
Introduction
Expecting huge amounts of data

Advanced Computer Programming
Lecture 1

Alberto Ceselli
alberto.ceselli@unimi.it

Dipartimento di Informatica
Università degli Studi di Milano

October, 3rd, 2014

A. Ceselli, Univ. di Milano Advanced Computer Programming



Introduction
Expecting huge amounts of data

Is it worth to improve coding skills?

Is it really worth to improve coding skills?
http://www.bls.gov/ooh/computer-and-information-
technology/computer-programmers.htm
http://www.bls.gov/ooh/computer-and-information-
technology/software-developers.htm
http://www.computerworld.com/article/2502348/it-
management/it-jobs-will-grow-22–through-2020–says-u-s-.html

A. Ceselli, Univ. di Milano Advanced Computer Programming



Introduction
Expecting huge amounts of data

Which kind of language?

Which kind of language / coding style / coding paradigm?
http://bluebones.net/evolution/evo-prog-lang.png
i.e. ... it depends on your application!

A. Ceselli, Univ. di Milano Advanced Computer Programming



Introduction
Expecting huge amounts of data

Syllabus

Part A: enhancing programming paradigms
1- Data driven programming:

performing complex tasks on data: functional programming
(clojure)
when data determine the flow of the program (awk)

2- Scaling up: from procedures and data structures to Generics
(Java)

ADTs; the issue of polymorphism
Parametric types and Parametric programming
Object Orientation (review)
Generic programming

3- Meta programming (Java)
Binding issues
Delegates
Reflection, Reification, Code annotation
Applications

4- Exploiting concurrency (Java)
shared memory concurrent programming
exceptions, events and event driven programming
distributed memory concurrent programming

A. Ceselli, Univ. di Milano Advanced Computer Programming



Introduction
Expecting huge amounts of data

Syllabus

Part B: Programming in the small

Realtime programming issues

Programming in embedded systems

Programming mobile devices

Part C: Programming in the large (Component based
programming)

Fundamentals of component based programming and
pattern-based design

Case study 1: creational patterns

Case study 2: structural patterns

Case study 3: behavioural patterns

A. Ceselli, Univ. di Milano Advanced Computer Programming



Introduction
Expecting huge amounts of data

Why data-driven programming?

Found on the net: “reformatting 1GB of textual feature data into
a form Matlab and R can read”

Language Time (min:sec) Speed (vs. gawk) Lines of code
mawk 1:06 7.8x 3
java 1:20 6.4x 32
c-ish c++ 1:35 5.4x 42
python 2:15 3.8x 20
perl 3:00 2.9x 17
nawk 6:10 1.4x 3
c++ 6:50 1.3x 48
ruby 7:30 1.1x 22
gawk 8:35 1x 3

A. Ceselli, Univ. di Milano Advanced Computer Programming



Introduction
Expecting huge amounts of data

Imperative VS Functional

Imperative programming:

We have a Von Neumann machine to manage

it has a status (memory and registry values)

we perform computations by changing the status of the
machine

we give instructions (or commands) to be taken in sequence
according to a control flow, and we manage this flow with
statements for iteration, selection etc.

to modify memory cell values (and therefore the status of the
machine), we modify values of variables

A. Ceselli, Univ. di Milano Advanced Computer Programming



Introduction
Expecting huge amounts of data

Imperative VS Functional

Functional programming:

We define functions that produce the desired output, starting
from their input

- computation means to apply functions to their arguments

The functions are defined as mathematical ones, using more
conditions and recursion, than sequences of instructions

Moreover, functions have no side effects, nor assignments
E.g.: given the function f (x) = x + 1, compute f (x) is not
changing a “status”:

f is not changing an internal status, f (3) is always 4
f in not changing an external status, not opening sockets nor
saving to disk

A. Ceselli, Univ. di Milano Advanced Computer Programming



Introduction
Expecting huge amounts of data

Imperative VS Functional

No status ...

no loops: only recursion is used in place of any other iteration
statement

no assignments and no variables, no memory management

only function definitions, and applications of functions to data
(no side effects)

A. Ceselli, Univ. di Milano Advanced Computer Programming



Introduction
Expecting huge amounts of data

Recursive thinking ...

Examples:

factorial

Fibonacci’s sequence

sum and power

A. Ceselli, Univ. di Milano Advanced Computer Programming



Introduction
Expecting huge amounts of data

Functional programming and functional languages

Why to design dedicated languages to functional programming?

syntax: to have code that resembles as much as possible
mathematical functions

semantics: to allow coding any type of function

... without restrictions on type or number of parameters (e.g.
having functions taking functions as arguments, or returning
functions, or returning tuples of values)

A. Ceselli, Univ. di Milano Advanced Computer Programming



Introduction
Expecting huge amounts of data

Clojure

Clojure: a functional programming language targeting the JVM
official website: http://clojure.org/
tutorial: http://java.ociweb.com/mark/clojure/article.html

A. Ceselli, Univ. di Milano Advanced Computer Programming



Introduction
Expecting huge amounts of data

‘Hands on’ session: Clojure

From basics to XML files semantic equivalence using Clojure

A. Ceselli, Univ. di Milano Advanced Computer Programming


	Introduction
	Expecting huge amounts of data

