Advanced Computer Programming

Lecture 1

Alberto Ceselli
alberto.ceselliQunimi.it

Dipartimento di Informatica
Universita degli Studi di Milano

October, 3rd, 2014

. UNIVERSITA
DEGLI STUDI
b1 MiLaNO

A. Ceselli, Univ. di Milano Advanced Computer Programming



Introduction

orth to improve coding skills?

Is it really worth to improve coding skills?
http://www.bls.gov/ooh /computer-and-information-
technology/computer-programmers.htm
http://www.bls.gov/ooh /computer-and-information-
technology/software-developers.htm
http://www.computerworld.com /article /2502348 /it-
management /it-jobs-will-grow-22—through-2020-says-u-s-.html|

* UNIVERSITA
= f.© DpEGLISTUDI
b1 MiLaNO

A. Ceselli, Univ. di Milano Advanced Computer Programming



Introduction

h kind of language?

Which kind of language / coding style / coding paradigm?
http://bluebones.net/evolution /evo-prog-lang.png
i.e. ... it depends on your application!

* UNIVERSITA
= f.© DpEGLISTUDI
b1 MiLaNO

A. Ceselli, Univ. di Milano Advanced Computer Programming



Introduction

Part A: enhancing programming paradigms
1- Data driven programming:
o performing complex tasks on data: functional programming
(clojure)
o when data determine the flow of the program (awk)
2- Scaling up: from procedures and data structures to Generics
(Java)
o ADTs; the issue of polymorphism
o Parametric types and Parametric programming
o Object Orientation (review)
o Generic programming
3- Meta programming (Java)
o Binding issues
o Delegates
o Reflection, Reification, Code annotation
o Applications T
4- Exploiting concurrency (Java) B v
o shared memory concurrent programming
A. Ceselli, Univ. di Milano Advanced Computer Programming



Introduction

Part B: Programming in the small

o Realtime programming issues

o Programming in embedded systems

o Programming mobile devices
Part C: Programming in the large (Component based
programming)

o Fundamentals of component based programming and

pattern-based design
o Case study 1: creational patterns
o Case study 2: structural patterns

o Case study 3: behavioural patterns

* UNIVERSITA
= f.© DpEGLISTUDI
b1 MiLaNO

A. Ceselli, Univ. di Milano Advanced Computer Programming



Expecting huge amounts of data

data-driven programming?

Found on the net: “reformatting 1GB of textual feature data into
a form Matlab and R can read”

Language
mawk
java

c-ish c++
python
perl

nawk
c++

ruby

gawk

Time (min:sec)
1:06
1:20
1:35
2:15
3:00
6:10
6:50
7:30
8:35

Speed (vs. gawk) Lines of code

7.8x
6.4x
5.4x
3.8x
2.9x
1.4x
1.3x
1.1x
1x

3
32
42
20
17

3
48
22

A. Ceselli, Univ. di Milano

Advanced Computer Programming



Expecting huge amounts of data

ative VS Functional

Imperative programming:
o We have a Von Neumann machine to manage
o it has a status (memory and registry values)

o we perform computations by changing the status of the
machine

o we give instructions (or commands) to be taken in sequence
according to a control flow, and we manage this flow with
statements for iteration, selection etc.

o to modify memory cell values (and therefore the status of the
machine), we modify values of variables

1% UNIVERSITA
= f.© DpEGLISTUDI
b1 MiLaNO

A. Ceselli, Univ. di Milano Advanced Computer Programming



Expecting huge amounts of data

ative VS Functional

Functional programming:
o We define functions that produce the desired output, starting
from their input
- computation means to apply functions to their arguments

o The functions are defined as mathematical ones, using more
conditions and recursion, than sequences of instructions
o Moreover, functions have no side effects, nor assignments
o E.g.: given the function f(x) = x + 1, compute f(x) is not
changing a “status”:
o f is not changing an internal status, f(3) is always 4

o f in not changing an external status, not opening sockets nor
saving to disk
1% UNIVERSITA

= f.© DpEGLISTUDI
b1 MiLaNO

A. Ceselli, Univ. di Milano Advanced Computer Programming



Expecting huge amounts of data

rative VS Functional

No status ...
@ no loops: only recursion is used in place of any other iteration
statement
@ no assignments and no variables, no memory management
o only function definitions, and applications of functions to data
(no side effects)

< 4% UNIVERSITA
= f.© DpEGLISTUDI
b1 MiLaNO

A. Ceselli, Univ. di Milano Advanced Computer Programming



Expecting huge amounts of data

rsive thinking ...

Examples:
o factorial
o Fibonacci's sequence

@ sum and power

< 4% UNIVERSITA
= f.© DpEGLISTUDI
© pIMiLaNo

A. Ceselli, Univ. di Milano Advanced Computer Programming



Expecting huge amounts of data

ional programming and functional languages

Why to design dedicated languages to functional programming?
o syntax: to have code that resembles as much as possible
mathematical functions
o semantics: to allow coding any type of function
o ... without restrictions on type or number of parameters (e.g.

having functions taking functions as arguments, or returning
functions, or returning tuples of values)

* UNIVERSITA
= f.© DpEGLISTUDI
b1 MiLaNO

A. Ceselli, Univ. di Milano Advanced Computer Programming



Expecting huge amounts of data

Clojure: a functional programming language targeting the JVM
official website: http://clojure.org/
tutorial: http://java.ociweb.com/mark/clojure/article.html

< 4% UNIVERSITA
= f.© DpEGLISTUDI
b1 MiLaNO

A. Ceselli, Univ. di Milano Advanced Computer Programming



Expecting huge amounts of data

ds on' session: Clojure

From basics to XML files semantic equivalence using Clojure

< 4% UNIVERSITA
= f.© DpEGLISTUDI
b1 MiLaNO

A. Ceselli, Univ. di Milano Advanced Computer Programming



	Introduction
	Expecting huge amounts of data

