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Abstract

We introduce a new algorithm for binary
classification in the selective sampling proto-
col. Our algorithm uses Regularized Least
Squares (RLS) as base classifier, and for
this reason it can be efficiently run in any
RKHS. Unlike previous margin-based semi-
supervised algorithms, our sampling condi-
tion hinges on a simultaneous upper bound
on bias and variance of the RLS estimate un-
der a simple linear label noise model. This
fact allows us to prove performance bounds
that hold for an arbitrary sequence of in-
stances. In particular, we show that our
sampling strategy approximates the margin
of the Bayes optimal classifier to any desired
accuracy ε by asking Õ

(
d/ε2

)
queries (in the

RKHS case d is replaced by a suitable spec-
tral quantity). While these are the standard
rates in the fully supervised i.i.d. case, the
best previously known result in our harder
setting was Õ

(
d3/ε4

)
. Preliminary experi-

ments show that some of our algorithms also
exhibit a good practical performance.

1. Introduction

A practical variant of the standard (fully supervised)
online learning protocol is a setting where, at each
prediction step, the learner can abstain from observ-
ing the current label. If the learner observes the label,
which he can do by issuing a query, then the label
value can be used to improve future predictions. If
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the label is predicted but not queried, then the learner
never knows whether his prediction was correct. Thus,
only queried labels are observed while all others remain
unknown. This protocol is often called selective sam-
pling, and we interchangeably use queried labels and
sampled labels to denote the labels observed by the
learner.

Given a general online prediction technique, like regu-
larized least squares (RLS), we are interested in con-
trolling the predictive performance as the query rate
goes from fully supervised (all labels are queried) to
fully unsupervised (no label is queried). This is mo-
tivated by observing that, in a typical practical sce-
nario, one might want to control the accuracy of pre-
dictions while imposing an upper bound on the query
rate. In fact, the number of observed labels has usually
a very direct influence on basic computational aspects
of online learning algorithms, such as running time and
storage requirements.

In this work we develop semi-supervised variants of
RLS for binary classification. We analyze these vari-
ants under no assumptions on the mechanism generat-
ing the sequence of instances, while imposing a simple
linear noise model for the conditional label distribu-
tion. Intuitively, our algorithms issue a query when
a common upper bound on bias and variance of the
current RLS estimate is larger than a given threshold.
Conversely, when this upper bound gets small, we infer
via a simple large deviation argument that the margin
of the RLS estimate on the current instance is close
enough to the margin of the Bayes optimal classifier.
Hence the learner can safely avoid issuing a query on
that step.

In order to summarize our results, assume for the
sake of simplicity that the Bayes optimal classifier —
which for us is a linear classifier u— has unknown
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margin |u⊤xt| ≥ ε > 0 on all instances xt ∈ R
d.

Then, in our data model, the average (per-step) risk
of the fully supervised RLS, asking NT = T labels in
T steps, is known to converge to the average risk of

the Bayes optimal classifier at rate d
(
ε2T

)−1
exclud-

ing logarithmic factors. In this work we show that,
using our semi-supervised RLS variant, we can replace
NT = T with any desired query bound NT = d T κ (for
0 ≤ κ ≤ 1) while achieving a convergence rate of order

d
(
ε2T

)−1
+
(
ε2/κT

)−1
.

One might wonder whether these results could also be
obtained just by running a standard RLS algorithm
with a constant label sampling rate, say T κ−1, inde-
pendent of the sequence of instances. If we could prove
for RLS an instantaneous regret bound like d/T then
the answer would be affirmative. However, the lack of
assumptions on the way instances are generated makes
it hard to prove any nontrivial instantaneous regret
bound.

If the margin ε is known, or, equivalently, our goal
is to approximate the Bayes margin to some accu-
racy ε, then we show that the above strategies achieve,
with high probability, any desired accuracy ε by query-
ing only order of d/ε2 labels (excluding logarithmic
factors). Again, the reader should observe that this
bound could not be obtained by, say, concentrating all
queries on an initial phase of length O(d/ε2). In such
a case, an obvious adversarial strategy would be to
generate noninformative instances just in that phase.

In short, if we require online semi-supervised learning
algorithms to work in worst-case scenarios we need to
resort to nontrivial label sampling techniques.

We have run comparative experiments on both artifi-
cial and real-world medium-sized datasets. These ex-
periments, though preliminary in nature, reveal the
effectiveness of our sampling strategies even from a
practical standpoint.

1.1. Related work and comparison

Selective sampling is a well-known semi-supervised on-
line learning setting. Pioneering works in this area
are (Cohn et al., 1990) and (Freund et al., 1997).
More recent related results focusing on linear classi-
fication problems include (Balcan et al., 2006; Balcan
et al., 2007; Cavallanti et al., 2009; Cesa-Bianchi et al.,
2006b; Dasgupta et al., 2008; Dasgupta et al., 2005;
Strehl & Littman, 2008), although some of these works
analyze batch rather than online protocols. Most pre-
vious studies consider the case when instances are
drawn i.i.d. from a fixed distribution, exceptions being
the worst-case analysis in (Cesa-Bianchi et al., 2006b)

and the very recent analysis in the KWIK learning
protocol (Strehl & Littman, 2008). Both of these pa-
pers use variants of RLS working on arbitrary instance
sequences. The work (Cesa-Bianchi et al., 2006b) is
completely worst case: the authors make no assump-
tions whatsoever on the mechanism generating labels
and instances; however, they are unable prove bounds
on the label query rate as we do here. The KWIK
model of (Strehl & Littman, 2008) —see also the more
general setup in (Li et al., 2008)— is closest to the
setting considered in this paper. There the goal is to
approximate the Bayes margin to within a given accu-
racy ε. The authors assume arbitrary sequences of in-
stances and the same linear stochastic model for labels
as the one considered here. A modification of the linear
regressor in (Auer, 2002), combined with covering ar-
guments, allows them to compete against an adaptive
adversarial strategy for generating instances. Their al-
gorithm, however, yields the significantly worse bound
Õ
(
d3/ε4

)
on the number of queries, and seems to work

in the finite dimensional (d < ∞) case only. In con-
trast, our algorithms achieve the better query bound
Õ
(
d/ε2

)
against oblivious adversaries. Moreover, our

algorithms can be easily run in any infinite dimensional
RKHS.

2. Preliminaries

In the selective sampling protocol for online binary
classification, at each step t = 1, 2, . . . the learner
receives an instance xt ∈ R

d and outputs a binary
prediction for the associated unknown label yt ∈
{−1, +1}. After each prediction the learner may ob-
serve the label yt only by issuing a query. If no query is
issued at time t, then yt remains unknown. Since one
expects the learner’s performance to improve if more
labels are observed, our goal is to trade off predictive
accuracy against number of queries.

All results proven in this paper hold for any fixed in-
dividual sequence x1, x2, . . . of instances, under the
sole assumption that ‖xt‖ = 1 for all t ≥ 1. Given
any such sequence, we assume the corresponding labels
yt ∈ {−1, +1} are realizations of random variables Yt

such that E Yt = u⊤xt for all t ≥ 1, where u ∈ R
d is

a fixed and unknown vector such that ‖u‖ = 1. Note
that sgn

(
∆t), for ∆t = u⊤x, is the Bayes optimal

classifier for this noise model.

We study selective sampling algorithms that use
sgn

(
∆̂t

)
to predict Yt. The quantity ∆̂t = w⊤

t xt is a
margin computed via the RLS estimate

wt =
(
I + St−1 S⊤

t−1 + xtx
⊤
t

)−1
St−1 Y t−1 (1)

defined over the matrix St−1 =
[
x′

1, . . . , x
′
Nt−1

]
of the
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Nt−1 queried instances up to time t − 1. The random
vector Y t−1 =

(
Y ′

1 , . . . , Y ′
Nt−1

)
contains the observed

labels (so that Y ′
k is the label of x′

k), and I is the d×d
identity matrix.

We are interested in simultaneously controlling the cu-
mulative regret

RT =

T∑

t=1

(
P(Yt ∆̂t < 0) − P(Yt ∆t < 0)

)
(2)

and the number NT of queried labels, uniformly over
T .

Let At =
(
I + St−1 S⊤

t−1 + xt x⊤
t

)
. We introduce the

following relevant quantities:

Bt = u⊤
(
I + xt x⊤

t

)
A−1

t xt , rt = x⊤
t A−1

t xt

qt = S⊤
t−1A

−1
t xt , st =

∥∥A−1
t xt

∥∥ .

The following properties of the RLS estimate (1) have
been proven in, e.g., (Cesa-Bianchi et al., 2006a).

Lemma 1 For each t = 1, 2, . . . the following inequal-
ities hold:

1. E ∆̂t = ∆t − Bt;

2. |Bt| ≤ st + rt;

3. st ≤
√

rt;

4. ‖qt‖2 ≤ rt;

5. For all ε > 0,

P

(∣∣∆̂t + Bt − ∆t

∣∣ ≥ ε
)
≤ 2 exp

(
− ε2

2 ‖qt‖2

)
;

6. If NT is the total number of queries issued in the
first T steps, then

∑

1≤t≤T
Yt queried

rt ≤
d∑

i=1

ln(1 + λi) ≤ d ln

(
1 +

NT

d

)

where λi is the i-th eigenvalue of the (Gram) ma-
trix S⊤

T ST defined on the queried instances.

3. A new selective sampling algorithm

Our main theoretical result provides bounds on the
cumulative regret and the number of queried labels
for the selective sampling algorithm introduced in Fig-
ure 1. We call this algorithm the BBQ (Bound on

Algorithm 1 The BBQ selective sampler

Parameters: 0 ≤ κ ≤ 1
Initialization: Weight vector w = 0

for each time step t = 1, 2, . . . do

Observe instance xt ∈ R
d;

predict label yt ∈ {−1, +1} with sgn(w⊤xt);
if rt > t−κ then

query label yt,
update wt using (xt, yt) as in (1).

end if

end for

Bias Query) algorithm. BBQ queries xt whenever
rt is larger than a threshold vanishing as t−κ, where
0 ≤ κ ≤ 1 is an input parameter. This simple query
condition builds on Property 5 of Lemma 1. This prop-
erty shows that ∆̂t is likely to be close to the margin
∆t of the Bayes optimal predictor when both the bias
Bt and the variance bound ‖qt‖2 are small. Since these
quantities are both bounded by (functions of) rt (see
Properties 2, 3, and 4 of Lemma 1), this suggests that
one can safely disregard Yt when rt is small.

According to our noise model, the label of xt is harder
to predict if |∆t| is small. For this reason, our re-
gret bound is split into a cumulative regret on “big
margin” steps t, where |∆t| ≥ ε, and “small margin”
steps, where |∆t| < ε. On one hand, we bound the
regret on small margin steps simply by ε Tε, where
Tε =

∣∣{1 ≤ t ≤ T : |∆t| < ε}
∣∣. On the other hand, we

show that the overall regret can be bounded in terms
of the best possible choice of ε with no need for the
algorithm to know this optimal value.

Theorem 1 If BBQ is run with input κ ∈ [0, 1] then
its cumulative regret RT after any number T of steps
satisfies

RT ≤ min
0<ε<1

(
ε Tε + (2 + e) ⌈1/κ⌉!

(
8

ε2

)1/κ

+

(
1 +

2

e

)
8d

ε2
ln

(
1 +

NT

d

))
.

The number of queried labels is NT = O (d T κ lnT ) .

It is worth observing that the bounds presented here
hold in the finite dimensional (d < ∞) case only.
One can easily turn them to work in any RKHS af-
ter switching to an eigenvalue representation of the
cumulative regret —e.g., by using the middle bound
in Property 6 of Lemma 1 rather than the rightmost
one, as we did in the proof below. This essentially cor-
responds to analyzing Algorithm 1 in a dual variable
representation. A similar comment holds for Remark 1
and Theorem 2 below.
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In the rest of the paper we denote by {φ} the indicator
function of a Boolean predicate φ.

Proof: [of Theorem 1] Fix any ε ∈ (0, 1). As in (Cav-
allanti et al., 2009), we first observe that our label
noise model allows us to upper bound the time-t re-
gret P(Yt ∆̂t < 0) − P(Yt ∆t < 0) as

P(Yt ∆̂t < 0) − P(Yt ∆t < 0)

≤ ε{|∆t| < ε} + P

(
∆̂t∆t ≤ 0, |∆t| ≥ ε

)

≤ ε{|∆t| < ε} + P

(∣∣∆̂t − ∆t

∣∣ ≥ ε
)

.

Hence the cumulative regret (2) can be split as follows:

RT ≤ ε Tε +

T∑

t=1

P

(∣∣∆̂t − ∆t

∣∣ ≥ ε
)

. (3)

We proceed by expanding the indicator of
∣∣∆̂t−∆t

∣∣ ≥
ε with the introduction of the bias term Bt

{∣∣∆̂t − ∆t

∣∣ ≥ ε
}
≤
{∣∣∆̂t + Bt − ∆t

∣∣ ≥ ε

2

}

+
{
|Bt| >

ε

2

}
.

Note that

{
|Bt| >

ε

2

}
≤
{

rt >
ε2

8

}
≤ e exp

(
− ε2

8rt

)

the first inequality deriving from a combination of
Properties 2 and 3 in Lemma 1 and then overap-
proximating, whereas the second one uses {b < 1} ≤
e1−b ∀ b. Moreover, by Properties 4 and 5 in Lemma 1,
we have that

P

(∣∣∆̂t + Bt − ∆t

∣∣ ≥ ε

2

)
≤ 2 exp

(
− ε2

8rt

)
.

We substitute this back into (3) and single out the
steps where queries are issued. This gives

RT ≤ ε Tε + (2 + e)
∑

t : rt≤t−κ

exp

(
− ε2

8rt

)

+ (2 + e)
∑

t : rt>t−κ

exp

(
− ε2

8rt

)
.

The second term is bounded as follows:

∑

t : rt≤t−κ

exp

(
− ε2

8rt

)
≤

T∑

t=1

exp

(
−ε2tκ

8

)

≤
∫ ∞

0

exp

(
−ε2xκ

8

)
dx =

1

κ
Γ(1/κ)

(
8

ε2

)1/κ

where Γ(·) is the Euler’s Gamma function Γ(x) =∫∞

0
e−t tx−1 dt. We further bound 1

κΓ(1/κ) ≤ ⌈1/κ⌉!
using the monotonicity of Γ. For the third term we
write

∑

t : rt>t−κ

exp

(
− ε2

8rt

)
≤ 8

eε2

∑

t : rt>t−κ

rt

≤ 8d

eε2
ln

(
1 +

NT

d

)
.

The first step uses the inequality e−x ≤ 1
ex for x > 0,

while the second step uses Property 6 in Lemma 1.
Finally, in order to derive a bound on the number NT

of queried labels, we have

NT ≤
∑

t : rt>t−κ

rt

t−κ
≤ T κ

∑

t : rt>t−κ

rt

≤ d T κ ln

(
1 +

NT

d

)

where for the last inequality we used, once more, Prop-
erty 6 in Lemma 1. Hence, NT = O (d T κ lnT ) , and
this concludes the proof. �

It is important to observe that, if we disregard the
margin term ε Tε (which is fully controlled by the ad-
versary), the regret bound depends logarithmically on
T for any constant κ > 0:

RT ≤ ε Tε + O
(

1

ε2/κ
+

d

ε2
lnT

)
.

If κ is set to 1 then our bound on the number of queries
NT becomes vacuous, and the selective sampling algo-
rithm essentially becomes fully supervised. This re-
covers the known regret bound for RLS in the fully
supervised case, RT ≤ ε Tε + O

(
(d ln T )

/
ε2
)
.

Remark 1 A randomized variant of BBQ exists that

queries label yt with independent probability r
(1−κ)/κ
t ∈

[0, 1]. Through a similar bias-variance analysis as
the one in Theorem 1 above, one can show that
in expectation (over the internal randomization of
this algorithm) the cumulative regret RT is bounded
by min0<ε<1

(
ε Tε + O

(
L

ε2/κ

))
while the number of

queried labels NT is O
(
T κ L1−κ

)
, being L = d lnT .

This bound is similar (though generally incomparable)
to the one of Theorem 1.

4. A parametric performance guarantee

In the proof of Theorem 1 the quantity ε acts as a
threshold for the cumulative regret, which is split into
a sum over steps t such that |∆t| < ε (where the regret
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Algorithm 2 The parametric BBQ selective sampler

Parameters: 0 < ε, δ < 1
Initialization: weight vector w = 0

for each time step t = 1, 2, . . . do

observe instance xt ∈ R
d;

predict label yt ∈ {−1, +1} with sgn(w⊤xt)

if
[
ε − rt − st

]
+

< ‖qt‖
√

2 ln
t(t + 1)

2δ
then

query label yt

update wt using (xt, yt) as in (1)
end if

end for

grows by less than ε) and a sum over the remaining
steps. Most technicalities in the proof are due to the
fact that the final bound depends on the optimal choice
of this ε, which the algorithm need not know. On the
other hand, if a specific value for ε is provided in input
to the algorithm, then the cumulative regret over steps
t such that |∆t| ≥ ε can be bounded by any constant

δ > 0 using only order of (d/ε2) ln(T/δ) queries. In
particular, when mint |∆t| ≥ ε, the above logarithmic
bound implies that the per-step regret vanishes expo-

nentially fast as a function of the number of queries.

As we stated in the introduction, this result cannot be
obtained as an easy consequence of known results, due
to the adversarial nature of the instance sequence.

We now develop the above argument for a practically
motivated variant of our BBQ selective sampler. Let
us disregard for a moment the bias term Bt. In order
to guarantee that

∣∣∆̂t − ∆t

∣∣ ≤ ε holds when no query
is issued, it is enough to observe that Property 5 of

Lemma 1 implies that
∣∣∆̂t − ∆t

∣∣ ≤
√

2rt ln 2
δ with

probability at least 1− δ. This immediately delivers a
rule prescribing that no query be issued at time t when√

2rt ln 2
δ ≤ ε. A slightly more involved condition,

one that better exploits the inequalities of Lemma 1,
allows us to obtain a significantly improved practical
performance. This results in the algorithm described
in Figure 2. The algorithm, called Parametric BBQ,
takes in input two parameters ε and δ, and issues a
query at time t whenever1

[
ε − rt − st

]
+

< ‖qt‖
√

2 ln
2t(t + 1)

δ
. (4)

Theorem 2 If Parametric BBQ is run with input
ε, δ ∈ (0, 1) then:

1. with probability at least 1− δ,
∣∣∆̂t −∆t

∣∣ ≤ ε holds
on all time steps t when no query is issued;

1Here and throughout
ˆ

x]+ = max{0, x}.

2. the number NT of queries issued after any number
T of steps is bounded as

NT = O
(

d

ε2

(
ln

T

δ

)
ln

ln(T/δ)

ε

)
.

This theorem has been phrased so as to make it eas-
ier to compare to a corresponding result in (Strehl
& Littman, 2008) for the KWIK (“Knows What It
Knows”) framework. In that paper, the authors use
a modification of Auer’s upper confidence linear re-
gression algorithm for associative reinforcement learn-
ing (Auer, 2002). This modification allows them to
compete against any adaptive adversarial strategy gen-
erating instance vectors xt, but it yields the signifi-
cantly worse bound Õ

(
d3/ε4

)
on NT (in the KWIK

setting NT is the number of times the prediction algo-
rithm answers “I don’t know”). Besides, their strategy
seems to work in the finite dimensional (d < ∞) case
only. In contrast, Parametric BBQ works against an
oblivious adversary only, but it has the better bound
NT = Õ

(
d/ε2

)
, with the Õ notation hiding a mild

(logarithmic) dependence on T . Moreover, Paramet-
ric BBQ can be readily run in infinite (d = ∞) dimen-
sional RKHS —recall the comment before the proof of
Theorem 1. In fact, this is a quite important feature:
the real-world experiments of Section 5 needed kernels
in order to either attain a good empirical performance
(on Adult) or use a reasonable amount of computa-
tional resources (on RCV1).

Remark 2 The bound on the number of queried la-
bels in Theorem 2 is optimal up to logarithmic factors.
In fact, it is possible to prove that there exists a se-
quence x1, x2, . . . of instances and a number ε0 > 0
such that: for all ε ≤ ε0 and for any learning algo-
rithm that issues N = O(d/ε2) queries there exists a
target vector u ∈ R

d and a time step t = Ω
(
d/ε2

)
for

which the estimate ∆̂t computed by the algorithm for
∆t = u⊤xt has the property P

(
|∆̂t−∆t| > ε

)
= Ω

(
1
)
.

Hence, at least Ω
(
d/ε2

)
queries are needed to learn any

target hyperplane with arbitrarily small accuracy and
arbitrarily high confidence.

Proof: [Theorem 2] Let I ⊆ {1, . . . , T} be the set
of time steps when a query is issued. Then, using
Property 2 of Lemma 1 we can write

∑

t/∈I

{∣∣∆̂t − ∆t

∣∣ > ε
}

≤
∑

t/∈I

{∣∣∆̂t + Bt − ∆t

∣∣ > ε − |Bt|
}

≤
∑

t/∈I

{∣∣∆̂t + Bt − ∆t

∣∣ > [ε − rt − st]+

}
.
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We first take expectations on both sides, and then ap-
ply Property 5 of Lemma 1 along with condition (4)
rewritten as follows

2 exp

(
−
(
[ε − rt − st]+

)2

2 ‖qt‖2

)
≤ δ

t(t + 1)
.

This gives

∑

t/∈I

P

(∣∣∆̂t − ∆t

∣∣ > ε
)

≤
∑

t/∈I

P

(∣∣∆̂t + Bt − ∆t

∣∣ > [ε − rt − st]+

)

≤
∑

t/∈I

2 exp

(
−
(
|ε − rt − st|+

)2

2 ‖qt‖2

)

≤
∑

t/∈I

δ

t(t + 1)
≤

∞∑

t=1

δ

t(t + 1)
= δ .

In order to derive a bound on the number NT of
queried labels, we proceed as follows. For every step
t ∈ I in which a query was issued we can write

ε − rt −
√

rt ≤ ε − rt − st ≤
[
ε − rt − st

]
+

≤ ‖qt‖
√

2 ln
2t(t + 1)

δ
≤
√

2 rt ln
2t(t + 1)

δ

where we used Properties 3 and 4 of Lemma 1. Solving
for rt and overapproximating we obtain

rt ≥
ε2

2ε +

(
1 +

√
2 ln 2t(t+1)

δ

)2 . (5)

Similarly to the proof of Theorem 1, we then write

NT min
t∈I

rt ≤
∑

t∈I

rt ≤ d ln

(
1 +

NT

d

)
.

Using (5) we get NT = O
(

d
ε2

(
ln T

δ

)
ln ln(T/δ)

ε

)
. �

5. Experiments

In this section we report on preliminary experiments
with the Parametric BBQ algorithm. The first test
is a synthetic experiment to validate the model. We
generated 10,000 random examples on the unit circle
in R

2. The labels of these examples were generated
according to our noise model (see Section 2) using a
randomly selected hyperplane u with unit norm. We
then set δ = 0.1 and analyzed the behavior of the al-
gorithm with various settings of ε > 0 and using a
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Figure 1. Maximum error (jagged blue line) and number of
queried labels (decreasing green line) on a synthetic dataset
for Parametric BBQ with δ = 0.1 and 0.15 ≤ ε ≤ 1. The
straight blue line is the theoretical upper bound on the
maximum error provided by the theory.

linear kernel. In Figure 1 the jagged blue line repre-
sents the maximum error over the example sequence,
i.e., maxt

∣∣∆̂t −∆t

∣∣. (Although we stopped the plot at
ε = 1, note that the maximum error is dominated by
|∆̂t|, which can be of the order of

√
Nt.) As predicted

by Theorem 2, the maximum error remains below the
straight line y = ε (the maximum error predicted by
the theory). In the same plot, the decreasing green
line shows the number of queried labels, which closely
follows the curve ε−2 predicted by the theory.

This initial test reveals that the algorithm is dramati-
cally underconfident, i.e., it is a lot more precise than
it thinks. Moreover, the actual error is rather insensi-
tive to the choice of ε. In order to leverage on this, we
ran the remaining tests using Parametric BBQ with
a more extreme setting of parameters. Namely, we
changed the query condition (the “if” condition in Al-
gorithm 2) to

[
1 − rt − st

]
+

< ‖qt‖
√

2 ln
2

δ
for 0 < δ < 1 .

This amounts to setting the desired error to a default
value of ε = 1 while making the number of queried
labels independent of T .

With the above setting, we compared Parametric BBQ
to the second-order version of the label-efficient clas-
sifier (SOLE) of (Cesa-Bianchi et al., 2006b). This is
a mistake-driven RLS algorithm that queries the label
of the current instance with probability 1/(1+ b |∆̂t|),
where b > 0 is a parameter and ∆̂t is the RLS mar-
gin. The other baseline algorithm is a vanilla sampler
(called Random in the plots) that asks labels at ran-
dom with constant probability 0 < p < 1. Recall that
SOLE does not come with a guaranteed bound on the
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Figure 2. F-measure against fraction of queried labels on
the a9a dataset (32,561 examples in random order). The
plotted curves are averages over 10 random shuffles.

number of queried labels. Random, on the other hand,
has the simple expectation bound E[NT ] = p T .

For each algorithm we plot the F-measure (harmonic
mean of precision and recall) against the fraction of
queried labels. We control the fraction of queried la-
bels by changing the parameters of the three algo-
rithms (δ for Parametric BBQ, b for SOLE, and p for
Random).

For the first real-world experiment we chose a9a2, a
subset of the census-income (Adult) database with
32,561 binary-labeled examples and 123 features. In
order to bring all algorithms to a reasonable perfor-
mance level, we used a Gaussian kernel with σ2 = 12.5.
The plots (Figure 2) show that less than 6% queries
are enough for the three algorithms to saturate their
performance. In the whole query range Parametric
BBQ is consistently slightly better than SOLE, while
Random has the worst performance.

For our second real-world experiment we used the first
40,000 newswire stories in chronological order from
the Reuters Corpus Volume 1 dataset (RCV1). Each
newsstory of this corpus is tagged with one or more
labels from a set of 102 classes. A standard TF-IDF
bag-of-words encoding was used to obtain 138,860 fea-
tures. We considered the 50 most populated classes
and trained 50 classifiers one-vs-all using a linear
kernel. Earlier experiments, such as those reported
in (Cesa-Bianchi et al., 2006b), show that RLS-based
algorithms perform best on RCV1 when run in a mis-
take driven fashion. For this reason, on this dataset
we used a mistake-driven variant of Parametric BBQ,
storing a queried label only when it is wrongly pre-
dicted. Figure 3 shows the (macro)average F-measure

2www.csie.ntu.edu.tw/∼cjlin/libsvmtools/
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Figure 3. F-measure against fraction of queried labels av-
eraged over the 50 most frequent categories of RCV1 (first
40,000 examples in chronological order).

plotted against the average fraction of queried labels,
where averages are computed over the 50 classifiers.
Here the algorithms need over 35% of labels to satu-
rate. Moreover, Parametric BBQ performs worse than
SOLE, although still better than Random.

Since SOLE and Parametric BBQ are both based on
the mistake-driven RLS classifier, any difference of
performance is due to their different query conditions:
SOLE is margin-based, while Parametric BBQ uses
‖qt‖ and related quantities. Note that, unlike the
margin, qt does not depend on the queried labels,
but only on the correlation between their correspond-
ing instances. This fact, which helped us a lot in
the analysis of BBQ, could make a crucial difference
between domains like RCV1 (where instances are ex-
tremely sparse) and Adult (where instances are rela-
tively dense). More experimental work is needed in
order to settle this conjecture.

6. Conclusions and ongoing research

We have introduced a new family of online algorithms,
the BBQ family, for selective sampling under (oblivi-
ous) adversarial environments. These algorithms nat-
urally interpolate between fully supervised and fully
unsupervised learning scenarios. A parametric variant
(Parametric BBQ) of our basic algorithm is designed
to work in a weakened KWIK framework (Li et al.,
2008; Strehl & Littman, 2008) with improved bounds
on the number of queried labels.

We have made preliminary experiments. First, we val-
idated the theory on an artificially generated dataset.
Second, we compared a variant of Parametric BBQ to
algorithms with similar guarantees, with encouraging
results.
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A few issues we are currently working on are the fol-
lowing. First, we are trying to see if a sharper analysis
of BBQ exists which allows one to prove a regret bound
of the form ε Tε + d ln T

ε2 when NT = O(d ln T ). This
bound would be a worst-case analog of the bound Cav-
allanti et al. (2009) have obtained in an i.i.d. setting.
This improvement is likely to require refined bounds
on bias and variance of our estimators. Moreover, we
would like to see if it is possible either to remove the
lnT dependence on the bound on NT in Theorem 2 or
to make Parametric BBQ work in adaptive adversarial
environments (presumably at the cost of looser bounds
on NT ). In fact, it is currently unclear to us how a di-
rect covering argument could be applied in Theorem 2
which avoids the need for a conditionally independent
structure of the involved random variables.

On the experimental side, we are planning to perform
a more thorough empirical investigation using addi-
tional datasets. In particular, since our algorithms
can also be viewed as memory bounded procedures,
we would like to see how they perform when compared
to budget-based algorithms, such as those in (Weston
et al., 2005; Dekel et al., 2007; Cavallanti et al., 2007;
Orabona et al., 2008).

Finally, since our algorithms can be easily adapted to
solve regression tasks, we are planning to test the BBQ
family on standard regression benchmarks.
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