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Abstract. Sensor-based Human Activity Recognition (HAR) in smart 
home environments is crucial for several applications, especially in the 
healthcare domain. The majority of the existing approaches leverage 
deep learning models. While these approaches are e!ective, the rationale 
behind their outputs is opaque. Recently, eXplainable Artificial Intelli-
gence (XAI) approaches emerged to provide intuitive explanations to the 
output of HAR models. To the best of our knowledge, these approaches 
leverage classic deep models like CNNs or RNNs. Recently, Graph Neural 
Networks (GNNs) proved to be e!ective for sensor-based HAR. However, 
existing approaches are not designed with explainability in mind. In this 
work, we propose the first explainable Graph Neural Network explic-
itly designed for smart home HAR. Our results on tw o public datasets
show that this approach provides better explanations than state-of-the-
art methods while also slightly improving the recognition rate.

Keywords: Human Activity Recognition · Graph Neural Networks · 
Smart Homes · eXplainable AI

1 Introduction 

The recognition of Activities of Daily Living (ADLs) in Smart Home environ-
ments is a widely studied research topic in the pervasive computing comm u-
nity [7]. Recognizing the daily activities that humans do in their daily life at 
home (e.g., cooking, watering plants, taking medicines) has sev eral important 
healthcare applications, including the early detection of cognitive decline [25]. 

The majority of the approaches in the literature are based on deep learning 
models, mainly due to their effectiveness in reaching high recognition rates [14]. 
The most common architectures used for ADLs recognition are Convolutional [4] 
and Recurren t [19] neural networks. However, these approaches may not fully 
capture the spatiotemporal properties of sensor data. In the literature, Graph 
Neural Net works (GNNs) have emerged as a promising approac h for time
series classification [12]. In GNNs, sensor data time windows are encoded as 
graphs capturing both spatial and temporal relationships betw een sensors. While
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the majority of existing studies focused on human activity recognition with 
mobile/wearable devices [22], only a few GNN-based approaches have been pro-
posed for ADLs recognition in smart home environments [27,30]. 

In general, deep learning models are often considered as “black boxes”  map-
ping windows of sensor data into activities, and it is challenging to understand 
the rationale behind their decisions. The field of eXplainable Artificial Intel-
ligence (XAI) has the goal of mitigating this problem by providing human-
understandable explanations to the output of machine learning models [3]. 

Since important decisions in ambient assisted living applications may rely 
on the output of ADLs recognition, inferring why a specific ADL was predicted 
by the classifier is crucial to provide understandable, trusted, and transparent
solutions [29]. For instance, XAI would allow clinicians to increase their trust in 
decision support systems that rely on ADLs recognition (e.g., supporting early 
detection of cognitive decline). Data scient ists may also benefit from explanations 
to refine the recognition system, the sensing infrastructure, or the training set.

A few works proposed explainable ADLs recognition in smart homes envi-
ronments [4,10]. However, to the best of our knowledge, eXplainable GNN 
approaches for sensor-based ADLs recognition in smart homes have not been 
explored yet. Therefore, in this paper we present GNN-XAR, the first explain-
able GNN-based system for ADLs recognition. Specifically, GNN-XAR dynam-
ically constructs a graph starting from windows of environmental sensor data 
taking into account spatial and temporal aspects. Each graph is processed by a 
Graph Convolutional Network (GCN) for ADLs classification. An adapted state-
of-the-art XAI method specifically designed for GNNs is in charge of determining 
the most important nodes and arcs of the input for activity classification. This
information is finally used to generate an explanation in natural language.

To sum up, the contributions of this pape r are the following:

– We propose GNN-XAR: the first Explainable Graph Neural Netw ork system 
for Smart Home HAR.

– Starting from windows of raw sensor data, GNN-XAR dynamically constructs 
a graph that a GNN pro cesses to classify the most lik ely activity.

– For each prediction, GNN-XAR leverages an eXplainable AI approach to 
pro duce explanations in natural language.

– Our results show that GNN-XAR generates superior explanations with 
respect to state-of-the-art explainable HAR metho ds, while slightly improving 
the recognition rate.

2 Related Work 

2.1 GNN-Based Methods for HAR 

GNNs have been widely adopted in IoT scenarios, in applications includ-
ing multi-agent interaction, Human State-dynamic, sensor interconnection, and 
autonomous vehicles [11]. Considering sensor-based human activity recognition,
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GNNs have been mainly proposed to recognize activities from mobile/wearable 
devices [28]. 

The differences between existing work lies in how the graph is constructed 
from sensor data. For instance, a common solution is to consider e ach time 
window as a node with the goal of performing node classification [21,23,26]. 
Other works consider a node for each sensor, considering a graph classification 
task [18]. 

Only a few works applied GNNs to ADLs recognition in s mart home envi-
ronments. For example, [27] uses graphs to model sensor dependencies. In that 
work, a graph is built such that each node represents an environmental sen-
sor, while a directed arc represents the influence of the behavior of one sensor 
to another one. The arcs of the graph structure and t heir weights are learned 
using an attention mechanism. The graph classification task is then considered
to perform ADLs classification. The work in [30] is closely related to GNN-XAR 
since it dynamically constructs each graph from the time window of sensor data, 
where each node is a sensor event. Differently from our work, the arcs are auto-
matically learned from the network considering spatial and temp oral properties
at the same time.

While it may be possible to apply XAI techniques on such methods, it would 
be challenging to obtain meaningful explanations. For instance, considering the 
work in [27], it may be possible to obtain explanations only about the sensors 
triggered consecutively, without considering l onger temporal relationships. On 
the other hand, since in [30] the arcs are automatically learned, they are not 
associated with a specific semantic and h ence it would be c hallenging to explain
them.

2.2 XAI Methods for Human Activity Recognition 

The first attempts for explainable sensor-based activity recognition considered 
simple inherently interpretable models [5,6,15,17]. However, such models usually 
underperform deep learning models that, on the contrary, are more complex to
explain.

A few works proposed XAI methods for deep learning for sensor-based activ-
ity recognition [16,20]. However, only a few of them focused on ADLs r ecognition 
in smart homes. For instance, DeXAR [4] leverages CNN models and explores 
the use of various XAI methods for computer vision by converting sensor data 
into semantic images. Similarly, the work in [10] applies several XAI methods 
to LSTM-based neural networks. Both works generate explanations in natural 
language for non-expert users.

While eXplainable Graph Neural Networks have been studied in the general 
machine learning communit y [1], this is the first work exploring this combination 
for sensor-based ADLs recognition in smart homes.
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3 GNN-XAR Under the Hood 

In this work, we consider a smart home environment equipped with binary envi-
ronmental sensors (e.g., motion sensors, magnetic sensors, pressure sensors). We 
assume that the smart-home is inhabited only by a single resident, and that sen-
sor events are the result of the interaction of the subject with the environmen t. 
We also assume that the same timestamp will never be assigned to two distinct 
sensor events, hence we consider a total order in the sensor event sequence1 .  The  
goal of GNN-XAR is to provide the most likely activity from time windows of 
sensor events and, at the same time, to provide an e xplanation in natural lan-
guage about the aspects of the input that mostly contributed to the prediction.

3.1 Overall Architecture 

Fig. 1 depicts the architecture o f GNN-XAR. 

Fig. 1: Overall architecture o f GNN-XAR. 

First, the stream of environmental sensor data is segmented into fixed size 
overlapping time windows. Each time window is then processed by the Graph 
Construction module to obtain a graph representation of the window, encod-
ing both spatial and temporal properties with an heuristic-based approach. Each 
graph is processed by the GNN module for ADLs classification. Then, the 
Explainer module leverages posthoc XAI methods to obtain the nodes and 
arcs that were the most important in the input to obtain the classified activity.

1 Note that this is a realistic assumption, since typically events are queued by a single 
process on the gateway that assigns di!erent timestamps eve n if the events occurred 
at the same time, without any impact on our results.
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Posthoc XAI approaches consider the model as a black box and generate expla-
nations by analyzing the relationships between inputs and outputs. Finally, the 
Explanation Generation module uses this information to generate an expla-
nation in natural language for non-expert users.

3.2 Graph Construction 

The Graph Construction module dynamically constructs a graph Gw start-
ing from a temporal window w of sensor events. GNN-XAR leverages a heuristic-
based strategy for graph construction, taking into a ccount spatial and temporal 
properties (that will b e leveraged to generate meaningful explanations).

Let w = E1,  E2,  .  .  .  ,  En be a temporal window including n sequential sensor 
events. A n event Ei is associated with the following information:

– An identifier of the sensor that produced it (Eid 
i ), that encodes the sensor 

t ype (magnetic, motion ...) and the position (fridge, sofa...).
– The event type ON or OFF ( Etype 

i ).
– The timestamp of the event ( Ets 

i ).

In our framework, we consider the events differently based on the type of 
sensor that generated them:

– The first type of sensor includes sensors whose both activation and deactiva-
tion require explicit actions by the user (e.g. opening or closing a cabinet). In 
this case, we are interested in both the activation and deactiv ation (i.e. ON
and OFF) events.

– The second type includes sensors that are automatically deactivated after 
some time, for instance, motion sensors. In this case, we are interested in the 
ON event and in the duration of the active state of the sensor, computed as 
the time from the ON event to the OFF event.2 

Given a window w, we denote the corresponding graph with Gw =  (V, A), 
where V is the set of nodes and A is the set of arcs. In GNN-XAR, the set V is
created as follows:

– We add a node v for each event in w (activation or deactivation) generated 
by the first type of sensor. These are even t nodes.

– We add a node v for every active state of a sensor of the second type. These 
are state nodes.

In our system, each node has the sensor identifier as a feature. As common 
in deep learning, a (trainable) embedding layer computes an embedding vector 
represen ting this feature. State nodes have the duration of the corresponding
active state as an additional feature.

The set of arcs A is created as follows: For each pair of node vi,  vj ∈ V such 
that i = j, there is an oriented arc (vi,  vj) ∈ A in the following two cases:
2 In the case of motion sensors if there are multiple subsequent detections of move-
ments, a single active state is considered. This is a lso how the events are reported 
in the public datasets we considered.



346 M. Fiori et al.

1. vi and vj are event nodes derived from consecutive events generated by the 
same sensor S (i.e., there are no other even ts from S between them). This is 
shown in Fig. 2. 

Fig. 2: Arcs between event or state nodes g enerated by differen t sensors.

2. vi and vj are state nodes derived from consecutive active states of the same 
sensor S.

3. vi and vj are derived from events/states generated by different sensors Sa 
and Sb and there are no other events/states generated by Sa or Sb between 
them. This temporal relationship is computed considering as timestamp of 
an active state the timestamp of the activation (ON) event. This is shown in
Fig. 3. 

Fig. 3: Arcs between event nodes generated by the same sensor.

Each arc (vi,  vj) ∈ A has as associated feature the time difference between 
the timestamp of the event/state corresponding to vj and the timestamp of the 
event/state corresponding to vi , considering as timestamp of an active state the 
timestamp of the activation (ON) event.

This method for building the graph has also the advantage of maintaining a 
sparse structure, avoiding the graph degeneration into a fully connected graph.

Our graph construction strategy makes it possible to consider spatiotempo-
ral relationships between sensor events. Considering temporal aspects, a directed 
arc from a node vi to  a  node  vj models the fact that the event/state correspond-
ing to vi occurred before the event/state corresponding to vj .  This temporal
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relationship is also quantitative since the arc feature encodes the time distance 
between them. Moreover, when vi and vj are generated by different sensors Sa 
and Sb, the directed arc also implicitly encodes spatial relationships about the 
resident interacting with sensors in different home positions.

A challenge with graphs with a variable number of nodes is that it complicates 
the graph pooling process (i.e., creating an embedding for the whole graph). For 
instance, pooling by concatenation would lead to graph embeddings of different 
shapes. GNN-XAR solves this problem by augmenting V with a fixed number 
of super-nodes: fictitious nodes not corresponding to real sensor events or states. 
Specifically, we add a super node SNS to V for each sensor S.  We  also  add  
an arc (vi,  SNS) ∈ A if vi corresponds to an event/state generated by the 
sensor S. Note that, if a window w does not contain events/states generated 
by a sensor Sa, V would include the super node SNS a without associated arcs. 
Hence, all the nodes corresponding to an event/state generated by a sensor are 
connected to its super-node. Super-nodes have the role of summarizing all the 
graph information into a fixed numb er of nodes. Thanks to this approach, it is
possible to concatenate the information of the whole graph only by performing
pooling on super-nodes.

In the following, we show a simple example of how to build a graph Gw 
starting from a window w including active states from three sensors. The window 
w and its states are depicted in Fig. 4. 

Fig. 4: Example of a time window. For the magnetic sensor, the black lines repre-
sent the events. For the mo vement sensors, the black regions represen t the active
states

Figure 5 shows the resulting graph Gw, that is c onstructed with the follo wing
steps:

– For each sensor S, a super-node is created (represen ted as squares in the
figure).

– For each event/state a node vi is generated (represented a s circles in the
figure).

– Each event/state generated by S is connected to the respective super-node 
asso ciated with S (the dashed arrows).

– We include arcs based on the rules defined above (the solid arrows).
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Fig. 5: The directed graph computed from the sensor window in Fig. 4. 

3.3 Graph Neural Network 

In the following, we describe the steps for graph classification.

Message Passing. Message passing is a crucial step in GNNs for transmitting 
information between nodes in a graph. This technique allows nodes to share and 
update their features b ased on the features of their neighbors, facilitating the 
extraction of meaningful patterns and relationships in graph-structured data.

Information propagates through the graph in two distinct steps. The first step 
aggregates and processes all the known information, including event duration and 
distances between events, to compute the new node features, while the second 
step has the goal of further spreading this information into the graph. The second 
step is particularly useful for spreading information to the super nodes.

More specifically, in the first iteration, for each node, a message is computed 
by applying a linear layer to the concatenation of the node embeddings and the 
arc features. This linear layer reduces the message’s dimension to match the 
original node feature dimension. Subsequently, t he aggregate message for each 
node is computed using a sum aggregation function, and the new no de feature
is obtained by summing the previous embedding with the aggregated message.

The second phase involves a simplified propagation in which only the new 
node embeddings are considered. Given that less information is processed in 
this phase, no linear layer is applied. Instead, a sum aggregation function is 
used directly. The same update function from the first phase is then applied, 
summing the previous node feature with the aggregated messages to compute
the new node feature.
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Although this propagation process can be iterated multiple times, the high 
connectivity of the graphs generated by GNN-XAR makes it possible to leverage 
a small n umber of iterations to allow information to tra vel throughout the entire
graph.

Graph Pooling and Classification. Figure 6 shows the GNN model architec-
ture of GNN-XAR. Graph Pooling consists in generating an embedding that is 
representative of the whole graph. As we previously mentioned, since the number 
of nodes is different for each instance, we leverage super-nodes. Thus, the pooling 
strategy proposed for this model consists of considering only the embeddings of 
super nodes and concatenating them to obtain a vector of length equal to the 
embedding dimension multiplied by the number of sensors.

The classification is carried out using linear layers: the flattened embedding 
encoding the graph is passed through two linear layers, each one followed by 
a LeakyReLU function. Finally, the output of the n etwork is the probability 
distribution over the possible ADLs, obtained thanks to a softmax layer.

Fig. 6: The model architecture of GNN-XAR. 

3.4 Explainer 

XAI methods applied on GNNs aim to find the subset of nodes and arc that 
mostly contributed to a specific prediction. In GNN-XAR, a node is selected for 
the explanation if the corresponding sensor event/state was important for clas-
sifying the a ctivity; an arc is selected if the specific order of sensor events/states 
was important for classifying the activity.

GNN-XAR leverages the GNNexplainer [31] method for explanations. 
Through an optimization method, GNNexplainer derives a subgraph maximiz-
ing the mutual information between the GNN’s prediction and the prediction 
that would have been obtained by the GNN based only on this subgraph. This 
is achieved by perturbing the graph and its features, and observing the effect 
of these perturbations on the GNN’s predictions. Given the most likely ADL 
predicted by the GNN, the input graph and the GNN model, GNNexplainer 
computes importance values for nodes and arcs. The algorithm leverages gradi-
ent descent to derive node and arc masks that modulate the information spread
in the graph during the message-passing procedure.
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In its original version, the GNNexplainer algorithm includes the multiplica-
tion of each node feature by a value in the range [0, 1] to generate the node 
mask. However, this approach cannot be adopted in GNN-XAR since the sensor 
id node feature represents a categorical value, the perturbation of that value 
would not convey the intended meaning. For this reason, we apply the original 
GNNExplainer but extract only the arc mask. We then compute the importance 
of each node as the importance of the arc connecting it to its corresponding super 
node. The intuition behind this s trategy is that there is only one arc through 
which the information from the node is propagated to the super node. Since it 
is the super node that is used for the classification, the importance of this arc is
a good indicator of the importance of the information conveyed by the node.

Fig. 7: Output of the original GNNExplainer limited to arcs importance. The 
thickness of each arrow r epresents the importance values on the arcs.

Figure 7 represents the arcs importance as computed by the original GNNEx-
plainer on an example in our domain. Note that the dashed lines, connecting 
nodes with super nodes, also have different thicknesses r epresenting different
importance.

As stated above, our adapted version of GNNexplainer assigns as importance 
of each node the importance of the arc connecting it with its super node. Figure 8 
shows the output of our adapted version of GNNexplainer on the same example of
Fig. 7. Note that super nodes are not part of the output and that an importance 
value is associated with e ach node, denoted in the figure by the thickness.

GNNexplainer is a non-deterministic algorithm. For this reason, it requires 
multiple executions, and only the average of the masks obtained at each execu-
tion is considered for the explanations. A major challenge of using GNNexplainer 
is that the importance values obtained for nodes and arcs are not directly compa-
rable, since they range in different intervals. Since we observed that arcs scorers 
are u sually associated with lower importance values, we rescale them by a mul-
tiplicative factor such that the importance v alues of the nodes and the ones for
the arcs have the same mean.

Finally, GNN-XAR aims at extracting a supgraph Gw =  (V ,  A  ) where V 
is the set of the most important nodes, while A is the set of the most important 
arcs. A straightforward approach to achieve this task would be using a thresh-
old on the importance value. However, we observed that different predictions
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Fig. 8: Output of our adapted version of GNNExplainer on the same input exam-
ple of Fig. 7. 

are usually associated with importance values in completely different ranges. 
Hence, defining a robust threshold is challenging. We mitigated this problem by 
adopting a clustering approach. Indeed, we cluster arcs and nodes based on their 
importance values. We consider as the most important arcs and nodes the ones 
in the cluster associated with the highest importance values.

3.5 Generating Explanations in Natural Language 

As a final step, GNN-XAR converts G into a natural language explanation for 
non-exp ert users.

Given the set of most important arcs A , we compute the longest path. We 
then use a heuristic-based approach similar to the one proposed in [4]  to  gener-
ate from this path a natural language explanation. For instance, the continuous 
activation of certain sensors implies that the resident has moved toward the s en-
sor multiple times: in this case, in the path explanation, the expression “multiple
times” is added:

“I predicted preparing a meal mainly due to the following observations: Bob 
was near the fridge, then he opened the fridge multiple times” 

4 Experimental Evaluation 
4.1 Datasets 

Two datasets have been used to evaluate the model proposed in this work. They 
are CASAS Milan [9]  and  CASAS Aruba [8]. 

CASAS Milan. CASAS Milan consists of data gathered from the home of a 
female adult volunteer living with a pet and where the woman’s children visited 
periodically. The dataset contains about three months of recording and includes 
the following classes: Bed-to-Toilet, Chores, Desk Activity, Dining room Activity, 
Evening Medications, Guest Bathroom, Kitchen Activity, Leave Home, Master 
Bathroom, Meditate, Watch TV, Sleep, Read, Morning Medications, Master
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Bedroom Activity. Some of these activities are very under-represented in the 
dataset; for this reason, following what has been done in [4], the less represented 
classes, that are Bed to Toilet, Chores, Meditation, Evening Medications and 
Morning Medications, are not taken into consideration. Moreover, Master Bath-
room and Guest Bathroom have b een fused obtaining a new class that contains 
similar activities in a number comparable with the other classes.

CASAS Aruba. CASAS Aruba is a dataset collected in the home of a woman 
whose children and grandchildren visited regularly. The dataset contains Meal 
Preparation, Relax, Eating, Work, Sleeping, Wash Dishes, Bed to Toilet, Enter 
Home, Leave Home, Housekeeping and Resperate. Resperate and Bed To toilet 
classes have been dropped according to what has been done in [19]. 

4.2 Implementation Details 

We implemented GNN-XAR using Python 3.10.5, using Pytorch and Pytorch 
Geometrics for the models and the explainer. Other libraries used include Scikit-
learn for the evaluation, Networkx for graph visualization, and Pandas and 
Numpy for data processing.

4.3 Evaluation 
Baseline. We decided to focus our comparison of GNN-XAR only with state-
of-the-art explainable ADL recognition methods, selecting the one that demon-
strated the highest recognition accuracy in the literature. For this reason, we
chose DeXAR [4] as a baseline, since it is the method that meets these crite-
ria. DeXAR converts sensor data into semantic images, leveraging XAI meth-
ods for computer vision to generate natural language explanations. Since GNN-
XAR uses a posthoc explanation method, we compare DeXAR when used with
LIME [24]. 

The original DeXAR implementation also considered previously predicted 
ADLs as input, while this aspect is not captured by GNN-XAR. Hence, we 
implemented a version of DeXAR not considering past activities.

Experimental Setup. We consider a standard 70%-20%-10% split to parti-
tion the datasets into training, test and validation sets.The models have been 
trained using the early stopping strategy with a patience of 50 epoc hs, the Adam 
optimizer with a learning rate of 0. 0001, and a CrossEntropy loss function.

For segmentation, we used the same hyper-parameters suggested in [4] for the 
CASAS datasets, where the window size is 360 seconds with an overlap factor 
of 80%. We discarded all the windows not corresponding to an activity label 
(i.e., transitions or other activities) as well as temporal windows without sensor
events.
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4.4 Evaluation Metrics 

We use the standard metrics for precision, recall, and F1 score to assess the 
recognition rate of GNN-XAR. These metrics provide a c omprehensive under-
standing of the model’s performance from different perspectives.

However, evaluating the effectiveness of explanations is more challenging. A 
standard way adopted in the literature involves user surveys [4,10,16]. However, 
such method is time and money-consuming. We leverage a recent work propos-
ing LLMs to automatically compare alternative XAI methods, since it proved to 
be aligned with user surveys [13]. Specifically, we provide to an LLM the expla-
nations generated by GNN-XAR and DeXAR on the same window, asking the 
LLM to choose the best one (using the prompt proposed in [13]). 

4.5 Results 
Classification Results. Tables 1 and 2 compare GNN-XAR and DeXAR 
considering the F1 score for each class.We observe that our approach achieves 
slightly better recognition rates in t he overall F1 score for both datasets.By 
observing the confusion matrices in Fig. 9 and 10, both models struggle to dis-
tinguish activities taking place in the same r oom, like Bathroom and Dress
Undress.

Considering the CASAS Milan dataset, this is likely due to the fact that 
the wardrobe is located in the master bedroom near the bathroom entrance. To 
distinguish between these two activities, it is probably necessary to consider addi-
tional context information, such a s past activities and time. Another remarkable 
difference between the two models is the higher f1 score of GNN-XAR on Leave
Home (see table 1). In fact, this ADL strongly depends the temporal order of 
sensor events, that i s better captured by our GNN model.

Considering the CASAS Aruba dataset, the GNN model performs better 
than DeXAR for almost all the activities. The main difference with respect 
to the results obtained in CASAS Milan is that two activities are completely 
misclassified by both GNN-XAR and DeXAR: washing dishes and housekeeping. 
These two activities are the least represen ted in the dataset. Wash dishes is 
always confused with meal preparation. Similarly to CASAS Milan, the activities 
that benefit more from the GNN model are entering home and leaving home.

Explainability Results. As we previously mentioned, we leverage an LLM-
based approach to compare GNN-XAR and DeXAR. However, due to the costs 
of LLM-based APIs requests, we sampled 30 random windows for each activity.
Similarly to [4], we only evaluate the quality of explanations associated to correct 
predictions, since evaluating explanations of wrong predictions is still an open 
problem and we will consider it for future work. For each window, we provide 
the LLM with the explanations generated by the two models and we obtain as 
output the explanation preferred by the LLM. Table 3 shows an example of how 
the LLM compares the explanations.
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Fig. 9: Confusion Matrices for CASAS Milan. 

Table 1: CASAS Milan: Classification results (F1 score).
DeXAR [4] GNN-XAR 

Bathroom 0.55 0.53 
Dress/Undress 0.26 0.37 
Eat 0.67 0.61 
Kitchen activit y 0.77 0.77 
Leave Home 0.46 0.74 
Read 0.90 0.91 
Sleep 0.85 0.87 
Watch TV 0.84 0.89 
Work 0.80 0.70 
weighted avg. 0.77 0.81 

Table 2: CASAS Aruba: Classification results (F1 score).
DeXAR [4] GNN-XAR 

Eating 0.69 0.75 
Enter Home 0.53 0.76 
Housekeeping 0.09 0.14 
Leave Home 0.71 0.82 
Meal Preparation 0.80 0.81 
Relax 0.94 0.96 
Sleeping 0.93 0.96 
Wash Dishes 0.06 0.00 
Work 0.79 0.87 
weighted avg. 0.90 0.92
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Fig. 10: Confusion Matrices for CASAS Aruba. 

Figure 11 shows, for both datasets, the percentage of times where the LLM 
preferred explanations from GNN-XAR compared to the ones generated by 
DeXAR. We observe that the explanations generated by GNN-XAR were pre-
ferred by the LLM in 80% of the times for the CASAS Milan dataset and 69%
of the times for the CASAS Aruba dataset.

Fig. 11: Overall percentage of preferences given by the LLM to explanations given 
by GNN-XAR and DeXar.

It is important to note that this preference is not uniform over all the classes 
classes. Indeed, Figs. 12 and 13 shows that more dynamic activities, like entering 
and leaving home, eating, and preparing a meal achieve a higher score with
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Fig. 12: Percentage of preferences (for each activity class) given by the LLM to 
explanations given by GNN-XAR and DeXar for CASAS Milan.

Fig. 13: Percentage of preferences (for each activity class) given by the LLM to 
explanations given by GNN-XAR and DeXar for CASAS Aruba.

respect to static activities like sleeping, reading, relaxing and watching TV. This 
is reasonable since our graph encoding is better at capturing temporal relations 
in dynamic activities. The only time where DeXAR explanations “wins” over the 
ones of GNN-XAR is on the Sleep activity for the CASAS Aruba dataset. This is 
probably due to the fact that in this dataset there is a higher number of sensors 
in the bedroom, and a slight movement during sleep may trigger more sensors at
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Table 3: Example of LLM-based explaination ev aluation.
GNNExplainer I predicted leaving home mainly due to the following 

observations: Bob approached the area between the dining 
ro om and the hall multiple times, and then the front door.

DeXAR I predicted leaving home mainly because Bob has been near 
the front door and bet ween the dining room and the hall.

LLM answer Let’s break down each explanation: 
1) The first explanation mentions specific observations of Bob 
approaching the area between the dining room and the hall 
multiple times before heading to the front door. This sequence 
of movements aligns with the common behavior of someone 
preparing to leave home, such as gathering belongings or check-
ing for keys before exiting. Therefore, this explanation provides 
a clear and logical connection between Bob’s movements and 
the prediction of leaving home. 
2) The second explanation is similar to the first one but lacks 
the detail of multiple approaches to the specific areas. While it 
still mentions Bob b eing near the front door and between the 
dining room and the hall, the repetition of movements in the 
first explanation adds more weight to the prediction of leaving 
home. 
Considering the clarity and sp ecificity of the observations pro-
vided in the first explanation, it o!ers a more detailed and
plausible rationale for predicting leaving home based on Bob’s
movements.
CHOICE=1.

once. Thus, the GNN may tend to explain the sequence of actions transmitting 
a false sense of movement from one sensor to the other. T his probably can be 
fixed in future work b y adding further heuristics to refine the explanations.

5 Conclusion and Future Work 

In this paper we presented GNN-XAR, an explainable Graph Neural Network 
framework for ADLs recognition in smart home environments. Our results sug-
gest that GNN-XAR generates effective explanations by leveraging the structural 
properties of the graph representation. W hile the results are promising, this work 
still has limitations, and we plan to extend it following several research direc-
tions.

Currently, GNN-XAR only considers binary environmental sensors. We will 
investigate how to also integrate continuous sensor data from mobile/w earable 
devices, information about past activities, and other context information.

Another limitation of GNN-XAR is that it assigns an importance score to a 
node or arc within a graph structure, but it does not consider nodes or arcs fea-
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tures in the explanations. Therefore, another possible development might consist 
in improving the explainer algorithm to also provide such details.

Regarding the segmentation, in this work we considered fixed time sliding 
windows, that is the standard approach. In future w ork, we will investigate the 
impact of dynamic segmentation [2] on G NN-XAR. 

Finally, while we used LLMs to evaluate the explanations, we will investigate 
where it is possible to leverage them also to automatically generate explanations 
starting from the most important nodes and arcs obtained by GNNexplainer. 
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