0.10 0.15 0.15

;

end;

Solution (output interpretation)

a. how much Flour is still available in the end?
The remaining amount of Flour is given by the slack of the corresponding avai-
lability constraints AvailabilityConstraints[Flour].slack: it is zero. See
also the corresponding shadow price (dual variable) AvailabilityConstraints[Flour].dual:
it is strictly positive, which implies that the slack is zero by complementary
slackness.

b. what’s the value of the slack variable for the demand constraint on Plumcakes?
The slack variable is given by DemandConstraints[Flour].slack: it equals
the total demand (1 000) because no Plumcakes are produced.

c. how much should the selling price of the Plumcakes increase in order to make
their production profitable?
Plumcakes are currently not produced. Increasing the production of Plumca-
kes from 0 to ǫ would affect the income by −4.22941ǫ, because the reduced
cost of Plumcakes is Level[Plumcakes].rc, that is −4.22941 (it is negative,
instead of positive as we usually assume, because the objective is maximized,
instead of minimized). In order to make the production profitable, the price
must cover the additional cost increasing by 4.22941 Euros.

d. if 5 more Eggs were available, how much would the bakery income change?
A small increase in the availability of Eggs (an increase of 5 amounts to
1% of the current value, which is probably small) affects the income pro-
portionally to the shadow price of the corresponding availability constraint
AvailabilityConstraints[Eggs].dual, increasing it by 41.7647ǫ = 208.8235.
If the additional Eggs can be found at price not larger than that, it is pro-
fitable to buy them, and increase the production. An increase is sufficiently
small if it does not modify the optimal basis. Otherwise, the variation of the
income is not proportional to the increase in availability, but smaller.



e. is it profitable to invest in advertising to increase the demand of Biscuits?
A small increase in the demand of Biscuits affects the income proportionally to
the shadow price of the Biscuits demand constraint DemandConstraints[Biscuits].dual,
that is 0. In fact the production of biscuits is lower than the maximum de-
mand, there is a positive slack (corresponding to the zero shadow price by
complementary slackness). Thus, an increase in the demand would not affect
the production level: the advertising campaign would bring no advantage. If
the shadow price were positive, it would provide a benchmark to estimate the
profitability of the advertising campaign, given the cost and the effectiveness
(impact on the demand) of the latter.

f. if the demand estimate for Cakes were decreased to 2 000 units, should the
production plan change?
Presently, 3 294.12 Cakes are produced, and the maximum demand is 4 000; if
the demand decreases by 2 000, it certainly affects the current production. It
is not possible to say how much from the given information. If the decrease is
at most 4 000− 3 294.12 = 705.88, on the contrary, the optimal production is
not affected.


