
ARTICLES

USING INDUCTION TO DESIGN
ALGORITHMS

An analogy between proving mathematical theorems and designing
computer algorithms provides an elegant methodology for designing
algorithms, explaining their behavior, and understanding their key ideas.

UDI MANBER

This article presents a methodology, based on mathe-
matical induction, for approaching the design and the
teaching of combinatorial algorithms. While this meth-
odology does not cover all possible ways of designing
algorithms it does cover many known techniques. It
also provides an elegant intuitive framework for ex-
plaining the design of algorithms in more depth. The
heart of the methodology lies in an analogy between
the intellectual process of proving mathematical theo-
rems and that of designing combinatorial algorithms.
We claim that although these two processes serve dif-
ferent purposes and achieve different types of results,
they are more similar than it seems. This claim is es-
tablished here by a series of examples of algorithms,
each developed and explained by the use of the meth-
odology. We believe that students can get more motiva-
tion, greater depth, and better understanding of algo-
rithms by this methodology.

Mathematical induction is a very powerful proof
technique. It usually works as follows. Let T be a theo-
rem that we want to prove. Suppose that 7’ includes a
parameter n whose value can be any natural number.
Instead of proving directly that T holds for all values of

This research was supported in part by an NSF grant MCS-8303134. and an
NSF Presidential Young Investigator Award [grant DCR-8451397). with match-
ing funds from Tektronix, Digital Equipment Corporation, and Hewlett
Packard.

01988 ACM OOOl-0782/88/1100-1300 $1.50

n we prove that (1) T holds for n = 1, and (2) T holds for
any n > 1 provided that T holds for n - 1. The first part
is usually very simple to prove. Proving the second part
is easier in many cases than proving the theorem di-
rectly since we can use the assumption that T holds for
n - 1. (In some sense we get this assumption for free.)
In other words, it is enough to reduce the theorem to
one with a smaller value of n, rather than proving it
from scratch. We concentrate on this reduction.

The same principle holds for algorithms. Induction
allows one to concentrate on extending solutions of
smaller subproblems to those of larger problems. One
starts with an arbitrary instance of the problem at
hand, and tries to solve it by using the assumption that
the same problem but with smaller size has already
been solved. For example, given a sequence of n > 1
numbers to sort (it is trivial to sort one number), we
can assume that we already know how to sort n - 1
numbers. Then we can either sort the first n - 1 num-
bers and insert the nth number in its correct position
(which leads to an algorithm called insertion sort), or
start by putting the nth number in its final position and
then sort the rest (which is called selection sort). We
need only to address the operation on the nth number.
(Of course, this is not the only way to sort, nor is it the
only way to use induction for sorting.)

The use of induction in the example above is
straightforward. There are, however, many different
ways to use induction, leading to different algorithm

1300 Communications of the ACM November 1988 Volume 31 Number 11

Articles

design techniques. It is a very rich and flexible method.
We will show that surprisingly many problems become
much easier to solve if one uses this idea. We will
survey some of these methods, and show their power in
designing algorithms. Among the variations of induc-
tion that we discuss are choosing the induction se-
quence wisely, strengthening the induction hypothesis,
strong induction, and maximal counterexample.

The novelty of our approach is twofold. First we col-
lect seemingly different techniques of algorithm design
under one umbrella. This makes the search for a new
algorithm more organized. Second, we utilize known
mathematical proof techniques for algorithm design.
This is important since it opens the door to the use of
powerful techniques that have been developed for
many years in another discipline.

The use of induction, and mathematical proof tech-
niques in general, in the algorithms area is not new.
Induction has been used for a long time to prove cor-
rectness of algorithms by associating assertions with cer-
tain steps of the algorithm and proving that they hold
initially and that they are invariant under certain oper-
ations. This method was originally suggested by Gold-
stine and von Neumann, and developed later by Floyd
and others. Dijkstra [7] and Gries [8] present a method-
ology similar to ours to develop programs together with
their proof of correctness. While we borrow some of
their techniques, our emphasis is different: we concen-
trate on the high level algorithmic ideas without going
down to the actual program level. PRL [Z] and later
NuPRL [6] use mathematical proofs as the basic part of
a program development system. Recursion, of course,
has been used extensively in algorithm design (for a
general discussion on recursion see [5] and [13]).

Our goals are mainly pedagogical. We assume only
that the reader is familiar with mathematical induction
and basic data structures. For each proof technique we
explain the analogy briefly and present one or more
examples of algorithms. The emphasis of the presenta-
tion is on how to use this methodology. Our aim is not
to explain an algorithm in a way that makes it easier
for a programmer to translate it into a program, but
rather to explain it in a way that makes it easier to
understand. The algorithms are explained through a cre-
ative process rather than as finished products. Our
goals in teaching algorithms are not only to show stu-
dents how to solve particular problems, but also to help
them solve new problems in the future. Teaching the
thinking involved in designing an algorithm is as im-
portant as teaching the details of the solution, but this
is usually much harder to do. We believe our method-
ology enhances the understanding of this thinking
process.

Although induction suggests implementation by re-
cursion, this is not necessarily the case. (Indeed, we
call this approach inductive rather than recursive to de-
emphasize recursive implementations.) In many cases,
iterative implementation is just as easy, even if the
algorithm was designed with induction in mind; itera-
tion is also generally more efficient.

The algorithms presented in this article were selected
to highlight the methodology. We chose relatively sim-
ple examples, with some more complicated examples
toward the end. We have found that many of the algo-
rithms regularly taught in the first course on algorithm
design can be described using this method. (An intro-
duction to algorithms book using this methodology will
appear soon [KC?].) We begin with three simple examples
(at least the use of induction makes them seem simple).
Then we present several mathematical proof tech-
niques and their analogous algorithm design tech-
niques. In each case the analogy is illustrated by one
or more examples.

THREE EXAMPLES

Evaluating Polynomials
The problem: Given a sequence of real numbers an,
a,-I,..., a,, aO, and a real number x, compute the
value of the polynomial

P,(x) = a,x” + an-lx”-’ + . . * + UlX + ao.

This problem may not seem like a natural candidate for
an inductive approach. Nevertheless, we will show that
induction can lead directly to a very good solution. We
start with the simplest (almost trivial) approach, and
then find variations that lead to better solutions.

The problem involves n + 2 numbers. The inductive
approach is to solve this problem in terms of a solution
of a smaller problem. In other words, we try to reduce
the problem to one with smaller size, which is then
solved recursively (or as we will call it by induction).
The first attempt may be to remove a,. This results in
the problem of evaluating the polynomial

P,-,(x) = &-IX n-1 + an-zx”-2 + . . . + a,x + a 0.

This is the same problem, except for the size. There-
fore, we can solve it by induction using the following
hypothesis:

Induction hypothesis: We know how to evaluate a poly-
nomial represented by the input a,-1, . . . , a,, aO, at the
point x (i.e., we know how to compute P,-l(x)).

We can now use the hypothesis to solve the problem by
induction. First we have to solve the base case, which
is computing a,,; this is trivial. Then, we must show
how to solve the original problem (computing P,(x))
with the aid of the solution of the smaller problem
(which is the value of P,-l(~)). In this case it is straight-
forward. We simply compute x”, multiply it by a, and
add the result to P,-I (x).

At this point it may seem that the use of induction is
frivolous because it just complicates a very simple solu-
tion. The algorithm above merely evaluates the poly-
nomial from right to left as it is written. However, we
will shortly see the power of the approach.

While the algorithm is correct, it is not very efficient.
It requires n + n - 1 + n - 2 + . fe + 1 = n(n + 1)/2
multiplications and n additions. We now use induction
a little differently to obtain a better solution.

November 1988 Volume 31 Number 11 Communications of the ACM 1301

Articles

Improvements: The first improvement comes from the Complexity: The algorithm requires only n multiplica-
observation that there is a lot of redundant computa- tions, n additions, and one extra memory location. Even
tion: the powers of x are computed from scratch. We though the previous solutions seemed very simple and
can save many multiplications by using the value of efficient, it was worthwhile to pursue a better algo-
X n-l when we compute x”. This is done by including rithm. This algorithm is not only faster, its correspon-
the computation of x” in the induction hypothesis: ding program is simpler.

Stronger induction hypothesis: We know how to computt
the value of the polynomial P,,-, (x), and we know how to
compute x”-‘.

Summary: The simple example above illustrates the
flexibility in using induction. The trick that led to Hor-
ner’s rule was merely considering the input from left to
right instead of the intuitive right to left.

This induction hypoihesis is stronger, since it requires
computing xn-‘, but it is easier to extend: We need only
perform one multiplication to compute x”, then one
more multiplication to get a,rx”, and then one addition
to complete the computation. (The induction hypothe-
sis is not too strong, since we need to compute xn-’
anyway.) Overall, there are 2n multiplications and n
additions. Even though the induction hypothesis re-
quires more computation, it leads to less work overall.
We will return to this point later. This algorithm looks
very good by all measures. It is efficient, simple, and
easy to implement. However, a better algorithm exists.
It is a result of using induction in a different way.

There are, of course, many other possibilities of using
induction, and we will see more such examples.

We reduced the problem by removing the last coeffi-
cient, a,, (which was the straightforward thing to do).
But, we can also remove the first coefficient, ao. The
smaller problem becomes the evaluation of the poly-
nomial represented by the coefficients a,, a,-l, . . . , al,
which is

Finding One-to-One Mappings
Let f be a function that maps a finite set A into itself
(i.e., every element of A is mapped to another element
of A). For simplicity, we denote the elements of A by
the numbers 1 to n. We assume that the function f is
represented by an array f [l. .n] such that f [i] holds the
value off(i) (which is an integer between 1 and n). The
function f is called one-to-one if every element of A has
exactly one element which is mapped to it. The func-
tion f can be represented by a diagram as in Figure 1,
where both sides correspond to the same set and the
edges indicate the mapping (which is done from left to
right).

PLml(x) = a,xn-’ + an-lx”-2 + . . . + al.

(Notice that a,, is now the n - ‘1st coefficient, and so on.)
The new induction hypothesis is the following:

Induction hypothesis (reversed order): We know how to
evaluate the polynomial represented by the coefficients a,,,
an-l,..., a1 at the point x (i.e., PLml(x) above).

This hypothesis is better for our purposes since it is
easier to extend. Clearly P,(x) = x . Piml (x) + ao. There-
fore, only one multiplication and one addition are re-
quired to compute P,(x) from PL-, (x), The complete
algorithm can be described by the following expression:

FIGURE 1. A Mapping from a Set into Itself

a,xn + a,-,xn-’ + . . . + a,x + a0
The problem: Find a subset S c A with the maximum
number of elements, such that (1) the function f maps
every element of S to another element of S (i.e., f maps
S into itself), and (2) every element of S has exactly one
element of S which is mapped to it (i.e., f is one-to-one
when restricted to S).

= ((- . . ((a,x + a,-,)x -t anma) . . .)x + aI)x + ao.

This algorithm is known as Horner’s rule after W. G.
Horner. (It was also mentioned by Newton, see [lo] p.
467.) The program to evaluate the polynomial is given
below.

Algorithm Polynomial-Evaluation
(ao, aI, a*, . . . , a,, x: real);

begin
P := a,;
for i := I to n do

P := x * P + a,-i
end;

If f is originally one-to-one then the whole set A satis-
fies the conditions of the problem, and it is definitely
maximal. If, on the other hand, f(i) = f(j) for some i # j
then S cannot contain both i and j. For example, in
Figure 1 S cannot contain both 2 and 3. The choice of
which one of them to eliminate cannot be arbitrary.
Suppose, for example, that we decide to eliminate 3.
Since 1 is mapped to 3 we must eliminate 1 as well (the

1302 Communications of the ACM November 1988 Volume 31 Number 11

Articles

mapping must be into S and 3 is no longer in S). But if 1
is eliminated, then z must be eliminated as well (for the
same reason). But, this is not maximal, since it is easy
to see that we could have eliminated 2 alone. The prob-
lem is to find a general method to decide which ele-
ments to include.

The idea of a solution by induction is to concentrate
on reducing the size of the problem. We have some
flexibility. We can reduce the size of the problem by
finding either an element that belongs to S or an ele-
ment that does not belong to S. We will do the latter.
We use the straightforward induction hypothesis:

Induction hypothesis: We know how to solve the problem
for sets of n - 1 elements.

The base case is trivial: if there is only one element in
the set, then it must be mapped to itself, which is a
one-to-one mapping. Assume now that we have a set A
of n elements and we are looking for a subset S that
satisfies the conditions of the problem. It turns out that
it is easier to find an element that cannot belong to S
than it is to find an element of S. We claim that any
element i that has no other element mapped to it can-
not belong to S. (In other words, an element i in the
right side of the diagram, which is not connected to any
edge, cannot be in S.) Otherwise, if i E S and S has, say,
k elements, then those k elements are mapped into at
most k - 1 elements, therefore the mapping cannot be
one-to-one. If there is such an i then we simply remove
it from the set. We now have a set A’ = A - (i) with
n - 1 elements, which f maps into itself; by the induc-
tion hypothesis we know how to solve the problem for
A’. If no such i exists then the mapping is one-to-one,
and we are done.

The essence of this solution is that we must remove i.
We proved above that it cannot belong to S. This is the
strength of induction. Once we remove an element and
reduce the size of the problem we are done. We have to
be very careful, however, that the reduced problem is
exactly the same (except for size) as the original prob-
lem. The only condition on the set A and the function f
was that f maps A into itself. This condition is still
maintained for the set A - I since there was nothing

no elements can be remove:!
that was mapped to i. The algorithm terminates when

Implementation: The algorithm was described above as
a recursive procedure. In each step we find an element
such that no other element is mapped to it, remove it,
and continue recursively. The implementation, how-
ever, need not be recursive. We can maintain a counter
c[i] with each element i. Initially c[i] should be equal
to the number of elements that are mapped to i. This
can be computed (in n steps) by scanning the array and
incrementing the appropriate counters. We then put all
the elements with a zero counter in a queue. In each
step we remove an element j from the queue (and the
set), decrement c[f(j)], and if c[f(j)] = 0, we putf(j) in
the queue. The algorithm terminates when the queue is
empty. The algorithm follows.

Algorithm Mapping (f: array [l. .n] of integer);

begin
S := A; {A is the set of numbers from 1 to n)
for j := 1 to n do c[j] := 0;
for j := 1 to n do increment c[f [j I];
forj:=ltondo

if c[j] = 0 then put j in Queue;
while Queue is not empty do

remove i from the top of the queue;
S := S - {i);
decrement c[f [i]];
if c[f [i]] = 0 then put f [i] in Queue

end;

Complexity: The initialization parts require 0 (n) opera-
tions. Every element can be put on the queue at most
once, and the steps involved in removing an element
from the queue take constant time. The total number of
steps is thus O(n).

Summary: In this case reducing the size of the problem
involves eliminating elements from a set. Therefore, we
try to find the easiest way to remove an element with-
out changing the conditions of the problem. Since the
only requirement from the function is that it maps A
into itself, the choice of an element which no other
element is mapped to is natural.

Checking Intervals for Containment
The problem: The input is a set of intervals II, IZ, . . . ,
I, on a line. Each interval I1 is given by its two end-
points Lj (left) and Rj (right). We want to murk all inter-
vals that are contained in other intervals. In other
words, an interval I1 should be marked if there exists
another interval Ik (k # j) such that Lk I Lj and Rk 2 Rj.
For simplicity we assume that the intervals are distinct
(i.e., no two intervals have the same left and right end-
points, but they may have one of them in common).
Figure 2 shows such a set of intervals. (They are shown
one on top of the other instead of all on one line for
better illustration.)

-

FIGURE 2. A Set of Intervals

Using induction in a straightforward way involves
removing an interval I, solving the problem recursively
for the remaining intervals, and then checking the ef-
fects of adding I back. The problem is that putting I
back requires checking all other intervals to see
whether any of them either contains I or is contained
in it. This will require checking I against n - 1 inter-
vals, which will result in an algorithm that uses n - 1
+n-2+ . . . + 1 = n(n - 1)/2 comparisons. We want
a better algorithm so we do two things: First we choose
a special interval to remove, and second we try to use

November 1988 Volume 31 Number 11 Communications of the ACh4 1303

Articles

as much of the information gathered from the solution
of the smaller problem.

Let 1 be the interval with the largest (rightmost) left
endpoint. There is no need to check left endpoints any
further since all other intervals have smaller left end-
points. Therefore, to check whether I is contained in
any of the other intervals, we only need to check
whether any of them has a right endpoint larger than
I’s right endpoint. To get the interval with the largest
left endpoint we can sort all intervals according to
their left endpoints and scan them in order. Assume
that the intervals are sorted in that order, so that
L, 5 Lz 5 . . * zz L,. The induction hypothesis is the
following:

{Mark[j] will be set to true if 1, is contained in another
interval.)

begin
Sort the intervals in increasing order according to left

endpoints;

Induction hypothesis: We knozu how to solve the problem
for I,, 12, * . , , I,-*.

Intervals with equal left endpoints are sorted in
decreasing order according to right endpoint;

{for all j < k, either Lj < Lk or Lj = Lk and Rj > Rk]
MaxR := R, ;
forj:=ztondo

if Rj 5 MaxR then
Mark[j] := true

else
Mark[j] := false;
MaxR := Rj

end;

The base case is trivial: if there is only one interval,
then it is not marked. Now consider I,. By the induc-
tion hypothesis we know whic:h of the intervals I, to
I,-, is contained in another interval. We need to deter-
mine whether I, contains some (previously unmarked)
intervals, and whether it is contained in another inter-
val. Let’s concentrate first on checking whether I, is
contained in another interval. If I,, is contained in an
interval I,, j < n, then R, z R,,. But this is the only
necessary condition (the s0rtin.g guarantees that
Lj 5 L,). Therefore, we only need to keep track of the
largest right endpoint among the previous intervals.
Comparing the largest right endpoint to R, should give
us the answer. We change the induction hypothesis
slightly:

Complexity: Except for the sorting, the algorithm con-
tains one loop involving O(n) operations. Since sorting
requires O(n log n) steps, it dominates the running time
of the algorithm.

Summary: This example illustrates a less straightfor-
ward use of induction. First, we select the order under
which the induction will take place. Then, we design
the induction hypothesis so that (1) it implies the de-
sired result, and (2) it is easy to extend. Concentrating
on these steps makes the design of many algorithms
simpler.

Stronger induction hypothesis: We know how to solve
the problem for I,, 12, . . . , I,,-, , and find the largest right
endpoint among them.

Again, let I, be the interval with the largest left end-
point, and let MaxR be the largest right endpoint among
the n - 1 first intervals. If MaxR >_ R, then I, should be
marked; otherwise (MaxR < R,), R, becomes the new
maximal. (This last step is necessary since we are now
not only marking intervals, but we are also looking for
the largest right endpoint.) We are able to determine
In’s status with only one check.

To complete the algorithm we need to check whether
I, contains a previously unmarked interval. I, contains
an interval I,, j < n, only if L, = L, and RI < R,. We can
handle this case by strengthening the sorting. We not
only sort according to left endpoints, but among all
intervals with the same left endpoint we sort according
to the reversed order of right endpoints. This will elimi-
nate the case above since Ij will be placed after I, and
its containment will therefore be found by the algo-
rithm above. The complete algorithm is given below.

CHOOSING THE INDUCTION SEQUENCE WISELY
In the previous examples, the emphasis in the search
for an algorithm was on reducing the size of the prob-
lem. This is the essence of the inductive approach.
There are, however, many ways to achieve this goal.
First, the problem may include several parameters (e.g.,
left endpoints and right endpoints, vertices and edges in
a graph), and we must decide which of those should be
reduced. Second, we may be able to eliminate many
possible elements, and we want to choose the “easiest”
one (e.g., the leftmost endpoint, the smallest number).
Third, we may want to impose additional constraints
on the problem (e.g., the intervals are in a sorted order).
There are many other variations. For example, we can
assume that we know how to solve the problem for
some other values < n instead of just n - 1. This is a
valid assumption. Anything that reduces the size of the
problem can be considered since it leads back to the
base case which we solve directly. Going back to the
sorting example discussed in the introduction, we can
reduce the sorting of n elements to sorting two subsets
of n/2 elements. The two sorted subsets can then be
merged (leading to an algorithm called merge sort). Di-
viding the problem (inductively) into several equal
parts is a very useful technique (which we will discuss
later) called divide nnd conquer.

Algorithm Interval-Containment Some reductions are easy to make, some are hard.
(II, 12, . . . I I,: intervals); Some lead to good algorithms, some do not. In many

(An interval Zj is represented as: a pair 4, Rj.) cases this is the only hard part of the problem, and
(We assume that no two intervals are exactly the once the right choice is made the rest is easy (e.g., the

same.) choice of the element i in the mapping problem). This

1304 Communications of the ACM November 1988 Volume 31 Number 11

Articles

is extremely important in mathematics. One never
jumps into an induction proof without thinking first
how to choose the induction sequence. As expected, it
is also very important in algorithm design. In this sec-
tion we show two examples in which the order of re-
duction is very important. The celebrity example, in
particular, illustrates a nontrivial order.

Topological Sorting
Suppose there is a set of tasks that need to be per-
formed one at a time. Some tasks depend on other tasks
and cannot be started until the other tasks are com-
pleted. All the dependencies are known, and we want
to arrange a schedule of performing the tasks that is
consistent with the dependencies (Le., every task is
scheduled to be performed only after all the tasks it is
dependent on are completed). We want to design a fast
algorithm to generate such a schedule. This problem is
called topological sorting. The tasks and their dependen-
cies can be represented by a directed graph. A directed
graph has a set of vertices V (corresponding to the tasks
in this case), and a set of edges E which are pairs of
vertices. There is an edge from vertex v to vertex w
(denote as (v, w) E E) if the task corresponding to v
must be performed before the task corresponding to w.
The graph must be acyclic, otherwise the tasks on the
cycle can never be started. Here is a formulation of the
problem in terms of graphs.

But, can we always find a vertex of indegree zero?
The answer is intuitively yes since we must be able to
start somewhere. Indeed, if all vertices had positive in-
degrees then we could traverse the graph “backwards”
and never have to stop. But since there is only a finite
number of vertices we must go through a cycle, which
is a contradiction to our assumption. (By the same argu-
ment we can also start with a vertex of outdegree 0 and
label it n.) The rest of the algorithm is now clear. Re-
move the chosen vertex with its adjacent edges and
label the rest of the graph, which is still acyclic of
course, with labels 2 to n. Since we need to label the
remaining graph with labels 2 to n instead of 1 to n - 1
we need to change the induction hypothesis slightly.

Induction hypothesis 2: We know how to label a graph
with n - 1 vertices, according to the conditions of the
problem, using any set of n - 1 distinct labels.

The corresponding algorithm is given below.

Algorithm Topological-Sorting
(G = (V, E): a directed acyclic graph);

begin
The problem: Given a directed acyclic graph G = (V, E)
with n vertices, label the vertices from 1 to n such that
if v is labeled k then all vertices that can be reached
from v by a directed path are labeled with labels > k.
(A path is a sequence of vertices v,, v2, . . . , vk that are
connected by the edges (vl, v2), (v2, vs), . . . , (v&l, vk).)

Initialize v .indegree for all vertices;
{e.g., by Depth-First Search]

G-label := 0;
for i := 1 to n do

if v; .indegree = 0 then put v; in Queue;
repeat

We again try to solve the problem in terms of a smaller
problem. The straightforward way to consider a smaller
problem is to remove a vertex. In other words, the
induction is on the number of vertices in the following
way:

remove vertex v from Queue;
G-label := G-label + 1;
v .label := G-label;
for all edges (v, w) do

Induction hypothesis 1: We know how to label all graphs
with n - 1 vertices according to the conditions above.

The base case of a graph with one vertex is trivial. If
n > 1, we can remove one vertex, try to apply the
induction hypothesis, and then try to extend the label-
ing. The first thing we need to verify is that the re-
moval of a vertex results in the same problem as the
original (except for the smaller size). It is essential to
have the same problem, otherwise the induction hy-
pothesis cannot be used. The only assumption in this
case is that the graph is acyclic. Since removing a ver-
tex cannot produce a cycle, this is a valid reduction.

w indegree := w .indegree - 1;
if w .indegree = 0 then put w in Queue

until Queue is empty
end;

Complexity: Initializing the indegree counters requires
O() VI + 1 E I) time (using depth first search for exam-
ple). Finding a vertex with indegree 0 takes constant
time (accessing a queue). Each edge (v, w) is considered
once (when v is taken from the queue). Thus, the num-
ber of times the counters need to be updated is exactly
the number of edges in the graph. The running time of
the algorithm is therefore 0(1 VI + 1 El), which is linear
in the size of the input.

The problem with this reduction is that although the Summary: This is another example in which the induc-
hypothesis can be used, it is not clear how to extend tive approach leads almost directly to an algorithm. The
the solution, i.e., how to label the removed vertex. Our trick here was to choose the order of the induction
method of solving this problem is to choose the vertex wisely. We did not reduce the problem arbitrarily, but
with care. We are free to choose any vertex as the nth chose a special vertex to remove. The size of any given
vertex, since the removal of any vertex results in a problem can be reduced in many possible ways. The
valid smaller problem. Therefore, we should remove idea is to explore a variety of options and test the re-

the vertex whose labeling is the easiest to achieve. An
obvious choice is a vertex (task) with no dependencies,
namely a vertex whose indegree (the number of edges
coming into it) is zero. This vertex can be labeled 1
without any problems.

November 1988 Volume 31 Number 12 Communications of the ACM 1305

Articles

sulting algorithms. We have seen in the polynomial
evaluation example that goin.g from left to right was
better than going from right to left. Another common
possibility is comparing top d.own versus bottom up. It
is also possible to go in increments of z rather than 1,
and there are many other possibilities. Sometimes
the best induction sequence is not even the same for aj.1
inputs. It may be worthwhile to design a special algo-
rithm just to find the best way to perform the reduction.

The Celebrity Problem
This is a popular exercise in algorithm design. It is a
very nice example of a problem that has a solution that
does not require scanning the whole data (or even a
significant part of it). Among n persons, a celebrity is
defined as someone who is known by everyone but
does not know anyone. The problem is to identify the
celebrity, if such exists, by only asking questions of the
form “Excuse me, do you know this person over there?”
(The assumption is that all the answers are correct, and
that even the celebrity will answer.) The goal is to
minimize the number of questions. Since there are
n(n - 1)/Z pairs of persons, there is potentially a need
to ask n(n - 1) questions, in the worst case, if the
questions are asked arbitrarily. It is not clear that one
can do better than that in the worst case.

More technically, if we build a directed graph with
the vertices corresponding to the persons and an edge
from A to B if A knows B, then a celebrity corresponds
to a sink (no pun intended). That is, a vertex with inde-
gree n - 1 and outdegree 0. A. graph can be represented
by an n x n adjacency matrix whose ijth entry is 1 if the
ith person knows the jth person and 0 otherwise. The
problem is to identify a sink by looking at as few en-
tries from the matrix as possible.

Consider as usual the difference between the prob-
lem with n - 1 persons and the problem with YI per-
sons. Since, by definition, there is at most one celebrity,
there are three possibilities: (:t) the celebrity is among
the first n - 1, (2) the celebrity is the nth person, and
(3) there is no celebrity. The first case is the easiest to
handle. We only need to check that the nth person
knows the celebrity, and that the celebrity doesn’t
know the nth person, The other two cases are more
difficult since, in order to determine whether the nth
person is the celebrity, we may need to ask 2(n - I)
questions. In the worst case, that leads to exactly
n(n - 1) questions (which we tried to avoid). We need
another approach.

The trick here is to consider the problem “back-
wards.” It may be hard to identify a celebrity, but it is
probably easier to identify someone as a noncelebrity.
After all, there are definitely more noncelebrities than
celebrities. Eliminating someone from consideration is
enough to reduce the problem from n to n - 1. More-
over, we do not need to eliminate someone specific;
anyone will do. Suppose that we ask Alice whether she
knows Bob. If she does then she cannot be a celebrity; if
she doesn’t then Bob cannot be a celebrity. We can
eliminate one of them with one question.

Now consider again the three cases above. We do not
just take an arbitrary person as the n th person. We use
the idea above to eliminate either Alice or Bob, and
then solve the problem for the other n - I persons. We
are guaranteed that case 2 will not occur since the
person eliminated cannot be the celebrity. Further-
more, if case 3 occurs, namely there is no celebrity
among the n - 1 persons, then there is no celebrity
among the n persons. Only case 1 remains, but, as was
mentioned above, this case is easy. If there is a celeb-
rity among the n - 1 persons it takes two more ques-
tions to verify that this is a celebrity for the whole set.
Otherwise there is no celebrity.

The algorithm proceeds as follows. We ask A whether
she knows B, and eliminate one of them according to
the answer. Let’s assume that we eliminate A. We then
find (by induction) a celebrity among the remaining
n - 1 persons. If there is no celebrity the algorithm
terminates; otherwise, we check that A knows the ce-
lebrity and that the celebrity does not know A. A non-
recursive implementation of this algorithm is given
below.

Algorithm Celebrity (Know: n x n boolean matrix);
begin

i:= 1;
j:= 2;

next := 2;

(in the first phase we eliminate all but one candidate]
while next 5 n do

next := next + 1;
if Know[i, j] then i := next

else j := next;
{one of either i or j is eliminated]

if i = n + 1 then candidate := j else candidate := i;
(Now we check that the candidate is indeed the

celebrity]
wrong := false; k := 1;
Know[candidate, candidate] := false;

(just a dummy variable to pass the test]
while not wrong and k I n do

if Know[candidate, k] then wrong := true;
if not Know[k, candidate] then

if candidate #k then wrong := true;
k := k + I;

if not wrong then print “candidate is a celebrity!”
end;

Complexity: At most 3(n - 1) questions will be asked:
n - 1 questions in the first phase so that n - 1 persons
can be eliminated from consideration, and at most
2(n - 1) questions to verify that the candidate is indeed
a celebrity. The solution above shows that it is possible
to identify a celebrity by looking at only O(n) entries in
the adjacency matrix, even though a priori the solution
may be sensitive to each of the n(n - 1) entries. (It is
possible to save an additional Llogzn J questions by
being careful not to repeat, in the verification phase,
questions asked during the elimination phase [q].)

1306 Communications of the ACM November 1988 Volume 31 Number 11

Articles

Summary: The key idea to this elegant solution is to
reduce the problem from n to n - 1 in a clever way.
This example illustrates that it sometimes pays to
spend some effort (in this case one question) to perform
the reduction more effectively. In addition, a “back-
ward” approach was found to be very useful for this
problem. Instead of searching for a celebrity we tried to
eliminate noncelebrities. This is very common in math-
ematical proofs. One need not approach a problem di-
rectly. It may be easier to solve related problems that
lead to a solution of the original problem. To find such
related problems, it is sometimes useful to start with
the finished product (the theorem in a mathematical
proof), and work our way backwards to figure out what
is needed to construct it.

STRENGTHENING THE INDUCTION HYPOTHESIS
Strengthening the induction hypothesis is one of the
most important techniques of proving mathematical
theorems with induction. When attempting an induc-
tive proof one often encounters the following scenario.
Denote the theorem by P(n). The induction hypothesis
can be denoted by P(n - 1) and the proof must con-
clude that P(n - 1) q P(n). Many times one can add
another assumption, call it Q, under which the proof
becomes easier. That is, it is easier to prove [P(n - 1)
and Q] + P(n). The combined assumption seems cor-
rect but it is not clear how to prove it. The trick is to
include Q in the induction hypothesis (if it is possible).
One now has to prove that [P and Q](n - 1) + [P and
Q](n). The combined theorem [P and Q] is a stronger
theorem than just P, but sometimes stronger theorems
are easier to prove (Polya [14] calls this principle the
inventor’s paradox). This process can be repeated and,
with the right added assumptions, the proof becomes
tractable. We have seen this principle briefly in the
polynomial evaluation and interval containment
problems.

In this section we present two examples that illus-
trate the use of strengthening the induction hypothesis.
The first example is rather simple, but it illustrates the
most common error made while using this technique,
which is to ignore the fact that an additional assump-
tion was added and forget to adjust the proof. In other
words, proving that [P(n - 1) and Q] + P(n), without
even noticing that Q was assumed. In our analogy this
translates to “solving” a smaller problem that is not
exactly the same as the original problem. The second
example is much more complicated.

Computing Balance Factors in Binary Trees
Let T be a binary tree with root T. The heighf of a node v
is the distance between v and the furthest leaf down
the tree. The balance factor of a node v is defined as the
difference between the height of its left child and the
height of its right child (we assume that the children of
a node are labeled by left or right). Figure 3 shows a
tree in which each node is labeled by h/b where h is
the node’s height and b is its balance factor.

FIGURE 3. A Binary Tree with Heights and Balance Factors
Marked

The problem: Given a tree T with n nodes compute the
balance factors of all its nodes.

We use the regular inductive approach with the
straightforward induction hypothesis:

Induction hypothesis: We know how to compute balance
factors of all nodes in trees with <n nodes.

The base case of n = 1 is trivial. Given a tree with n > 1
nodes, we remove the root, and solve the problem (by
induction) for the two subtrees that remain. We chose
to remove the root since the balance factor of a node
depends only on the nodes below it. We now know the
balance factors of all the nodes except for the root. But
the root’s balance factor depends not on the balance
factors of its children but on their height. Hence, a
simple induction does not work in this case. We need to
know the heights of the children of the root. The idea is
to include the height finding problem within the origi-
nal problem:

Stronger induction hypothesis: We know how to compute
balance factors and heights of all nodes in trees with <n
nodes.

Again, the base case is trivial. Now, when the root is
considered, its balance factor can be easily determined
by the difference between the heights of its children.
Furthermore, the height of the root can also be easily
determined-it is the maximal height of the two chil-
dren plus 1.

The key to the algorithm is to solve a slightly ex-
tended problem. Instead of just computing balance fac-
tors, we also compute heights. The extended problem
turns out to be an easier problem since the heights are
easy to compute. In many cases, solving a stronger
problem is easier. This is especially true for induction.
With induction, we only need to extend a solution of a
small problem to a solution of a larger problem. If the
solution is broader (because the problem is extended)
then the induction step may be easier since we have
more to work with. It is a very common error to forget
that there are two different parameters in this problem,
and that each one should be computed separately.

Closest Pair
The problem: Given a set of points in the plane, find
the distance between the two closest points.

November 1988 Volume 31 Number 11 Communications of the ACM 1307

Articles

The straightforward solution using induction would
proceed by removing a point, solving the problem for
n - 1 points, and considering the extra point. However!
if the only information obtained from the solution of
the n - 1 case is the minimum distance, then the dis-
tances from the additional point to all other n - 1
points must be checked. As a result, the total number
of distance computations is n - 1 + n - 2 + . . . + 1 =
n(n - 1)/z. (This is, in fact, the straightforward algo-
rithm consisting of comparing every pair of points.) We
want to find a faster solution.

A Divide and Conquer Algorithm

The induction hypothesis is the following:

Induction hypothesis: We know how to find the closest
distance between two points in a set of <n points in the
plane.

Since we assume that we can solve all subproblems of
size <n we can reduce the problem to two subproblems
with n/2 points. We assume that n is a power of 2 so
that it is always possible to divide the set into two
equal parts. (We will discuss this assumption later.)
There are many ways to divide a set of points into two
equal parts. We are free to choose the best division for
our purposes. We would like to get as much useful
information from the solution of the smaller problems,
thus we want as much of it to remain valid when the
complete problem is considered. It seems reasonable
here to divide the set by dividing the plane into two
disjoint parts each containing half the set. After we find
the minimal distance in each subset we only have to be
concerned with distances between points close to the
boundaries of the sets. The easiest way of doing this is
by sorting all the points according to their x coordinates
for example, and dividing the plane by the vertical line
that bisects the set (see Figure 4). (If several points lie
on the vertical line we assign them arbitrarily to one of
the two sets making sure that the two sets have equal
size.) The reason we choose this division is to minimize
the work of combining the solutions. If the two parts
interleave in some fashion then it will be harder to
check for closest pairs. The sorting need be performed
only once.

Given the set P we divide ii. as above into two equal
size subsets PI and P1. We then find the closest distance
in each subset by induction. We assume that the mini-
mal distance is d, in PI and d, in Pz. We assume fur-
ther, without loss of generality, that d, I da. We need
to find the closest distance in the whole set, namely we
have to see whether there is a point in PI with a dis-
tance <d, to a point in Pz. First we notice that it is
sufficient to consider only the points that lie in a strip
of width 2dI centered around the vertical separator of
the two subjects (see Figure 4:). No other points can
possibly be of distance less than d, from points in the
other subset. Using this observation we can usually
eliminate many points from consideration, but, in the
worst case, all the points can still reside in the strip and
we cannot afford to use the straightforward algorithm
on them.

a
\

l /
\ d2

f’!

l I

,-it----,
dl dl

FIGURE 4. The Closest Pair Problem

Another less obvious observation is that for any point
p in the strip there are very few points on the other side
that can possibly be closer to p than d,. The reason for
this is that all the points in one side of the strip are at
least d, apart. Let p be a point in the strip with y coordi-
nate yP, then only the points on the other side with a y
coordinate y4 such that j yP - y4 j < d, need be consid-
ered. There could be at most six such points on one
side of the strip (see Figure 5 for the worst case). As a
result, if we sort all points in the strip according to
their y coordinates and scan the points in order, we only
need to check each point against a constant number of
its neighbors in the order (instead of all n - 1 points).
We omit the proof of this fact (see for example [IS]).

Algorithm Closest-Pair {first attempt]
(PI, pz, . . . , p,: points in the plane);

begin
Sort the points according to their x coordinates;

(this sorting is done only once at the beginningl
Divide the set into two equal size parts;
Recursively, compute the minimal distance in each

part;
Let d be the minimal of the two minimal distances;
Eliminate points that lie further than d apart from the

separation line;
Sort the points according to their y coordinates;
Scan the points in the y order and compute the dis-

tances of each point to its 5 neighbors;
(in fact, 4 is sufficient)

if any of these distances is less than d then
update d

end;

Complexity: It takes O(n log n) to sort according to the x
coordinates, but this is done only once. We then solve
two subproblems of size n/2. Eliminating the points
outside of the strips can be done in O(n) time. It then
takes O(n log n) steps, in the worst case, to sort accord-
ing to the y coordinates. Finally, it takes O(n) steps to
scan the points inside the strips and compare each one

1308 Communications of the ACM November 1988 Volume 31 Number 1 I

Articles

FIGURE 5. The Worst Case of Six Points dI Apart

to a constant number of its neighbors in the order.
Overall, to find the closest pair in a set with n points
we find two closest pairs in subsets with n/2 points and
then use O(n log n) time to find the closest pair be-
tween the two subsets (plus O(n log n) once for sorting
the x coordinates). This leads to the following recur-
rence relation:

T(n) = 2T(n/2) + O(n log n), T(2) = 1.

The solution of this relation is T(n) = O(n log%). This is
better than a quadratic algorithm, but we can still do
better than that. Now comes the clever use of induc-
tion.

An O(n log n) Algorithm
The key idea here is to strengthen the induction hy-
pothesis. We have to spend O(n log n) time in the com-
bining step because of the sorting. Although we know
how to solve the sorting problem directly, it takes too
long. Can we somehow solve the sorting problem at the
same time we are solving the closest pair problem? In
other words, we would like to strengthen the induction
hypothesis to include the sorting as part of the closest
pair problem to obtain a better solution.

Induction hypothesis: Given a set of <n points in the
plane, we know how to find the closest distance and how to
output the set sorted according to y coordinates.

We have already seen how to find the minimal distance
if we know how to sort. Hence, the only thing that
needs to be done is to show how to sort the set of size n
if we know the sorted order of the two subsets of size
n/2. In other words, we need to merge the two sorted
subsets into one sorted set. Merging can be done in
linear time (see for example [l]). Therefore, the recur-
rence relation becomes

T(n) = 2T(n/2) + O(n), T(2) = 1,

which implies that T(n) = O(n log n). The only differ-
ence between this algorithm and the previous one is
that the sorting according to the y coordinates is not
done every time from scratch. We use the stronger in-
duction hypothesis to perform the sorting as we go
along. The revised algorithm is given below. This algo-
rithm was developed by Shamos and Hoey [16] (see
also [15]).

Algorithm Closest-Pair {An improved version}
(PI, pz, . . . , p,: points in the plane);

begin
Sort the points according to their x coordinates;

{this sorting is done only once at the beginning]
Divide the set into two equal size parts;
Recursively do the following:

compute the minimal distance in each part;
sort the points in each part according to their

y coordinates;
Merge the two sorted lists into one sorted list:

{Notice that we must merge before we eliminate;
we need to supply the whole set sorted to the next
level of the recursion)

Let d be the minimal of the minimal distances;
Eliminate points that lie further than d apart from the

separation line;
Scan the points in the y order and compute the

distances of each point to its 5 neighbors;
(in fact, 4 is sufficient)

if any of these distances is less than d then
update d

end:

STRONG INDUCTION
The idea of strong induction (sometimes called struc-
tured induction) is to use not only the assumption that
the theorem is true for n - 1 (or any other value en),
but the stronger assumption that the theorem is true for
all k, 1 5 k < n. Translating this technique to algorithm
design requires maintaining a data structure with all
the solutions of the smaller problems. Therefore, this
technique usually leads to more space usage. We pre-
sent one example of the use of this technique.

The Knapsack Problem
The knapsack problem is a very important optimization
problem. It has many different variations, but we will
discuss only one variation of it.

The problem: There are n items of different sizes. The
ith item has an integer size k,. The problem is to find a
subset of the items whose sizes sum to exactly K, or
determine that no such subset exists. In other words,
we are given a knapsack of size K and we want to pack
it fully with items. We denote the problem by P(n, K),
where the first parameter denotes the number of items
and the second parameter denotes the size of the knap-
sack. We assume that the sizes are fixed. We denote by
P(j, k) (where j 5 n and k 5 K) the knapsack problem
with the first j items and a knapsack of size k. For
simplicity, we concentrate for now only on the decision
problem, which is to determine whether a solution ex-
ists. We show how to find a solution later.

We start with the straightforward induction ap-
proach.

Induction hypothesis: We know how to solve P(n - 1, K).

The base case is easy; there is a solution only if the
single element is of size K. If there is a solution to

November 1988 Volume 31 Number 11 Communications of the ACM 1309

Articles

P(n - 1, K), i.e., if there is a way to pack some of the
n - 1 items into the knapsack then we are done; we
will simply not use the nth item. Suppose, however,
that there is no solution for P(n - 1, K). Can we use th:is
negative result? Yes, it means that the nth item must be
included. In this case, the rest of the items must fit into
a smaller knapsack of size K - k,. We have reduced
the problem to two smaller problems: P(n, K) has a solu-
tion if and only if either P(n ‘- 1, K) or P(n - 1, K - k,)
have solutions. To complete the algorithm we have to
strengthen the hypothesis. We need to solve the prob-
lem not only for knapsacks of size K but for knapsacks
of all sizes at most K. (It may be possible to limit the
sizes only to those that result by subtracting one of the
kis, but this may not be limiting at all.)

Stronger induction hypothesis: We know how to solve
P(n - 1, k) for all 0 Cr k 5 K.

The reduction above did not depend on a particular
value of k; it will work for any k. We can use this
hypothesis to solve P(n, k) for all 0 zz k 5 K: we reduce
P(n, k) to the two problems P(n - 1, k) and P(n - 1,
k - k,). (If k - k, < 0 we ignore the second problem.)
Both problems can be solved by induction. This is a
valid reduction and we now have an algorithm, but it is
very inefficient. We obtained two subproblems of only
slightly smaller sizes. The number of subproblems is
thus doubled with every reduction in size. Since the
reduction in size may not be substantial the algorithm
may be exponential (it depends on the values of the ki’s).

Fortunately, it is possible in many cases to improve
the running time for these kinds of problems. The main
observation is that the total number of possible problems
is not too high. In fact, we introduced the notation of
P(n, k) especially to demonstrate it. There are n possi-
bilities for the first parameter and K possibilities for the
second one. Overall, there are only nK different possi-
ble problems! The exponential running time resulted
from doubling the number of problems after every re-
duction, but if there are only nK different problems
then we must have generated the same problem many
many times. If we remember all the solutions we will
never have to solve the same problem twice. This is
really a combination of strengthening the induction
hypothesis and using strong induction (which is using
the assumption that all solutions to smaller cases are
known and not only that for II - 1). Let’s see how we
implement this approach.

We store all the known results in an n x K matrix.
The ijth entry in the matrix contains the information
about the solution of P(i, j). The reduction using the
stronger hypothesis above basically computes the nth
row of the matrix. Each entry in the nth row is com-
puted from two of the entries above it. If we are inter-
ested in finding the actual subset then we can add to
each entry a flag which indicates whether the corre-
sponding item was selected or not in that step. The
flags can then be traced back from the (n, K)th entry
and the subset can be recovered. The algorithm is pre-
sented at the top of the next column.

Algorithm Knapsack (kI , kz, . . . , k,, K: integer);
{P[i, j].exist = true if there exists a solution to the
knapsack problem with the first i elements and a
knapsack of size j.
P[i, j].belong = true if the ith element belongs to
this solution.]

begin
PIO, O].exist := true;
forj:=ltoKdo

PIO, j].exist := false;
fori:=ltondo

forj:=OtoKdo
P[i, j].exist := false; (the default value}
if P[i - 1, j].exist then

P[i, j].exist := true;
P[i, j].belong := false

else if j - ki 2 0 then
if P[i - 1, j - ki].exist then

P[i, j].exist := true;
P[i, j].belong := true

end;

Complexity: There are nK entries in the matrix, and
each one is computed in constant time from two other
entries. Hence, the total running time is O(nK). If the
sizes of the items are not too large, then K cannot be
too large and nK is much smaller than an exponential
expression in n. (If K is very large or if it is a real
number then this approach will not be efficient.) If we
are only interested in determining whether a solution
exists then the answer is in P[n, K]. If we are interested
in finding the actual subset we can trace back from the
(n, K)th entry, using, for example, the belong flag in the
knapsack program, and recover the subset in O(n) time.

Summary: The method we just used is an instance of a
very general technique called dynamic programming, the
essence of which is to build large tables with all known
previous results. The construction of the tables is done
iteratively. Each entry is computed from a combination
of other entries above it or to the left of it in the matrix.
The main problem is to organize the construction of the
matrix in the most efficient way. The dynamic pro-
gramming approach is very effective when the problem
can only be reduced to several smaller, but not small
enough, subproblems.

MAXIMAL COUNTEREXAMPLE
A distinctive and powerful technique for proving math-
ematical theorems is by assuming the contrary and
finding a contradiction. Usually this is done in a com-
pletely nonconstructive manner, which is not very
helpful in our analogy. Sometimes though the contra-
diction is achieved by a procedure similar to induction,
Suppose we want to prove that a certain parameter P
(in a given problem) can reach a certain value n. First,
we show that P can reach a small value (the base case).
Second, we assume that P cannot reach n, and we con-
sider the maximal value k c n that it can reach. The
final and main step is to present a contradiction, usu-
ally to the maximality assumption. We present one

1310 Communications of the ACM November 1988 Volume 3;’ Number 11

Articles

example in which this technique is very helpful in
designing algorithms.

Perfect Matching in Very Dense Graphs
A matching in an undirected graph G = (V, E) is a set of
edges that have no vertex in common. (The edges serve
to match their two vertices, and no vertex can be
matched to more than one other vertex.) A maximal
matching is one that cannot be extended, namely all
other edges are connected to at least one of the
matched vertices. A maximum matching is one with
maximum cardinality. (A maximum matching is always
maximal, but the other way around is not necessarily
true.) A matching with n edges in a graph with 2n
vertices is called a perfect matching (it is obviously maxi-
mum). In this example we consider a very restricted
case. We assume that there are 2n vertices in the graph
and all of them have degrees of at least n. It turns out
that under these conditions a perfect matching always
exists. We first present the proof of this fact, and then
show how to modify the proof to get an algorithm for
finding a perfect matching.

The proof is by maximal counterexample [ll]. Con-
sider a graph G = (V, E) such that (V 1 = 2n, and the
degree of each vertex is at least n. If n = 1 then the
graph consists of exactly one edge connecting two ver-
tices, which is a perfect matching. Assume that n > 1,
and that a perfect matching does not exist. Consider a
maximum matching M C E. j M j < n by the assump-
tion, and obviously j M j 2 1 since any edge is by itself
a matching. Since M is not perfect there are at least 2
nonadjacent vertices v1 and v2 which are not included
in M (i.e., they are not incident to an edge in M). These
two vertices have at least 2% distinct edges coming out
of them. All of these edges lead to vertices that are
covered by M since otherwise such an edge could be
added to M. Since the number of edges in M is <n and
there are 2n edges from v1 and v2 adjacent to them,
at least one edge from M, say (ul, uz), is adjacent to
three edges from v1 and v2, Assume, without loss of
generality, that those three edges are (u,, v,), (u, , v2),
and (~2, vl) (see Figure 6). It is easy to see that by
removing the edge (ul, uz) from M and adding the two
edges (~1, vz), and (~2, ~1) we get a larger matching,
contradicting the maximality assumption.

It may seem at first that this proof cannot yield an
algorithm since it starts with a maximum matching.
Had we known how to find such a matching we could
have solved the problem. However, the steps of the
contradiction work for any maximal matching; they
present a contradiction only for a maximum matching.
A maximal matching is easier to find than a maximum
matching. We can simply add disjoint edges (i.e., edges
with no vertex in common) until it is no longer possi-
ble. Then, we can use the procedure above to transform
the matching to a larger one. By the proof above we can
continue doing so until a perfect matching is obtained.

OTHER PROOF TECHNIQUES
We concentrated in this article on proof techniques that
are based on induction. There are many other tech-
niques and more room for analogies, some obvious,
some not so obvious. Many mathematical theorems are
proved by series of lemmas, and this corresponds di-
rectly to the idea of modular design and structured
programming. The idea of proof by contradiction has
analogies in the design of algorithms. It would be inter-
esting to study analogies to proofs “by similar argu-
ments.”

We briefly present here four more proof techniques
(three of which are based on induction) and their anal-
ogies. More examples and analogies can be found in [12].

Reductions
A very powerful technique for proving theorems and
designing algorithms is using reductions between prob-
lems. If problem A can be shown to be a special case of
problem B, then the algorithm for B can be used as a
“black box” for solving A. This technique is also very
useful for proving lower bounds or classifying problems
(e.g., NP-Complete problems). If problem A is known to
be very hard, then problem B is at least as hard.

Double Induction
This is a method of applying induction to more than
just one parameter at a time. It can be used in cases
where the best order of induction is not clear and it is
easier to apply it to several parameters making choices
between them depending on the particular step. For
example, if the problem involves n objects in k dimen-

: : *.’ ;: *.a’
: : :

. +i
*.’

..*’ *... ..f : ;
..*.

: :
..’

*..’ : : ” /.. .
.

.(

: : .,
*. . ..- : : *,

‘......_ : : a, : :
. . .._ ::

-.._.. : *.*
-.._... . .
. 4

Vl
: .* *..**
$?_.. . . .

-... : : --.. :: Vl
*. /
.* *:;... L..................

. j *. *..* v2 ._..**
. . ..a*

_.....-- -1.. * i
: . . v2
i

.--
. . ..**

..*. *..’
..t(..-

*i.
.** *..*

i *..*.
. ..*

. . . .
: /.**

+
..

m x-..................

Ul u2 Ml u2

November 1988 Volume 31 Number 11

FIGURE 6. Extending a Matching

Communications of the ACM 1311

Articles

sional space, we may want to reduce the number of
objects and/or the number of dimensions depending
on the phase of the algorithm (see for example [4]).

Reversed Induction
This is a little known technique that is not often used
in mathematics but is often used in computer science.
Regular induction “covers” a.11 natural numbers by
starting from a base case (n q = 1) and advancing. Sup-
pose that we want to go backwards. We want to prove
that the theorem is true for ?1 - 1 assuming that it is
true for n. We call this type of proof a reversed induction.
But, what would be the base case? We can start by
proving a base case of n = M, where M is a very large
number. If we prove it for II ‘= M and then use reverseed
induction then we have a proof for all numbers 5 M.
Although this is usually unsatisfactory, in some cases :it
is sufficient. For example, suppose we apply double
induction on two parameters: (e.g., number of vertices
and number of edges in a graph). We can apply regular
induction to one parameter, and reversed induction to
the second parameter if the second parameter can be
bounded in terms of the first one. For example, there
are at most n(n - 1) edges in directed graphs with n
vertices. We can use regular induction on n with the
assumption that all edges are present (namely, we con.-
sider only complete graphs), and then reversed induc-
tion on the number of edges.

A more common use of reversed induction is the
following. Proving a base case for only one value of n
limits the proof to those numbers less than the value.
Suppose that we can prove the theorem directly for an
infinite set of values of II. For example, the infinite set
can consist of all powers of 2. Then we can use re-
versed induction and cover a.11 values of n. This is a
valid proof technique since for each value of n there is
a value larger than it in the base case set (since the set
is infinite).

A very good example of the use of this technique is
the elegant proof (due to Cauchy) of the arithmetic
mean versus geometric mean inequality (see for exam-
ple [3]). When proving mathematical theorems, it is
usually not easier to go from n to n - 1 than it is to go
from II - 1 to n, and it is much harder to prove an
infinite base case rather than a simple one. When de-
signing algorithms, on the other hand, it is almost al-
ways easy to go from n to n -. 1, that is, to solve the
problem for smaller inputs. For example, one can intro-
duce “dummy” inputs that do not affect the outcome.
As a result, it is sufficient in many cases to design the
algorithm not for inputs of all sizes, but only for sizes
taken from an infinite set. The most common use of
this principle is designing algorithms only for inputs of
size n which is a power of 2. It makes the design much
cleaner and eliminates many “messy” details. Ob-
viously these details will have to be resolved eventu-
ally, but they are usually easy to handle. We used the
assumption that n is a power of 2, for example, in the
closest pair problem.

Choosing the Base of the Induction Wisely
Many recursive algorithms (e.g., quicksort) are not very
good for small problems. When the problem is reduced
to a small one, another simple algorithm (e.g., insertion
sort] is used instead. Viewed in terms of induction, this
corresponds to choosing the base case to be II = k (for
some k depending on the problem), and using a direct
technique to solve the base case. There are examples
where this approach can even improve the asymptotic
running time of the algorithm [12].

Conclusions
We have presented a methodology for explaining and
approaching the design of combinatorial algorithms.
The benefits of having such a general methodology are
twofold. First, it gives a more unified “line of attack” to
an algorithm designer. Given a problem to solve, one
can go through the techniques described and illustrated
in this article and attempt a solution. Since these tech-
niques have something in common (namely mathemati-
cal induction), the process of trying them all can be
better understood and easier to carry out. Second, it
gives a more unified way to explain existing algorithms
and allows the student to be more involved in the crea-
tive process. Also, the proof of correctness of the algo-
rithm becomes a more integral part of the description.
We believe that this methodology should be included in
the teaching of combinatorial algorithms.

Acknowledgments. Thanks to Rachel Manber for
many inspiring conversations about induction and algo-
rithms. Greg Andrews, Darrah Chavey, Irv Elshoff,
Susan Horwitz, Sanjay Manchanda, Kirk Pruhs, and
Sun Wu provided many helpful comments that im-
proved the manuscript.

REFERENCES
1. Aho, A., Hopcroft, J., and Ullman. J. The Design and .4nalysis of

Computer Algorithms. Addison Wesley, Reading. Mass., 1974.
2. Bates, J.L., and Constable, R.L. Proofs as programs. ACM Trans. Prog.

Lmg. and Syst. 7, 1 (Jan. 1985). pp. 113-136.
3. Beckenhach, E., and Bellman, R. An Zntroduction to Inqualifies. New

Mathematical Library, Random House, 1961.
4. Bently. J.L. Multidimensional divide-and-conquer. Commun. ACM

23. 4 (April 1960), 214-229.
5. Burge, W.H. Recursive Programming Techniques, Addison Wesley,

Reading, Mass., 1975.
6. Constable. R.L. et al. Implementing Mathematics with the Nuprl Proof

Development Sysrem. Prentice Hall, Englewood Cliffs, N.J., 1986.
7. Dijkstra. E.W. A Discipline of Programming. Prentice Hall. En&wood

Cliffs, N.J., 1976.
6. Gries, D. The Science of Programming, Springer-Verlag, New York,

1981.
9. King. K.N., and Smith-Thomas, B. An optimal algorithm for sink-

finding, I$ Proc. Letters 14, 3 (1982], pp. 109-111.
10. Knuth, D.E. The Art of Computer Programming. Vol. 2: Seminumerical

Algorithms. 2nd ed., Addison Wesley, Reading, Mass., 1981.
11. Lovasz, L. Combinatorial Problems and Exercises, North Holland, 1979.
12. Manber, U. Introduction to Algorithms-A Creative Approach. Addison

Wesley, Reading, Mass.. 1989, to appear.
13. Paull, M.C. Algorithm Design-A Recursion Transformation Framework,

John Wiley and Sons, New York, 1988.
14. Polya, G. How to Solve It. 2nd ed., Princeton University Press, 1957.
15. Preparata, F., and Shames. MS. Computational Geometry, Springer-

Verlag. New York. 1985.
16. Shames, MI., and Hoey. D. Closest-point problems, In Proceedings of

the 16th Annual Symposium on Foundations of Computer Science,
(Berkeley. Calif.. Oct. 1975). 1975.

1312 Communications of the ACM November 1988 Volume 31 Number 11

Articles

CR Categories and Subject Descriptors: IX.10 [Software Engineer-
ing]: Design-methodologies; F.2.2 [Analysis of Algorithms and Problem
Complexity]: Nonnumerical Algorithms and Problems-complexity of
proof procedures, computation on discrete structures, geometrical problems
and computation, sorting and senrching; G.2.1 [Discrete Mathematics]:
Combinatorics-combinatorial algorithms; G.2.2 [Discrete Mathematics]:
Graph Theory-graph algorithms; K.3.2 [Computers and Education]:
Computer and Information Science Education-computer science educa-
tion

General Terms: Algorithms, Design, Education, Theory
Additional Key Words and Phrases: Combinatorial algorithms, com-

putational complexity, design of algorithms, mathematical induction,
proof techniques

ABOUT THE AUTHOR:

fessor at the University of Wisconsin-Madison. His research
interests include design of algorithms, distributed computing,
and computer networks. He received the Presidential Young
Investigator Award in 1985. He is currently completing a book
entitled Introduction to Algorithms-A Creative Approach, which
is based on this article. Author’s present address: Udi Manber,
Department of Computer Science, University of Arizona,
Tucson, AZ 85721.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

UDI MANBER is an associate professor of computer science at
the University of Arizona. He was previously an associate pro-

ACM SPECIAL INTEREST GROUPS
ARE YOUR TECHNICAL

INTERESTS HERE?
SIGCAPH Newsletter, Cassette Edition

SIGCAPH Newsletter. Print and Cassette
Editions

The ACM Special Interest Groups further the ad-
V-dcomputerscienceandpacticein

many specidked areas. Members of each SIG
rebveasoneoftheirbenefitsapeW3calex-
dusively devoted to the special interest. The fol-
lowing are the publications that are avaifable-
tmlgh membership or special subsuiptiofl.

SlGCAS Newsletter (Computers and
Society)

SIGCHI Bulletin (Computer and Human
Interaction)

SIGCOMM Computer Communication
Review (Data Communication)

SIGACT NEWS (Automata and
Computability Theory)

SIGCPR Newsletter (Computer Personnel
Research)

SIGAda Letters (Ada)
SIGCSE Bulletin (Computer Science

Education)

SIGAPL Quote Quad (APL) SIGCUE Bulletin (Computer Uses in
Education)

SIGARCH Computer Architecture News
(Architecture of Computer Systems) SIGDA Newsletter (Design Automation)

SIGART Newsletter (Artificial SIGDOC Asterisk (Systems
Intelligence) Documentation)

SIGBDP DATABASE (Business Data
Processing)

SIGGRAPH Computer Graphics
(Computer Graphics)

SIGBIO Newsletter (Biomedical
Computing)

SIGIR Forum (Information Retrieval)

SIGCAPH Newsletter (Computers and the
Physically Handicapped) Print Edition

SIGMETRKS Performance Evaluation
Review (Measurement and
Evaluation)

SIGMICRO Newsletter
(Microprogramming)

SIGMOD Record (Management of Data)

SIGNUM Newsletter (Numerical
Mathematics)

SIGOIS Newsletter (Office Information
Systems)

SIGOPS Operating Systems Review
(Operating Systems)

SIGPLAN Notices (Programming
Languages)

SIGPLAN FORTRAN FORUM (FORTRAN]

SIGSAC Newsletter (Security, Audit.
and Control)

SIGSAM Bulletin (Symbolic and Algebraic
Manipulation)

SIGSIM Simuletter [Simulation and
Modeling)

SIGSMALL/PC Newsletter (Small and
Personal Computing Systems and
Applications)

SIGSOFT Software Engineering Notes
(Software Engineering)

SIGUCCS Newsletter (University and
College Computing Services)

November 1988 Volume 31 Number 11 Communications of the ACM 1313

