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Abstract. Sensor-based Human Activity Recognition (HAR) in smart
home environments is crucial for several applications, especially in the
healthcare domain. The majority of the existing approaches leverage
deep learning models. While these approaches are effective, the rationale
behind their outputs is opaque. Recently, eXplainable Artificial Intelli-
gence (XAI) approaches emerged to provide intuitive explanations to the
output of HAR models. To the best of our knowledge, these approaches
leverage classic deep models like CNNs or RNNs. Recently, Graph Neural
Networks (GNNs) proved to be effective for sensor-based HAR. However,
existing approaches are not designed with explainability in mind. In this
work, we propose the first explainable Graph Neural Network explic-
itly designed for smart home HAR. Our results on two public datasets
show that this approach provides better explanations than state-of-the-
art methods while also slightly improving the recognition rate.

Keywords: Human Activity Recognition - Graph Neural Networks -
Smart Homes + eXplainable AT

1 Introduction

The recognition of Activities of Daily Living (ADLs) in Smart Home environ-
ments is a widely studied research topic in the pervasive computing commu-
nity [7]. Recognizing the daily activities that humans do in their daily life at
home (e.g., cooking, watering plants, taking medicines) has several important
healthcare applications, including the early detection of cognitive decline [25].
The majority of the approaches in the literature are based on deep learning
models, mainly due to their effectiveness in reaching high recognition rates [14].
The most common architectures used for ADLs recognition are Convolutional [4]
and Recurrent [19] neural networks. However, these approaches may not fully
capture the spatiotemporal properties of sensor data. In the literature, Graph
Neural Networks (GNNs) have emerged as a promising approach for time
series classification [12]. In GNNs, sensor data time windows are encoded as
graphs capturing both spatial and temporal relationships between sensors. While
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the majority of existing studies focused on human activity recognition with
mobile/wearable devices [22], only a few GNN-based approaches have been pro-
posed for ADLs recognition in smart home environments [27,30].

In general, deep learning models are often considered as “black boxes” map-
ping windows of sensor data into activities, and it is challenging to understand
the rationale behind their decisions. The field of eXplainable Artificial Intel-
ligence (XAI) has the goal of mitigating this problem by providing human-
understandable explanations to the output of machine learning models [3].

Since important decisions in ambient assisted living applications may rely
on the output of ADLs recognition, inferring why a specific ADL was predicted
by the classifier is crucial to provide understandable, trusted, and transparent
solutions [29]. For instance, XAI would allow clinicians to increase their trust in
decision support systems that rely on ADLs recognition (e.g., supporting early
detection of cognitive decline). Data scientists may also benefit from explanations
to refine the recognition system, the sensing infrastructure, or the training set.

A few works proposed explainable ADLs recognition in smart homes envi-
ronments [4,10]. However, to the best of our knowledge, eXplainable GNN
approaches for sensor-based ADLs recognition in smart homes have not been
explored yet. Therefore, in this paper we present GNN-XAR, the first explain-
able GNN-based system for ADLs recognition. Specifically, GNN-XAR dynam-
ically constructs a graph starting from windows of environmental sensor data
taking into account spatial and temporal aspects. Each graph is processed by a
Graph Convolutional Network (GCN) for ADLs classification. An adapted state-
of-the-art XAI method specifically designed for GNNs is in charge of determining
the most important nodes and arcs of the input for activity classification. This
information is finally used to generate an explanation in natural language.

To sum up, the contributions of this paper are the following:

— We propose GNN-XAR: the first Explainable Graph Neural Network system
for Smart Home HAR.

— Starting from windows of raw sensor data, GNN-XAR dynamically constructs
a graph that a GNN processes to classify the most likely activity.

— For each prediction, GNN-XAR leverages an eXplainable Al approach to
produce explanations in natural language.

— Our results show that GNN-XAR generates superior explanations with
respect to state-of-the-art explainable HAR methods, while slightly improving
the recognition rate.

2 Related Work
2.1 GNN-Based Methods for HAR

GNNs have been widely adopted in IoT scenarios, in applications includ-
ing multi-agent interaction, Human State-dynamic, sensor interconnection, and
autonomous vehicles [11]. Considering sensor-based human activity recognition,
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GNNs have been mainly proposed to recognize activities from mobile/wearable
devices [28].

The differences between existing work lies in how the graph is constructed
from sensor data. For instance, a common solution is to consider each time
window as a node with the goal of performing node classification [21,23,26].
Other works consider a node for each sensor, considering a graph classification
task [18].

Only a few works applied GNNs to ADLs recognition in smart home envi-
ronments. For example, [27] uses graphs to model sensor dependencies. In that
work, a graph is built such that each node represents an environmental sen-
sor, while a directed arc represents the influence of the behavior of one sensor
to another one. The arcs of the graph structure and their weights are learned
using an attention mechanism. The graph classification task is then considered
to perform ADLs classification. The work in [30] is closely related to GNN-XAR
since it dynamically constructs each graph from the time window of sensor data,
where each node is a sensor event. Differently from our work, the arcs are auto-
matically learned from the network considering spatial and temporal properties
at the same time.

While it may be possible to apply XAI techniques on such methods, it would
be challenging to obtain meaningful explanations. For instance, considering the
work in [27], it may be possible to obtain explanations only about the sensors
triggered consecutively, without considering longer temporal relationships. On
the other hand, since in [30] the arcs are automatically learned, they are not
associated with a specific semantic and hence it would be challenging to explain
them.

2.2 XAI Methods for Human Activity Recognition

The first attempts for explainable sensor-based activity recognition considered
simple inherently interpretable models [5,6,15,17]. However, such models usually
underperform deep learning models that, on the contrary, are more complex to
explain.

A few works proposed XAI methods for deep learning for sensor-based activ-
ity recognition [16,20]. However, only a few of them focused on ADLSs recognition
in smart homes. For instance, DeXAR [4] leverages CNN models and explores
the use of various XAI methods for computer vision by converting sensor data
into semantic images. Similarly, the work in [10] applies several XAI methods
to LSTM-based neural networks. Both works generate explanations in natural
language for non-expert users.

While eXplainable Graph Neural Networks have been studied in the general
machine learning community [1], this is the first work exploring this combination
for sensor-based ADLs recognition in smart homes.
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3 GNN-XAR Under the Hood

In this work, we consider a smart home environment equipped with binary envi-
ronmental sensors (e.g., motion sensors, magnetic sensors, pressure sensors). We
assume that the smart-home is inhabited only by a single resident, and that sen-
sor events are the result of the interaction of the subject with the environment.
We also assume that the same timestamp will never be assigned to two distinct
sensor events, hence we consider a total order in the sensor event sequence!. The
goal of GNN-XAR is to provide the most likely activity from time windows of
sensor events and, at the same time, to provide an explanation in natural lan-
guage about the aspects of the input that mostly contributed to the prediction.

3.1 Overall Architecture

Fig. 1 depicts the architecture of GNN-XAR.

=
AN
() = Environmental data Segmentation Time Window Graph Construction

Graph representation
of the window

Explanation
Generation

Node and edges =
Explainer GNN

NON-EXPERT

TARGET USER

Fig. 1: Overall architecture of GNN-XAR.

Explanation in
natural language

First, the stream of environmental sensor data is segmented into fixed size
overlapping time windows. Each time window is then processed by the GRAPH
CONSTRUCTION module to obtain a graph representation of the window, encod-
ing both spatial and temporal properties with an heuristic-based approach. Each
graph is processed by the GNN module for ADLs classification. Then, the
EXPLAINER module leverages posthoc XAI methods to obtain the nodes and
arcs that were the most important in the input to obtain the classified activity.

! Note that this is a realistic assumption, since typically events are queued by a single
process on the gateway that assigns different timestamps even if the events occurred
at the same time, without any impact on our results.
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Posthoc X AT approaches consider the model as a black box and generate expla-
nations by analyzing the relationships between inputs and outputs. Finally, the
EXPLANATION GENERATION module uses this information to generate an expla-
nation in natural language for non-expert users.

3.2 Graph Construction

The GRAPH CONSTRUCTION module dynamically constructs a graph G,, start-
ing from a temporal window w of sensor events. GNN-XAR leverages a heuristic-
based strategy for graph construction, taking into account spatial and temporal
properties (that will be leveraged to generate meaningful explanations).

Let w = (Ey, Es, ..., E,) be a temporal window including n sequential sensor
events. An event FE; is associated with the following information:

— An identifier of the sensor that produced it (E¢), that encodes the sensor
type (magnetic, motion ...) and the position (fridge, sofa...).
— The event type ON or OFF (E!?°).

?

— The timestamp of the event (E!*).

In our framework, we consider the events differently based on the type of
sensor that generated them:

— The first type of sensor includes sensors whose both activation and deactiva-
tion require explicit actions by the user (e.g. opening or closing a cabinet). In
this case, we are interested in both the activation and deactivation (i.e. ON
and OFF) events.

— The second type includes sensors that are automatically deactivated after
some time, for instance, motion sensors. In this case, we are interested in the
ON event and in the duration of the active state of the sensor, computed as
the time from the ON event to the OFF event.?

Given a window w, we denote the corresponding graph with G,, = (V, A),
where V is the set of nodes and A is the set of arcs. In GNN-XAR, the set V is
created as follows:

— We add a node v for each event in w (activation or deactivation) generated
by the first type of sensor. These are event nodes.

— We add a node v for every active state of a sensor of the second type. These
are state nodes.

In our system, each node has the sensor identifier as a feature. As common
in deep learning, a (trainable) embedding layer computes an embedding vector
representing this feature. State nodes have the duration of the corresponding
active state as an additional feature.

The set of arcs A is created as follows: For each pair of node v;,v; € V such
that ¢ # j, there is an oriented arc (v;,v;) € A in the following two cases:

2 In the case of motion sensors if there are multiple subsequent detections of move-
ments, a single active state is considered. This is also how the events are reported
in the public datasets we considered.
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1. v; and v; are event nodes derived from consecutive events generated by the
same sensor S (i.e., there are no other events from S between them). This is
shown in Fig. 2.

Fig.2: Arcs between event or state nodes generated by different sensors.

2. v; and v; are state nodes derived from consecutive active states of the same
sensor S.

3. v; and v; are derived from events/states generated by different sensors S,
and S, and there are no other events/states generated by S, or S, between
them. This temporal relationship is computed considering as timestamp of
an active state the timestamp of the activation (ON) event. This is shown in
Fig. 3.

SENSOR 1

SENSOR 2

Fig. 3: Arcs between event nodes generated by the same sensor.

Each arc (v;,v;) € A has as associated feature the time difference between
the timestamp of the event/state corresponding to v; and the timestamp of the
event/state corresponding to v;, considering as timestamp of an active state the
timestamp of the activation (ON) event.

This method for building the graph has also the advantage of maintaining a
sparse structure, avoiding the graph degeneration into a fully connected graph.

Our graph construction strategy makes it possible to consider spatiotempo-
ral relationships between sensor events. Considering temporal aspects, a directed
arc from a node v; to a node v; models the fact that the event/state correspond-
ing to v; occurred before the event/state corresponding to v,. This temporal
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relationship is also quantitative since the arc feature encodes the time distance
between them. Moreover, when v; and v; are generated by different sensors S,
and Sy, the directed arc also implicitly encodes spatial relationships about the
resident interacting with sensors in different home positions.

A challenge with graphs with a variable number of nodes is that it complicates
the graph pooling process (i.e., creating an embedding for the whole graph). For
instance, pooling by concatenation would lead to graph embeddings of different
shapes. GNN-XAR solves this problem by augmenting V' with a fixed number
of super-nodes: fictitious nodes not corresponding to real sensor events or states.
Specifically, we add a super node SNg to V for each sensor S. We also add
an arc (v;,SNg) € A if v; corresponds to an event/state generated by the
sensor S. Note that, if a window w does not contain events/states generated
by a sensor S,, V would include the super node SNg, without associated arcs.
Hence, all the nodes corresponding to an event/state generated by a sensor are
connected to its super-node. Super-nodes have the role of summarizing all the
graph information into a fixed number of nodes. Thanks to this approach, it is
possible to concatenate the information of the whole graph only by performing
pooling on super-nodes.

In the following, we show a simple example of how to build a graph G,
starting from a window w including active states from three sensors. The window
w and its states are depicted in Fig. 4.

E1 (ON) E2 (OFF) E3 (ON)
MAGNETIC1 | | | | |
ON OFF ON OFF
MOVEMENT 1 AS1 (Active state) AS2 (Active state)
ON OFF

MOVEMENT2 | AS3 (Active state) |

Fig. 4: Example of a time window. For the magnetic sensor, the black lines repre-
sent the events. For the movement sensors, the black regions represent the active
states

Figure 5 shows the resulting graph G, that is constructed with the following
steps:

— For each sensor S, a super-node is created (represented as squares in the
figure).

— For each event/state a node v; is generated (represented as circles in the
figure).

— Each event/state generated by S is connected to the respective super-node
associated with S (the dashed arrows).

— We include arcs based on the rules defined above (the solid arrows).
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SUPER NODES

MAGNETIC 1 SN1

MOVEMENT 1

SN2

MOVEMENT 2 SN3

Fig.5: The directed graph computed from the sensor window in Fig. 4.

3.3 Graph Neural Network

In the following, we describe the steps for graph classification.

Message Passing. Message passing is a crucial step in GNNs for transmitting
information between nodes in a graph. This technique allows nodes to share and
update their features based on the features of their neighbors, facilitating the
extraction of meaningful patterns and relationships in graph-structured data.

Information propagates through the graph in two distinct steps. The first step
aggregates and processes all the known information, including event duration and
distances between events, to compute the new node features, while the second
step has the goal of further spreading this information into the graph. The second
step is particularly useful for spreading information to the super nodes.

More specifically, in the first iteration, for each node, a message is computed
by applying a linear layer to the concatenation of the node embeddings and the
arc features. This linear layer reduces the message’s dimension to match the
original node feature dimension. Subsequently, the aggregate message for each
node is computed using a sum aggregation function, and the new node feature
is obtained by summing the previous embedding with the aggregated message.

The second phase involves a simplified propagation in which only the new
node embeddings are considered. Given that less information is processed in
this phase, no linear layer is applied. Instead, a sum aggregation function is
used directly. The same update function from the first phase is then applied,
summing the previous node feature with the aggregated messages to compute
the new node feature.
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Although this propagation process can be iterated multiple times, the high
connectivity of the graphs generated by GNN-XAR makes it possible to leverage
a small number of iterations to allow information to travel throughout the entire
graph.

Graph Pooling and Classification. Figure 6 shows the GNN model architec-
ture of GNN-XAR. Graph Pooling consists in generating an embedding that is
representative of the whole graph. As we previously mentioned, since the number
of nodes is different for each instance, we leverage super-nodes. Thus, the pooling
strategy proposed for this model consists of considering only the embeddings of
super nodes and concatenating them to obtain a vector of length equal to the
embedding dimension multiplied by the number of sensors.

The classification is carried out using linear layers: the flattened embedding
encoding the graph is passed through two linear layers, each one followed by
a LeakyReLU function. Finally, the output of the network is the probability
distribution over the possible ADLs, obtained thanks to a softmax layer.

OUTPUT

Leaky Leaky
RelLU RelLU

—> —> —>

PROPAGATION GRAPH LINEAR SOFTMAX
LAYERS POOLING LAYERS

EMBEDDING

Fig. 6: The model architecture of GNN-XAR.

3.4 Explainer

XATI methods applied on GNNs aim to find the subset of nodes and arc that
mostly contributed to a specific prediction. In GNN-XAR, a node is selected for
the explanation if the corresponding sensor event/state was important for clas-
sifying the activity; an arc is selected if the specific order of sensor events/states
was important for classifying the activity.

GNN-XAR leverages the GNNexplainer [31] method for explanations.
Through an optimization method, GNNexplainer derives a subgraph maximiz-
ing the mutual information between the GNN’s prediction and the prediction
that would have been obtained by the GNN based only on this subgraph. This
is achieved by perturbing the graph and its features, and observing the effect
of these perturbations on the GNN’s predictions. Given the most likely ADL
predicted by the GNN, the input graph and the GNN model, GNNexplainer
computes importance values for nodes and arcs. The algorithm leverages gradi-
ent descent to derive node and arc masks that modulate the information spread
in the graph during the message-passing procedure.
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In its original version, the GNNexplainer algorithm includes the multiplica-
tion of each node feature by a value in the range [0,1] to generate the node
mask. However, this approach cannot be adopted in GNN-XAR since the sensor
id node feature represents a categorical value, the perturbation of that value
would not convey the intended meaning. For this reason, we apply the original
GNNExplainer but extract only the arc mask. We then compute the importance
of each node as the importance of the arc connecting it to its corresponding super
node. The intuition behind this strategy is that there is only one arc through
which the information from the node is propagated to the super node. Since it
is the super node that is used for the classification, the importance of this arc is
a good indicator of the importance of the information conveyed by the node.

SUPER NODES

SENSOR 1

SENSOR 2

SENSOR 3

Fig. 7: Output of the original GNNExplainer limited to arcs importance. The
thickness of each arrow represents the importance values on the arcs.

Figure 7 represents the arcs importance as computed by the original GNNEx-
plainer on an example in our domain. Note that the dashed lines, connecting
nodes with super nodes, also have different thicknesses representing different
importance.

As stated above, our adapted version of GNNexplainer assigns as importance
of each node the importance of the arc connecting it with its super node. Figure 8
shows the output of our adapted version of GNNexplainer on the same example of
Fig. 7. Note that super nodes are not part of the output and that an importance
value is associated with each node, denoted in the figure by the thickness.

GNNexplainer is a non-deterministic algorithm. For this reason, it requires
multiple executions, and only the average of the masks obtained at each execu-
tion is considered for the explanations. A major challenge of using GNNexplainer
is that the importance values obtained for nodes and arcs are not directly compa-
rable, since they range in different intervals. Since we observed that arcs scorers
are usually associated with lower importance values, we rescale them by a mul-
tiplicative factor such that the importance values of the nodes and the ones for
the arcs have the same mean.

Finally, GNN-XAR aims at extracting a supgraph G}, = (V*, A*) where V*
is the set of the most important nodes, while A* is the set of the most important
arcs. A straightforward approach to achieve this task would be using a thresh-
old on the importance value. However, we observed that different predictions
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SENSOR 1
SENSOR 2

SENSOR 3

Fig. 8: Output of our adapted version of GNNExplainer on the same input exam-
ple of Fig. 7.

are usually associated with importance values in completely different ranges.
Hence, defining a robust threshold is challenging. We mitigated this problem by
adopting a clustering approach. Indeed, we cluster arcs and nodes based on their
importance values. We consider as the most important arcs and nodes the ones
in the cluster associated with the highest importance values.

3.5 Generating Explanations in Natural Language

As a final step, GNN-XAR converts G* into a natural language explanation for
non-expert users.

Given the set of most important arcs A*, we compute the longest path. We
then use a heuristic-based approach similar to the one proposed in [4] to gener-
ate from this path a natural language explanation. For instance, the continuous
activation of certain sensors implies that the resident has moved toward the sen-
sor multiple times: in this case, in the path explanation, the expression “multiple
times” is added:

“I predicted preparing a meal mainly due to the following observations: Bob
was near the fridge, then he opened the fridge multiple times”

4 Experimental Evaluation
4.1 Datasets

Two datasets have been used to evaluate the model proposed in this work. They
are CASAS Milan [9] and CASAS Aruba [8].

CASAS Milan. CASAS Milan consists of data gathered from the home of a
female adult volunteer living with a pet and where the woman’s children visited
periodically. The dataset contains about three months of recording and includes
the following classes: Bed-to-Toilet, Chores, Desk Activity, Dining room Activity,
Evening Medications, Guest Bathroom, Kitchen Activity, Leave Home, Master
Bathroom, Meditate, Watch TV, Sleep, Read, Morning Medications, Master
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Bedroom Activity. Some of these activities are very under-represented in the
dataset; for this reason, following what has been done in [4], the less represented
classes, that are Bed to Toilet, Chores, Meditation, Evening Medications and
Morning Medications, are not taken into consideration. Moreover, Master Bath-
room and Guest Bathroom have been fused obtaining a new class that contains
similar activities in a number comparable with the other classes.

CASAS Aruba. CASAS Aruba is a dataset collected in the home of a woman
whose children and grandchildren visited regularly. The dataset contains Meal
Preparation, Relax, Eating, Work, Sleeping, Wash Dishes, Bed to Toilet, Enter
Home, Leave Home, Housekeeping and Resperate. Resperate and Bed To toilet
classes have been dropped according to what has been done in [19].

4.2 Implementation Details

We implemented GNN-XAR using Python 3.10.5, using Pytorch and Pytorch
Geometrics for the models and the explainer. Other libraries used include Scikit-
learn for the evaluation, Networkx for graph visualization, and Pandas and
Numpy for data processing.

4.3 Evaluation

Baseline. We decided to focus our comparison of GNN-XAR only with state-
of-the-art explainable ADL recognition methods, selecting the one that demon-
strated the highest recognition accuracy in the literature. For this reason, we
chose DeXAR [4] as a baseline, since it is the method that meets these crite-
ria. DeXAR converts sensor data into semantic images, leveraging XAI meth-
ods for computer vision to generate natural language explanations. Since GNN-
XAR uses a posthoc explanation method, we compare DeXAR when used with
LIME [24].

The original DeXAR implementation also considered previously predicted
ADLs as input, while this aspect is not captured by GNN-XAR. Hence, we
implemented a version of DeXAR not considering past activities.

Experimental Setup. We consider a standard 70%-20%-10% split to parti-
tion the datasets into training, test and validation sets.The models have been
trained using the early stopping strategy with a patience of 50 epochs, the Adam
optimizer with a learning rate of 0.0001, and a CrossEntropy loss function.

For segmentation, we used the same hyper-parameters suggested in [4] for the
CASAS datasets, where the window size is 360 seconds with an overlap factor
of 80%. We discarded all the windows not corresponding to an activity label
(i-e., transitions or other activities) as well as temporal windows without sensor
events.
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4.4 Evaluation Metrics

We use the standard metrics for precision, recall, and F1 score to assess the
recognition rate of GNN-XAR. These metrics provide a comprehensive under-
standing of the model’s performance from different perspectives.

However, evaluating the effectiveness of explanations is more challenging. A
standard way adopted in the literature involves user surveys [4, 10, 16]. However,
such method is time and money-consuming. We leverage a recent work propos-
ing LLMs to automatically compare alternative XAI methods, since it proved to
be aligned with user surveys [13]. Specifically, we provide to an LLM the expla-
nations generated by GNN-XAR and DeXAR on the same window, asking the
LLM to choose the best one (using the prompt proposed in [13]).

4.5 Results

Classification Results. Tables1 and 2 compare GNN-XAR and DeXAR
considering the F1 score for each class.We observe that our approach achieves
slightly better recognition rates in the overall F1 score for both datasets.By
observing the confusion matrices in Fig.9 and 10, both models struggle to dis-
tinguish activities taking place in the same room, like Bathroom and Dress
Undress.

Considering the CASAS Milan dataset, this is likely due to the fact that
the wardrobe is located in the master bedroom near the bathroom entrance. To
distinguish between these two activities, it is probably necessary to consider addi-
tional context information, such as past activities and time. Another remarkable
difference between the two models is the higher f1 score of GNN-XAR on Leave
Home (see table 1). In fact, this ADL strongly depends the temporal order of
sensor events, that is better captured by our GNN model.

Considering the CASAS Aruba dataset, the GNN model performs better
than DeXAR for almost all the activities. The main difference with respect
to the results obtained in CASAS Milan is that two activities are completely
misclassified by both GNN-XAR and DeXAR: washing dishes and housekeeping.
These two activities are the least represented in the dataset. Wash dishes is
always confused with meal preparation. Similarly to CASAS Milan, the activities
that benefit more from the GNN model are entering home and leaving home.

Explainability Results. As we previously mentioned, we leverage an LLM-
based approach to compare GNN-XAR and DeXAR. However, due to the costs
of LLM-based APIs requests, we sampled 30 random windows for each activity.
Similarly to [4], we only evaluate the quality of explanations associated to correct
predictions, since evaluating explanations of wrong predictions is still an open
problem and we will consider it for future work. For each window, we provide
the LLM with the explanations generated by the two models and we obtain as
output the explanation preferred by the LLM. Table 3 shows an example of how
the LLM compares the explanations.
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Fig.9: Confusion Matrices for CASAS Milan.

DeXAR [4] GNN-XAR
Bathroom 0.55 0.53
Dress/Undress [0.26 0.37
Eat 0.67 0.61
Kitchen activity|0.77 0.77
Leave Home 0.46 0.74
Read 0.90 0.91
Sleep 0.85 0.87
Watch TV 0.84 0.89
Work 0.80 0.70
weighted avg. |0.77 0.81

Table 1: CASAS Milan: Classification results (F1 score).

Table 2: CASAS Aruba: Classification results (F1 score).

DeXAR [4] GNN-XAR
Eating 0.69 0.75
Enter Home 0.53 0.76
Housekeeping 0.09 0.14
Leave Home 0.71 0.82
Meal Preparation|0.80 0.81
Relax 0.94 0.96
Sleeping 0.93 0.96
Wash Dishes 0.06 0.00
Work 0.79 0.87
weighted avg. 0.90 0.92
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Fig. 10: Confusion Matrices for CASAS Aruba.

Figure 11 shows, for both datasets, the percentage of times where the LLM
preferred explanations from GNN-XAR compared to the ones generated by
DeXAR. We observe that the explanations generated by GNN-XAR were pre-
ferred by the LLM in 80% of the times for the CASAS Milan dataset and 69%
of the times for the CASAS Aruba dataset.

Preferences between GNN-XAR and DeXar

[ GNN-XAR
I DeXar

1.0+

° o o
I o ©
7 A

Percentage of preference

©
[N]

0.0-

Milan Aruba
Dataset

Fig. 11: Overall percentage of preferences given by the LLM to explanations given
by GNN-XAR and DeXar.

It is important to note that this preference is not uniform over all the classes
classes. Indeed, Figs. 12 and 13 shows that more dynamic activities, like entering
and leaving home, eating, and preparing a meal achieve a higher score with
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Preferences between GNN-XAR and DeXar over classes in CASAS Milan
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Fig. 12: Percentage of preferences (for each activity class) given by the LLM to
explanations given by GNN-XAR and DeXar for CASAS Milan.

Preferences between GNN-XAR and DeXar over classes in CASAS Aruba

Percentage of preference

ACTIVITIES

Fig. 13: Percentage of preferences (for each activity class) given by the LLM to
explanations given by GNN-XAR and DeXar for CASAS Aruba.

respect to static activities like sleeping, reading, relaxing and watching TV. This
is reasonable since our graph encoding is better at capturing temporal relations
in dynamic activities. The only time where DeXAR explanations “wins” over the
ones of GNN-XAR is on the Sleep activity for the CASAS Aruba dataset. This is
probably due to the fact that in this dataset there is a higher number of sensors
in the bedroom, and a slight movement during sleep may trigger more sensors at
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Table 3: Example of LLM-based explaination evaluation.

GNNExplainer I predicted leaving home mainly due to the following
observations: Bob approached the area between the dining
room and the hall multiple times, and then the front door.

DeXAR I predicted leaving home mainly because Bob has been near
the front door and between the dining room and the hall.

LLM answer |Let’s break down each explanation:

1) The first explanation mentions specific observations of Bob
approaching the area between the dining room and the hall
multiple times before heading to the front door. This sequence
of movements aligns with the common behavior of someone
preparing to leave home, such as gathering belongings or check-
ing for keys before exiting. Therefore, this explanation provides
a clear and logical connection between Bob’s movements and
the prediction of leaving home.

2) The second explanation is similar to the first one but lacks
the detail of multiple approaches to the specific areas. While it
still mentions Bob being near the front door and between the
dining room and the hall, the repetition of movements in the
first explanation adds more weight to the prediction of leaving
home.

Considering the clarity and specificity of the observations pro-
vided in the first explanation, it offers a more detailed and
plausible rationale for predicting leaving home based on Bob’s
movements.

CHOICE=L1.

once. Thus, the GNN may tend to explain the sequence of actions transmitting
a false sense of movement from one sensor to the other. This probably can be
fixed in future work by adding further heuristics to refine the explanations.

5 Conclusion and Future Work

In this paper we presented GNN-XAR, an explainable Graph Neural Network
framework for ADLs recognition in smart home environments. Our results sug-
gest that GNN-XAR generates effective explanations by leveraging the structural
properties of the graph representation. While the results are promising, this work
still has limitations, and we plan to extend it following several research direc-
tions.

Currently, GNN-XAR only considers binary environmental sensors. We will
investigate how to also integrate continuous sensor data from mobile/wearable
devices, information about past activities, and other context information.

Another limitation of GNN-XAR is that it assigns an importance score to a
node or arc within a graph structure, but it does not consider nodes or arcs fea-
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tures in the explanations. Therefore, another possible development might consist
in improving the explainer algorithm to also provide such details.

Regarding the segmentation, in this work we considered fixed time sliding
windows, that is the standard approach. In future work, we will investigate the
impact of dynamic segmentation [2] on GNN-XAR.

Finally, while we used LLMs to evaluate the explanations, we will investigate
where it is possible to leverage them also to automatically generate explanations
starting from the most important nodes and arcs obtained by GNNexplainer.
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