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Chapter 1

Introduction

1.1 Problem Definition

Soft computing is a general term covering a number of methodologies which have char-

acteristics that make themselves unique in that area. They are tolerant of imprecision,

uncertainty and partial truth and they do not suffer from the inflexibility of other standard

algorithms. For these reasons they offer adaptability, allowing to track changing problem

environments quite well. Examples of these techniques are represented by the Artificial

Neural Networks (ANNs) and the Evolutionary Algorithms (EAs).

Artificial neural networks are well-defined computational models belonging to soft

computing techniques. Different from traditional algorithms, ANNs have a key difference,

based on the biological features of natural neural network, that define an ANN as a model

that learns to perform a task rather than being directly programmed. In this sense many

neural network solutions exist either because a solving program is very difficult to write, or

because the neural network ‘learnt solutions’ provide improved performances. ANN also

admit a degree of imprecision of a different kind at different levels; indeed, data used to

train the neural networks can be noisy to some extent without affecting learning too much,

allowing a network to work with variable data.

Artificial neural network solutions are growing more sophisticated and, in recent times,

they find their way into important industrial applications fields, such as credit card detec-

tion, stock market forecasting, human health monitoring and diagnosis, electrical engine

monitoring, and many others.

A large number of successful applications demonstrate that ANN design is improved by

considering it in conjunction with evolutionary algorithms, since neural and evolutionary

techniques can combine in a synergetic way. Different kinds of evolutionary techniques

become very useful in global optimization problems, and several studies carried out in the

literature demonstrate how these algorithms represent a more integrated way of optimizing

classifier systems since they do not require any expert knowledge of the problem.

The study carried out in this thesis is developed in the area of soft computing, and it

defines a robust and easy approach, that is able to solve complex problems, by using soft

computing techniques. In particular, the thesis consists in the definition and the implemen-

tation of an evolutionary approach for the design and the optimization of neural complex

models. A particular kind of artificial neural networks, Multi-Layer Perceptrons (MLP),

are considered in this study.

1



2 CHAPTER 1. INTRODUCTION

1.2 Motivations

The attractiveness of ANNs comes from the remarkable information processing character-

istics of the biological system such as nonlinearity, high parallelism, robustness, fault and

failure tolerance, learning, ability to handle imprecise information, and their capability to

generalize.

The success of an ANN application usually requires a high number of experiments.

Moreover, several parameters of an ANN can affect, during the design, how easy a solution

is to find. Some of these parameters are related to the architecture design of the neural

network, concerning the number of layers and nodes, and the connection weights. Some

others consider the selection of data that will define the training, the test and the validation

set, in order to guarantee their availability and their integrity. Other important factors con-

sider, then, the handling of local minima and the training of the ANN, trying to avoid the

entrapment in local minima, and to avoid the overfitting of the network. Finally, a good

deal of attention must be paid to the data set definition, so that the network will generalize

correctly on data which has not been trained on. There is no standard design that is able to

solve all these questions for a given problem.

A particular type of evolving systems, namely neuro-genetic systems, have become a

very important topic of study in neural network design. They define so-called EANNs,

that are biologically-inspired computational models that use evolutionary algorithms in

conjunction with neural networks to solve problems.

A survey of the state of the art shows several approaches that are considered in order to

apply evolutionary algorithms in neural network design. Some consider the setting of the

weights in a fixed topology network, some others optimize network topologies, or the evo-

lution of the learning rules, the input feature selection, or the transfer function optimization.

Several approaches present an interesting conjunction of the evolution of network architec-

ture and weights, carried out simultaneously.

This thesis presents an evolutionary approach based on the same last idea, which con-

siders the simultaneous evolution of architecture and weights in an ANN design. Never-

theless this is a well-known evolutionary technique, its application in different kinds of

problems represents an important aspect in actual researches. This thesis wants to study

the most important issues of the joint conjunction of the evolutionary algorithms and arti-

ficial neural networks, more precisely the design of MLP neural networks, and would like

to give an improvement to these evolutionary approaches. Several aspects can be identi-

fied in order to motivate the study conducted in this thesis. Particular attention is given to

study in depth evolutionary operators based on the well-defined idea of Evolution Programs

[77], that share the common principle by which a population of individuals undergoes some

transformations, and during this evolution process the individuals strive for survival. An

important aspect of evolution programs is that the individual structure represents, in a com-

plete form, all the information necessary to carry out genetic operators. Evolution programs

use then the current encoding, by involving the appropriate data structures, and define suit-

able genetic operators.

The use of evolution strategies in the approach implemented improves the evolutionary

process of weight perturbations, since evolution strategies offer a simplified method for

self-adapting information about connection weights of each neural network.

This thesis also wants to underline the importance of the use of fine local search algo-

rithms, in this case by implementing training with backpropagation algorithm, in conjunc-
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tion with global optimization algorithms, evolutionary algorithms, in order to obtain better

results. Another effort is given in further study of the implementation of the crossover,

a very hard issue, due to the detrimental effects on the population. Finally, this thesis is

motivated by the will to define an evolutionary approach, able to reduce the working load

of a human expert, and supporting it with a computational effort of distributed machines.

1.3 Objectives of the Thesis

An important objective of this thesis is to define a so called ‘neuro-genetic’ approach, based

on evolutionary algorithms, in order to handle an optimized design of classifier systems, de-

fined with artificial neural networks. The attention is focused on the important contribution

that this solution brings in the neural networks. A reduction of the detailed knowledge of

a complex optimization problem and of the computational effort by any human expert will

contribute to give the optimal solution in ANN design.

In particular, this work presents an approach to the joint optimization of neural network

structure and weights, which can take advantage of the backpropagation algorithm as a

specialized decoder. Important aspects of the simultaneous evolution underline that an evo-

lutionary algorithm allows all aspects of a neural network design to be taken into account

at once, without requiring any expert knowledge of the problem. Furthermore, the con-

junction of weights and architecture evolution overcomes the possible drawbacks of each

single technique and combines their advantages. The most important aspect of evolving

weights is to simulate the learning process of a neural network, avoiding the drawbacks of

the traditional gradient descent techniques, such as BP.

The algorithm implemented can be considered as a hybrid algorithm, since a local

search gradient descent technique, backpropagation, can be used as a local optimization

operator on a given data set. The basic idea is to exploit the ability of the EA to find a

solution close enough to the global optimum, along with the ability of the BP algorithm to

finely tune a solution and reach the nearest local minimum.

1.4 Strategy and Methodology

This thesis contributes several key items to the field of evolutionary algorithms for neural

network design and optimization. The evolutionary process is a more integrated and ra-

tional way of designing ANNs since it allows single aspects of the design to be taken

into account as well as several interacting aspects at once and does not require any expert

knowledge of the problem. Evolutionary algorithms are especially useful for complex op-

timization problems where the number of parameters is large and the analytical solutions

are difficult to obtain, and they can help to find out the optimal solution globally over a do-

main. Evolutionary algorithms become, in this sense, helpful and they represent a suitable

solution to solve the problem of the ANN design.

This kind of evolutionary learning for ANNs has also been introduced to reduce and,

if possible, to avoid the problems of traditional gradient descent techniques, such as back-

propagation, that lies in the trapping in local minima. In this thesis the backpropagation is

used in order to improve the global search optimization with fine local tuning. An empir-

ical methodology is followed in the definition of the evolutionary approach implemented.

The methodology is usual in the field of the evolutionary computation, defining genetic
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operators as selection, mutation and recombination, that are applied to the individuals of a

population, in an evolutionary cycle. A close behavioral link between parent and offspring

is however maintained by applying techniques like weight mutation and partial training, in

order to reduce behavioral disruption. The methodology then includes a validation process

of the approach on toy and real-world problems.

1.5 Synopsis

A brief overview of the so-called ‘neuro-genetic’ approach, object of this thesis, is de-

scribed as follows. A new population can be created either by loading a previously saved

population, or by generating a new one. All individuals have not pre-established topol-

ogy, the population is initialized with different hidden layer sizes and different number of

neurons for each individual, in order to maintain diversity between all the individuals in

the new population. Two exponential distributions are used to determine the number of

hidden layers and the number of neurons for each layer in each individual, while a nor-

mal distribution is used to initialize all the weights and biases values of the new network.

Variance matrices are also defined for all weights and bias matrices, and will be applied in

conjunction with evolutionary strategies in order to perturb network weights and bias.

The evolutionary cycle is applied to the population, with selection, mutation and recom-

bination, until termination conditions are not satisfied. A peculiar aspect of this approach is

that BP is not used as some genetic operator, instead, the EA optimizes both topology and

weights of the networks; BP is optionally used to decode a genotype into a phenotype NN.

Accordingly, the genotype undergoes the genetic operators and reproduces itself, whereas

the phenotype is used only for calculating the genotype fitness.

Two kinds of fitness function are defined in this approach and, for each application

considered, only one has been chosen and applied to each individual of the population in

the evolutionary process. Both depend on the cost of each individual. For this reason, the

convention that the best fitness corresponds to the lowest fitness is adopted, defining the

objective of each task as a cost minimization problem. The fitness function implemented in

this approach also works as a controller and selector, because it penalizes large networks.

The first is a Mean Square Error (MSE) fitness function, that depends both on the

accuracy, that is its mean square error, and on the cost of each individual. The second is a

Correlation Coefficient fitness, proportional to the statistical correlation coefficient and to

the cost of each individual.

There is no a standard definition in the literature on the way testing and validation are

named; in this neuro-genetic approach the test set is used to avoid the overfitting problem,

while validation set is used to validate the approach. In the evolutionary process, two fitness

values are calculated for each individual: the fitness f , used by the selection operator, and a

test fitness f̂ . The fitness f̂ is calculated according to the equation of the objective function

considered, by using the MSE over the test set, or the correlation coefficient. When BP is

used, i.e., if bp = 1, then f = f̂ , that corresponds to consider only fitness calculated on test

set, since the network has learned the train set in the learning process. In the opposite case,

when (bp = 0), the fitness f is calculated according to its equation, by using the MSE (or

correlation coefficient) over the training and test sets together.

The selection operator considered in this approach is the truncation selection. Elitism

is also considered, allowing the survival of the best individual unchanged into the next



1.6. ORGANIZATION 5

generation and the solutions to get better over time. All the individual in a population are

initially ranked according to ascending order of their fitness values, since the neuro-genetic

approach considers a minimization problem. Each solution is assigned to an element of a

ranked vector. Starting from a population of n individuals, the worse ⌊n/2⌋ (with respect

to f ) are eliminated. The remaining individuals are duplicated in order to replace those

eliminated. Finally, the population is randomly permuted. The population created as result

of selection operator will become the population of the parents for the new population that

have to be created for the next generation.

In each new generation, a new population has to be created. The first operator imple-

mented is selection. The first half of the new population corresponds to the best parents that

has been selected with the truncation operator, while the second part of the new population

is defined by creating offspring from the previously selected parents.

The evolutionary process attempts to mutate weights before performing any structural

mutation; however, all different kinds of mutation are applied before the training process.

Weight mutation is carried out before topology mutation, in order to perturb the connection

weights of the neurons in a neural network. Weight perturbation is carried out by applying

evolution strategies. After each weight mutation, a weight control is carried out, in order to

delete neurons whose contribution is negligible with respect to the overall network output.

This allows to obtain, if possible, a reduction of the computational cost of the entire network

before any architecture mutation.

Topology mutation is then implemented with four types of mutation, considering re-

spectively neurons and layer addition and elimination. The elimination of a neuron is car-

ried out only if the contribution of that neuron is negligible respect to the overall network

output, while the addition and the elimination of a layer and the insertion of a neuron are

applied with independent probabilities.

Two types of recombination operator are studied in this approach: the first is a kind of

single point crossover, in which two cutting points are chosen for each of the two selected

parents, and then are used to cut the two individuals. The offspring is created by swapping

the parts of the parents. The second is defined as a vertical crossover, in which the neural

structure of the new individual is created by adding the number of neurons in any hidden

layer of each parent, excepted for input and output layer (they are the same for each neural

network). Crossover is again a critical issue in evolutionary algorithms, as reported from

successful approaches presented in the literature. For this reason future work of this thesis

will develop further studies of this operator.

At the end of each evolutionary generation the best individual, corresponding to the

best neural network, found in that iteration is saved.

This approach has been successfully validated on a linear regression model and on two

benchmark problems, and then applied to three different real-world problems, regarding

respectively an electrical engine fault diagnosis problem, a brain wave signal processing

classification problem, and a financial application.

1.6 Organization

The remainder of the dissertation is arranged as follows. Chapter 2 provides brief but

necessary overviews of evolutionary computation, followed by a brief discussion about the

basically aspects of evolutionary techniques and the description of the principal kinds of
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evolutionary algorithms presented in the soft computing area.

Chapter 3 presents the main aspects of the artificial neural networks, defining the mainly

different types of network models. Particular attention is given to the definition of the main

critical issues that have to be considered in a neural network design. Chapter 4 provides

a survey of the state of the art in the evolutionary artificial neural network design. In this

chapter evolutionary techniques, described in the recent literature, have been presented for

each typology of neural optimization considered.

Chapter 5 presents the neuro-genetic approach implemented in this P.h.D. study in order

to define a novel evolutionary approach for neural network design and optimization, taking

advantage of the joint optimization of the simultaneous evolution of structure and weights

of neural networks.

Chapter 6 validates the neuro-genetic approach implemented, by comparing it first with

a linear regression model, and then with two benchmark problems, that are respectively the

Pima Indian Diabetes problem and the Breast Cancer Wisconsin problem.

Chapter 7 and the two following chapters, discusses three real-world application, sub-

ject of this P.h.D. dissertation, that are defined as classification problems. This chapter

considers an incipient fault diagnosis in an electrical drives application.

Chapter 8 describes an application to brain wave signal processing, in particular as a

classification algorithm in the analysis of P300 Evoked Potential.

Chapter 9, finally, presents two different financial problems. The first explains the con-

struction of factor models of financial instruments, and a sample statistical arbitrage is also

presented in this financial modeling, providing satisfactory results and significant profits.

In the second financial application considered, the possibility of forecasting a financial

time-series is tested by using the neuro-genetic approach. In particular, the approach uses

different financial instruments to forecast the next-day closing price of the Dow Jones In-

dustrial Average (DJIA).

The conclusion discusses in more detail how this study contributes to the evolutionary

approaches for neural network optimization. In addition, attempting to make certain that

this research follows a clear methodological framework, establishing a working model for

how such analysis can be conducted in the future.



Chapter 2

Evolutionary Algorithms

2.1 An Introduction to Evolutionary Computation

Evolutionary computation (EC) defines the quite young field of the study of computational

systems based on the idea of natural evolution and adaptation [62, 37, 117, 7, 8, 135].

The term evolutionary computation is recent and it represents the effort to bring together

researches that are based on the aspects that form the essence of the evolution. Neo-

Darwinian paradigm represents a widely accepted collection of evolutionary theories, that

define the evolutionary processes of reproduction, mutation, and selection as the main phys-

ical processes operating within individuals in a population [56]. In this sense evolutionary

computation becomes the inescapable result of interacting these basic physical statistical

processes.

Recent advances in this research area [136, 135] formalized the aim of the evolutionary

computation as follow:

‘the primary aims of evolutionary computation are to understand the mech-

anism of such computational systems and to design highly robust, flexible, and

efficient algorithms for solving real-world problems that are very difficult for

conventional computing methods.’

Compared to conventional methods, the major advantages, defined in the literature [42],

for the evolutionary computation approaches, regard the conceptual and computational sim-

plicity, well applicability to broad classes of problems, suitable real-world problem solvers,

potential to use domain knowledge and to hybridize with other methods, capability of self-

optimization, etc.

The advantages of evolutionary computation approaches make them very suitable for

problems with dynamically changing environment and multi-objective optimization re-

quirements. Traditional optimization applications require finding a parameter values for

the considered problem, such that a certain quality criterion, called objective function, is

maximized (or, equivalently, minimized), and they are not designed for processing inac-

curate, noisy and complex data. Noisy and time-varying objective function values require

robust global optimization methods when these traditional approaches fail.

A classical simplex method requires a problem to be formulated in exact and accu-

rate mathematical forms; however it does not work well with problems in which the ob-

jective function cannot be mathematically represented with linear function or when non-

differentiability has to be considered.

7
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The history of evolutionary computation goes back to the 1960s with the introduction

of ideas and techniques such as genetic algorithms (GA), evolution strategies (ES) and

evolutionary programming (EP) [40].

Fogel [43] defined that evolution provides inspiration for computing the solutions to

appeared difficult problem by considering the key foundation for the efforts spent in evo-

lution strategies (ES). Introduced by Rechenberg [97], ES are algorithms that imitate the

principles of natural evolution for parameter optimization problems. Temporal problems

consider then, as main development requirement, the changing of behavioral strategies, de-

pending on their evolution. In this sense Holland proposed with the definition of genetic

algorithms (GA), methods able to recombine the successful pieces of competing strategies,

taking the knowledge by independent individuals. Fogel also described the intelligence of

a machine as the capability of a system to adapt its behavior to meet desired goals in a

range of environments. He also presented an alternative approach to generating machine

intelligence that simulated the evolution on a class of predictive algorithms. This was the

foundation for the evolutionary programming (EP) research [44]. A more recent develop-

ment is so-called genetic programming (GP), proposed by Koza [66]; it is considered as a

special sub-branch of GA, useful to search for the fittest computer program which solve a

particular task. Further recent developments present other different types of evolutionary

techniques, as hybrid algorithms [35, 77], that combine global search using evolutionary

algorithms and local search using individual learning algorithms, and memetic algorithms

[82, 125], also for describing genetic algorithms that use local search heavily. Other stud-

ies define multiobjective evolutionary algorithms, like that implemented by Merelo and

colleagues [24], able to optimize both error types in classification, as false positive and

false negative errors, and to optimize the design of the structure of the MLP neural network

considered.

Whilst all these evolutionary techniques differ slightly in their actual implementations,

they use the same metaphor of mapping problem solving onto a simple model of evolution.

In the rest of the chapter the basic idea of such techniques are described.

2.2 Evolutionary Algorithms

In recent years, the general term of evolutionary algorithms has been used to define algo-

rithms implementing evolutionary computation. Evolutionary algorithms (EAs) [117] are

algorithms based on models that consider ‘artificial’ or ‘simulated’ genetic evolution of

individuals in a defined environment. In evolutionary computation different evolutionary

techniques are defined, and when at least one of these are in place, whether in nature or in

a computer, evolution is the inevitable outcome [6]. They are a broad class of stochastic

optimization algorithms, inspired by biology and in particular by those biological processes

that allow populations of organisms to adapt to their surrounding environment: genetic in-

heritance and survival of the fittest. Different types of evolutionary algorithms are defined

in the literature.

Evolutionary algorithms are especially useful for complex optimization problems where

the number of parameters is large and the analytical solutions are difficult to obtain. EAs

can help to find out the optimal solution globally over a domain. As defined in [7], op-

timization does not imply perfection, yet evolution can discover highly precise functional

solutions to particular problems posed by an organism environment, and even though the
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mechanisms that are evolved are often overly elaborate from an engineering perspective,

function is the sole quality that is exposed to natural selection, and functionality is what is

optimized by iterative selection and mutation. In this sense, evolutionary algorithms can be

described as useful methods to solve difficult engineering optimization problems.

At the algorithmic level, they differ mainly in their representations of potential solutions

and their operators, used to modify the solutions, even though, from a computational point

of view, representation and search are their main key issues.

Evolutionary algorithm have been applied in different areas, that can all overlap to some

extent, and many applications could rightly appear in more than one of the categories. Some

of them regard applications of evolutionary computation approaches in planning, includ-

ing one of the best known combinatorial optimization problems like the traveling salesman

problem [41], or the transportation problem [77]. Other applications consider design prob-

lems. In this area EC techniques have been widely to artificial neural networks, both in the

design of network topologies and in the search for optimum sets of weights. This is also

the subject of this thesis. A significant amount of EC research has concerned the imple-

mentation of classifier systems in many applications, considering different system imple-

mentations, as the case of a fuzzy hybrid system used for financial decision making [86].

Other examples of real-world classification cases are described in this P.h.D. dissertation.

2.2.1 Principles of Evolutionary Algorithms

All evolutionary algorithms rely on three basic properties which characterize the prototype

of a general evolutionary algorithm and which distinguish it from other search algorithms.

• Evolutionary algorithms are all population-based, and they use the collective learning

process of a population of individuals. The strength of each evoluationary algorithm

is essentially due to their updating of a whole population of possible solutions at each

iteration of evolving algorithm; this is equivalent to carry out parallel explorations of

the overall search space in a problem. The initial population may be either a random

sample of the solution space or may be seeded with solutions found by simple local

search procedures, if these are available. Given enough time, the resulting process

tends to find globally optimal solutions to the problem much in the same way as in

nature populations of organisms tend to adapt to their surrounding environment.

• A population is evolved by using stochastic operators, such as mutation, recombina-

tion and selection. Mutation corresponds to an erroneous self-replication of individu-

als; recombination allows parent to pass on some of their characteristics to offspring,

and selection process favors better individuals to reproduce more often than those

that are relatively worse.

• A measure of the quality of the individuals on their environment can be assigned

to each individual. A comparison of individual fitness is possible and the selection

process is based on that quality measurements to carry out the selection.

All properties are general, and different representations of individuals and schemes

for implementing fitness evaluation, selection and search operators are adopted in differ-

ent evolutionary algorithms. These basic differences in the utilization of these principles

characterize the mainstream instances of the several evolutionary computation techniques

previously defined.
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The evolutionary pseudocode of the general framework implemented by each algo-

rithm, is as shown in Figure 2.1.

generation = 0

Create the initial Population

while not termination condition do

generation = generation + 1

Calculate Fitness of the Population

Select parents from Population

Recombine the Population (with pcross)

Mutate the Population (with pmut)

end while

Figure 2.1: Pseudocode of a general evolutionary algorithm.

The main loop of this framework is iterated for a number of generations until the maxi-

mum allowed computing time is reached or a sufficiently well performing solution is found.

Mutation and recombination depend on algorithm-specific probabilities. Further parame-

ters can be defined in each evolutionary algorithm for the operators and the representation

of the individuals.

Texts of reference and synthesis in the field of evolutionary algorithms are [77, 7],

and other studies on global optimization by evolutionary algorithms are reported in [132].

Recent discussion about evolutionary computation are presented in [62, 37, 12]. A gentle

introduction to evolutionary computation is given in [134, 10] and other recent advances

in evolutionary computation are described in [136, 135], in which these approaches attract

increasing interest from both academic and industrial society.

2.2.2 Evolutionary Approach

An evolutionary algorithm maintains a population of candidate solutions for the problem

at hand, and makes it evolve by iteratively applying a (usually quite small) set of stochastic

operators, such as selection, mutation, and recombination. Some of these operators are

very useful in solving a particular class of optimization problems. Here some commonly

used stochastic operators are described. In the following section, each example reported in

order to better explain how the operators work, consider only binary strings and it refers to

the canonical style defined by Goldberg [46], in genetic algorithm (GA) approaches. Other

operators will be presented in the following sections, although they do not represent the

whole set of all possible search operators.

Selection

Selection is one of the main operators in evolutionary algorithms whose primary aim is

to choose the best solutions in a population, and, therefore, to concentrate the use of the

available computational resources in promising regions of the search space. This operator

does not create any new solution, but selects relatively suitable solutions from a popula-

tion while deleting the remaining, not so good solutions. Exploration and exploitation are

correlated aspects of the search and, the higher the pressure exerted by selection toward
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a concentration of the computational effort, the smaller the fraction of the exploration re-

sources. On the contrary, if selective pressure decreases, the exploration resources increase

and an evolutionary algorithm will tend to randomly sample the space of feasible solutions.

At the other extreme, if the selective pressure increases, the evolutionary algorithm will

degenerate into a local gradient search method. Further discussion will be carried out in

this P.h.D. dissertation in Chapter 5.

In a population, the identification of satisfactory or bad solutions is usually accom-

plished by their fitness values, the idea being that a solution with good fitness will have

a higher probability to be selected. Selection operators differ in the way individuals are

chosen for the creation of the new individual generation. Evolutionary algorithms can be

regarded as a trade-off between these two extremes, and selection is the instrument to adjust

it. Some of the most common selection methods used are briefly described.

Fitness Proportionate Selection In this method the selection probability pi of each indi-

vidual is directly proportional to all other individuals in the population, with the following

correlation function:

pi =
fi

∑n
j=1 fj

(2.1)

This method presents some drawbacks: the first is represented by the so-called superindi-

viduals. A superindividual is an individual xk whose fitness is bigger than all other indi-

viduals: f(xk) >> f(xi),∀i 6= k, being f(xk) << fOptimal, where fOptimal corresponds

to the global optimum to find in the search space. A superindividual is selected with a very

high probability by fitness proportionate selection and, in a few generations, it ends up over-

whelming any other genotypes initially in the population, causing premature convergence.

Another difficulty occurs when individuals in a population have very similar fitness values,

since their selection probability will be very similar, and it will be difficult for the algorithm

to identify the best individual with this selection scheme. These drawbacks could be solved

by appropriately modifying the fitness function or, more simply, resorting to alternative

selection schemes.

Rank Based Selection This scheme differs from fitness within the population selection by

computing selection probabilities according to the rank of individuals, sorted by decreasing

fitness, rather than to their fitness values. Different kinds of this scheme are defined. In

linear ranking selection, the selection probability for the ith individual in a population of n
individuals is defined as:

p(i) =
1

n
[β − 2(β − 1)

i− 1

n− 1
] (2.2)

where 0 <= β <= 2 is a parameter that can be viewed as the expected sampling rate of

the best individual across n independent extractions with re-insertion.

Truncation Selection Truncation selection was originally used by Schwefel [107] and

Rechenberg[97], and, later, by the breeder genetic algorithm approach [84]. Truncation is

the selection scheme used in the neuro-genetic approach implemented in this work, and

will be described in Chapter 5.

Breeders measure selection through the selective differential S, defined as the differ-

ence between the average fitness of the individuals selected for reproduction f(x̄t) and the
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average fitness of the entire population f(xt):

St = f(x̄t)− f(xt), x̄t ⊆ xt (2.3)

Truncation selection consists in selecting for reproduction just the best individuals and

discarding the rest of the population.

Tournament Selection In rank-based and fitness proportional selections communication

overhead can increase since these selection methods are based on global information about

the whole population. This could be a problem in implementing evolutionary algorithms

in a parallel machine. Tournament Selection extracts only k individuals from the popu-

lation with uniform probability and makes them play a tournament, which is won, in the

deterministic case, by the fittest individual among the participants.

The tournament may be probabilistic as well, in which case the probability for an indi-

vidual to win is generally proportional to its fitness. If k is equal to the population size, this

scheme degenerates into the truncation selection scheme or fitness proportionate selection

in the case of probabilistic tournament selection.

Elitist Selection The cycle of birth and death of individuals is hard-linked to the manage-

ment of population, and a lifetime is associated to each individual. During evolution, the

expected lifetime of an individual is typically one generation, but in some EA systems it

can be longer. Elitism links the lifetimes of individuals to their fitnesses, keeping satisfac-

tory solutions in the population for more than one generation. In particular, the individuals

with better fitness will have longer lifetime in the evolution. Elitism always copies the best

individual into the next generation without any modification, and more than one individual

may be copied in creating the new population.

Elitism is usually implemented in addition to other selection schemes and, in the neuro-

genetic approach object of this thesis, is considered along with truncation selection.

Mutation

Mutation randomly perturbs a candidate solution in an evolutionary cycle. As previously

indicated, the purpose of mutation is to simulate the effect of transcription errors that can

occur with a very low probability pmut, the mutation rate, when a chromosome is dupli-

cated.

In some evolutionary algorithms, like genetic algorithms, mutation is generally consid-

ered as a background operator, and its main function is to introduce new genetic materials

and maintain some diversity in the population, since in this algorithm recombination does

not introduce any new genetic components. In some other evolutionary approaches, like

evolutionary programming, this operator is the most important, since in these methods no

crossover is carried out. Some examples of different kinds of mutation implemented in

such evolutionary algorithms are described in the following.

Bit-Swapping Mutation Generally, in this kind of mutation, each character in a string

is replaced by another randomly chosen character, different from the one to be replaced,

with a defined mutation probability. In a bit-string representation, the mutation flips a bit

randomly from 0 to 1 or vice-versa, with low probability. An example of this kind of
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mutation is shown in Figure 2.2, a bit-swapping is carried out with a mutation probability

pmut.

11101 0101 0 1111110011 00110011 00

pmut

01101 0101 1 001111011 00110011 111

Figure 2.2: Example of mutation on a binary string.

Gaussian Mutation It is usually implemented in evolution strategies. This mutation is

based on number, randomly brought from a Gaussian distribution with mean 0 and standard

deviation σ. Then, the number will be added to the parent in order to create the offspring.

The new individual is defined by the following expression:

x
′

i = xi + Ni(0, σi) (2.4)

Ni(0, σi) is a random number calculated with a Normal distribution with mean 0 and stan-

dard deviation σi.

Strategy Parameters Mutation This kind of mutation represents one of the first methods

that have been proposed for self-adapting the mutation concurrently with the evolution-

ary search. The most common implementations in use currently, derive from the work of

Schwefel [106] and Fogel and colleagues [44]. In each case, the vector of objective vari-

ables x is accompanied by a vector strategy parameters σ, where σi represents the standard

deviation be used when applying a zero-mean Gaussian mutation to a particular component

in the considered parent. Schwefel and Fogel carried out an update of mutation strategy

parameters. Schwefel defined the following update procedure:

x
′

i = xi + Ni(0, σ
′

i) (2.5)

σ
′

i = σie
τ0N(0,1)+τNi(0,1) (2.6)

where the constants are defined by the equations:

τ0 =
1√
2n

(2.7)

τ =
1

√

2
√

n
(2.8)

N(0, 1) is a standard Gaussian random variable sampled once for all n dimensions and

Ni(0, 1) is a standard Gaussian random variable re-sampled for each of the n dimensions.

The author claims that his procedure offers a general control for all dimensions and such

control also offers a simplified method for self-adapting a single parameter σ. The values

of σ
′

are defined as log-normal perturbations of their parent parameter vector σ.



14 CHAPTER 2. EVOLUTIONARY ALGORITHMS

Fogel et al implemented an independent method, in which:

x
′

i = xi + Ni(0, σi) (2.9)

σ
′

i = σi + χN(0, σi) (2.10)

The parameters of the parent are used in the strategy to define offspring before be-

ing mutated themselves, and the mutation of the strategy parameters is achieved using a

Gaussian distribution scaled by χ and the standard deviation for each dimension. This pro-

cedure also requires incorporating a rule such that if any component σ
′

i becomes negative

is reset to an arbitrary small value ǫ.

Several comparisons have been carried out between these two methods and both of

them have also been extended to include possible correlation across the dimensions, defin-

ing a multivariate Gaussian mutation with arbitrary covariance, rather than using the tra-

ditional independent random perturbations. Several studies confirmed the usefulness of

these approaches and that the work implemented by Schwefel [106] generated generally a

statistically significant optimization across a series of standard test functions.

Recombination

The aim of recombination is to decompose distinct solutions and then exchange their parts

to form novel solutions, representing the offspring. The inheritance of information from

two or more parents is then carried out by offspring.

Different kinds of crossover are considered in different evolutionary algorithms, and

some of the most important are presented. In particular, discrete and intermediate recom-

binations are used with real-valued individual representation, and they are mostly used in

evolution strategies. On the other hand, uniform and k-point crossover are used for bi-

nary representation of individuals, mainly implemented in genetic algorithms. Generally,

crossover may not be applied to every selected pair of parents, but is controlled by the

crossover rate, that represents the probability of applying crossover.

From the results obtained in several application, is obvious that not only for evolution

strategies but also for canonical genetic algorithms, mutation is an important search opera-

tor that cannot be neglected in their implementation. Moreover, it is also possible to release

the user of a genetic algorithm from the problem of finding an appropriate mutation rate

control or fine-tuning a fixed value by transferring the strategy parameter self-adaptation

principle from the evolution strategies to genetic algorithms.

Discrete Recombination In this method, the components of an offspring real-value vector

come from two or more parent vectors. In other words, given two parents, each component

of the offspring vector will be created taking the corresponding component of the first

parent with a pre-defined recombination probability, otherwise taking the corresponding

component of the other parent. Another offspring will be set as the complement of the

other one.

Intermediate Recombination This recombination differs from discrete recombination,

because each component of the offspring is defined as a linear combination (average) of its

parent’s corresponding components, according to a linear function like the following:

x
′

i = xi + α(yi − xi) (2.11)
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where α is a weighting parameter defined in the (0, 1) interval. The second offspring y
′

will be similarly defined.

Uniform Crossover This crossover is usually applicable to strings of any alphabet. With

this operator, each element of an offspring is created by taking the corresponding element

in one of the two parents with equal probability. The parent from which the bit or character

is to be taken is uniformly chosen at random. The two offspring will be complementary.

Usually a mask can be used to implement crossover. An example is shown in Figure 2.3.

aaaaaaaa

bbbbbbbb

abbabaab

baababba
01101001

Parent ‘a’

Parent ‘b’

Offspring 1

Offspring 2

Mask

Figure 2.3: Example of Uniform Crossover

In the mask depicted in this figure, a bit equal to 0 means that the corresponding bit of

the first offspring will be copied from parent ‘a’, while value 1 means that it will be copied

from parent ‘b’. The second offspring will be complementary of the first one.

K-Point Crossover This crossover is implemented by cutting the strings of the two par-

ents at k randomly chosen positions, that are uniformly generated without repetition. An

offspring is created by taking segments of the parent strings alternatively. Figure 2.4 shows

an example of 2-point crossover on a bit string.

00000000

11111111 00011000

11100111

Cutting Point 1 Cutting Point 2

Parent ‘a’

Parent ‘b’

Offspring 1

Offspring 2

Figure 2.4: Example of 2-Point Binary Crossover

2.3 Genetic Algorithms

Genetic algorithms (GAs) are a class of evolutionary algorithms identified by a represen-

tation independent of the problem, usually fixed-length binary strings. Genetic algorithms

stress genetic encoding of potential solutions into chromosomes and require a modification

of an original problem into another suitable form. This would include mapping between

potential solutions and binary representation, taking care of decoders or adjusting the al-

gorithms. The representation encodes an individual and gives rise to a dual representation

scheme. A crucial issue in applying genetic algorithms to a problem is how to find a repre-

sentation which can be searched efficiently. Figure 2.5 shows the pseudocode of a canonical

genetic algorithm.

The ability to create better solutions in a genetic algorithm relies mainly on the ge-

netic recombination operator. The standard algorithm performs a so-called single-point
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generation = 0

Generate the initial population

while not termination condition do

Evaluate the fitness of each individual of population

Select parents from Population

Apply crossover operator to the selected parents

Apply mutation operator to new individuals

generation = generation + 1

Define new population by replacing parents with the offspring

end while

Figure 2.5: Pseudocode of a canonical genetic algorithm.

crossover, where two individuals are randomly chosen from the population, and their phe-

notypes are divided in two separated parts by a cutting point. A new individual is created

by swapping the two parts of the parents and concatenating them. The standard mutation

operator considered in this algorithm is carried out by inverting bits with a slow associ-

ated probability. The benefits of the genetic operators come from the ability of forming

connected substrings of the representation that correspond to problem solutions.

The analysis of genetic algorithms has led to an important result, the Schema theory,

which tries to analyze GAs in terms of their expected schema sampling behavior. A schema

denotes a particular kind of similarity template, and the schema theorem claims that the

canonical genetic algorithm provides a near-optimal sampling strategy for schemata. A

detailed description of this theory is presented in the literature [117, 10].

The benefits of the genetic operators come from their ability of create connected sub-

strings of the representation that correspond to problem solutions. The recombination op-

erator is not effective in environments where the fitness of an individual of the population

is not correlated with the expected quality of its representational components. The corre-

sponding environment is called deceptive [45].

In genetic algorithm implementation, the issue of how to encode possible solutions to

the problem into chromosomes can become a very hard question, since a poor represen-

tation could make a problem difficult to solve. Furthermore, during the fitness evaluation

phase, each chromosome normally has to be decoded back to the original problem domain

in order to compute fitness, then encoding and decoding operators have to be defined.

2.3.1 Genetic Programming

J. Koza introduced a new evolutionary approach, [66], extending the genetic model of

learning to the space of programs, since he suggested that the desired program should

evolve during the evolutionary process. GP is considered as a special sub-branch of genetic

algorithms, where a population of executable computer programs is created and evolved

with stochastic operators.

For each problem considered, some previous parameter values have to be carried out,

like the selection of terminal set T and of a function set F for the language of the pro-

gram, the identification of the evaluation function, the selection of the parameters of the

evolutionary algorithm and the selection of the termination condition. A simple example
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of function and terminal sets are represented like:

F = +,−, ∗, / (2.12)

T = A, B, C, D (2.13)

The structure which undergoes evolution is a hierarchically structured computer pro-

gram. The search space is a hyperspace of possible solutions, valid programs, which can

be viewed as a space of rooted trees, each composed by the functions and terminals appro-

priate to the particular problem domain. Usually, the population is composed of such trees;

however, GP representation is not restricted to trees and other program representations have

been proposed such as linear and graph based representation [13].

During evolution, the evaluation function assigns a fitness value to each tree (program

which measures its performance. The selection is fitness proportionate, each tree has a

probability of being selected to the next generation proportional to its fitness. The primary

operator is crossover, a kind of single-point crossover as the one implemented in canonical

genetic algorithms. Crossover starts by selecting a random cutting point in each parent tree

and then exchanging the sub-trees, giving rise to two offspring trees, as shown in Figure

2.6. Mutation is implemented by randomly replacing a subtree with another, randomly

generated one.

-

D B

+

/ B

D C

+

C -

D B

*

+ A

/ B

D C

Parent ‘A’ Parent ‘B’

+

C

*

A

Offspring 1 Offspring 2

Figure 2.6: Example of Genetic Programming Crossover

Two important issues in genetic programming are the choice of the appropriate lan-

guage for a given problem, and the size for the GP trees. The depth of the trees can in prin-

ciple increase without limits under the influence of crossover, defining a so-called ‘bloat-

ing’ effect. Parameters are introduced in GP in order to control the tree growth. Another
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common approach introduces a size penalty term into the fitness function. Also in genetic

programming a divide-and-conquer strategy can be used to decompose the problem into

sub-problems. In this case it has been observed that during evolution some subtrees appear

repeatedly as parts of successful individuals. In order to improve the performance, Koza

encapsulated these subtrees into modules, which are seen as single units in the evolution-

ary process. He defined the so-called Automatically Defined Functions (ADF) [67], that

are methods for automatically identifying and using these modules within GP.

2.4 Evolutionary Programming

Evolutionary Programming (EP) was first proposed by Fogel [44]. EP aimed at evolution of

artificial intelligence by evolving finite state machine, selected as chromosomal represen-

tation of individuals, emphasizing behavioral evolution, based on interpretation of output

symbols, rather than genetic evolution.

This approach maintains a population of finite state machines, in which each individ-

ual represents a potential solution, a particular behavior, of the problem. When used for

numerical optimization, evolutionary programming is very similar to evolution strategies

in terms of algorithm. Indeed, at first step offspring is created and later individuals are

selected for the next generation. EP does not use any recombination or crossover operator,

and offspring are created by random mutations of the parent population. There are five

possible mutation operators that can be implemented:

1. changing an output symbol,

2. changing a state in the transition function definition,

3. adding a new state,

4. removing a state,

5. changing the initial state.

There are some constraints on the maximum and minimum number of internal states; these

mutation operators are chosen according to some probability distribution, that in canonical

evolutionary programming is based on a Gaussian or a uniform distribution.

The selection is usually implemented by competition, a kind of tournament selection,

in which a comparison between each individual and k others randomly selected is carried

out, and the best n individuals are chosen. Selection can also be implemented according to

two other techniques, like standard fitness proportionate selection, and truncation, in which

the best n solutions are retained to become the parents for the next generation. An example

of pseudocode of the classical evolutionary programming is shown in Figure 2.7.

2.5 Evolution Strategies

Evolution strategies (ES) are approaches that imitate natural evolution as a method to solve

parameter optimization problems [97, 9, 106]. They were applied to problems with contin-

uously changing parameters, and then they were extended also to discrete problems. They

differ from genetic algorithms for several aspects, applying deterministic selection after



2.5. EVOLUTION STRATEGIES 19

Generate the initial population with n individuals randomly

generation=1

Evaluate fitness of each individual

while not termination condition do

Create one offspring from each individual

Evaluate the fitness of each offspring

for each individual of the population with size 2n do

conduct m competitions

end for

Select best individuals from the population with selection operators

generation=generation + 1

end while

Figure 2.7: Pseudocode of the classical evolutionary programming.

reproduction, Gaussian mutation and discrete or intermediate recombination. As EP, ESs

simulate evolution at the phenotypic level, emphasizing behavioural evolution.

Two kinds of deterministic selection schemes are defined in the ES, (n, m) and (n+m)
strategies. In the first one, from a population of n individuals, m > n offspring are pro-

duced and the best n of them are kept for the next generation. The n parents are always

discarded to make room for the best offspring. In (n + m) strategies, on the contrary, the

best n individuals among the m offspring and the n parents survive into the next gener-

ation: this kind of strategy never discards the best solution so-far, as an elitist selection

scheme, guaranteeing a monotonic improvement of the population. This strategy could

have drawbacks when some problem features change during evolution, in particular when

these features correspond to the strategy parameters, and when a small population size is

considered. In that case efforts can be spent to obtain parameters setting and results in a

satisfactory way, with low computational cost.

Mutation in the evolution strategies is often implemented by adding a Gaussian random

number to a parent, with a Normal distribution with mean 0 and standard deviation σi. The

expression of a simple mutation is defined as:

x
′

i = xi + Ni(0, σi) (2.14)

The setting of the standard deviation value is important in determining the performance

of evolution strategies, and, furthermore, its optimal value is problem dependent. A solution

was found by considering the standard deviation as a part of an individual so that it can

be evolved automatically. This so-called self-adaptation in evolution strategies has been

proposed by Schwefel [106] and Fogel[44]. Also this solution may have some drawbacks,

since the independent mutation of different components of a vector could not be appropriate

for problems where the components are not independent at all. To address this problem,

the variance/co-variance matrix has been added as part of an individual. One of the major

advantages of the (n + m) strategies is the ease of using adaptive strategic parameter, like

variance and co-variance, but a problem of these kind of strategies is that they often get

stuck in local optima. Again, as indicated above, the (n, m) strategies are still preferred.

The most widely used recombination approaches in evolution strategies are discrete and

intermediate recombinations. In discrete recombination the components of the two parents

are mixed to create the first offspring, while the second is the complement of the first. In
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intermediate recombination the value of each component of the child individual is a linear

combination of the corresponding component of all parents participating in the operation.

It has been observed that the best results are obtained by applying discrete recombination

to the object problem parameters and intermediate recombination to the strategy parame-

ters. Furthermore, it has been proved that recombination of the latter is required for self-

adaptation. The pseudocode of the (n, m) evolutionary strategy is represented in Figure

2.8.

Generate the initial population of n individuals

generation = 1

Evaluate fitness value for each individual

while not termination condition do

Create m/n offspring on average from each individual, so that a total of m
children are generated

Evaluate fitness of each offspring

Sort offspring into a non-descending order according to their fitness values

Select the n best children out of m to be parents of the next generation

generation = generation + 1

end while

Figure 2.8: Pseudocode of the (n, m) evolutionary strategy.

2.6 Evolution Programs

Evolution programs are a particular kind of genetic algorithms, introduced by Michalewic.

A detailed description of his work is presented in [77]. Evolution Programs consider the

idea of Davis [34], who wrote that:

‘[...] I believe that genetic algorithms are the appropriate algorithms to use in a great

real-world application. I also believe that one should incorporate real-world knowledge in

one’s algorithm by adding it to one’s decoder or by expanding one’s operator set’.

Michalewicz considers such modified genetic algorithms as evolution programs.

In classical genetic algorithm a modification of an original problem into an appropriate

form, suitable for them, is required. This operation would include a mapping between

potential solutions and a binary representation as a first step. Then, a decoding scheme will

have to be considered, taking care of decoders and repair algorithms.

Evolution programs would leave the problem unchanged, modifying a chromosome

representation of a potential solution, using a natural data structure, and applying appro-

priate genetic operators. In these algorithms a possible solution is directly mapped in an

encoding scheme. They offer a major advantage over genetic algorithms when evolving

ANNs since the representation scheme allows manipulating networks directly, avoiding the

problems associated with a dual representation.

Although the idea implemented by Michalewicz is nowadays still actual and it is gen-

erally considered one important issue in evolutionary computation, and it is adopted in

several recent works, and obviously presented in the literature, the terminology ‘evolution

programs’ does not become standard yet and it is not commonly used. In this thesis the

term ‘evolution programs’ refers to the idea of Michalewicz.
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2.7 Coevolutionary Algorithms

These algorithms are a particular kind of evolutionary algorithms, that are based on contin-

uous interactions between populations that are evolving. This is different from the custom-

ary evolutionary paradigm where a single population evolves under the selection pressure

of a given fixed fitness function that plays the role of the environment. In nature, inter-

actions between populations are omnipresent, and it is easy to think evolution as being a

co-evolutionary process where changes in a certain species (population) influence the other

ones, i.e., the environment is altered.

Co-evolutionary learning is a specialization of general evolutionary learning, that refers

to two different forms of co-evolution. The first considers co-evolution at the population

level, i.e., between two or more populations evolving at the same time. In this approach,

the fitness of an individual in one population depends on the individuals in another popu-

lation. The second form considers co-evolution at the individual level, evolving only one

population. In this case the fitness of an individual depends on other individuals in the same

population.

One advantage of these methods is that a global fitness function has not to be necessarily

specified, only relative fitness is needed. This can be useful in complex problems, where

an adequate global fitness function is difficult to define.

The methods based on co-evolution can roughly be classified as being either coopera-

tive or competitive.

• Cooperative co-evolution [92] is a paradigm in the area of evolutionary computation

based on the evolution of co-adapted subcomponents without the intervention of any

agent external to the evolutionary process. In this type of co-evolution a number of

species are defined and are evolved together. The cooperation among the individuals

is based on how well they cooperate to solve a target problem. A recent P.h.D. dis-

sertation concerning an analysis of cooperative coevolutionary algorithms has been

presented by Wiegand [126].

• Competitive co-evolution is a kind of co-evolution in which no cooperation is defined

between populations, but a competitive approach is used. One of the first successful

competitive co-evolutionary approaches was implemented by Hillis [54].

2.8 Hybrid Algorithms

In the course of an evolutionary optimization, solutions are often generated with low pheno-

typic fitness even though the corresponding genotype may be close to an optimum. Without

additional information about the local fitness landscape, such genetic ‘near misses’ would

be overlooked under strong selection. In order to overcome this problem, near misses could

be ranked by performing a local search and scoring them according to distance from the

nearest optimum.

In this sense, there is some experimental evidence, in the works presented by Davis

[35] and Michalewicz [77], that the enhancement of evolutionary methods by some addi-

tional, problem specific, heuristics, domain knowledge, or existing algorithms, can result in

a system with outstanding performance. Such systems, called ‘hybrid’ systems, enjoy a sig-

nificant popularity in evolutionary computation, and have been used successfully in many
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application areas. The near misses evaluation are the aim of hybrid algorithms, which com-

bine global search using evolutionary algorithms and local search using individual learning

algorithms.

Davis explained in [35] how he suggests to hybridize the genetic algorithm and local

search algorithms by employing three principles:

• Use the current encoding: use the current algorithm encoding technique in the hybrid

algorithm.

• Hybridize where possible: incorporate the positive features of the current algorithm

in the hybrid algorithm.

• Adapt the genetic operators: create crossover and mutation operators for the new type

of encoding by analogy with bit string crossover and mutation operators. Incorporate

domain-based heuristics as operators as well.

The above three principles emerged as result of several researches, with the common

aim to create the best algorithm for a particular problem. In this sense, various application-

specific variations of evolutionary algorithms have been reported in the literature: some

of them include variations of the structure elements, like dimension and encoding, some

others carried out experiments with modified genetic operators.

Moscato and Norman [82] have introduced the particular term memetic algorithm to

describe evolutionary algorithms in which local search plays a significant part. This term

is motivated by the notion of a meme as a unit of information that reproduces itself as

people exchange ideas. A key difference exists between genes and memes: before a meme

is passed on, it is typically adapted by the person who transmits it as that person thinks,

understands and processes the meme, whereas genes get passed on whole. Moscato and

colleague liken this thinking to local refinement, and therefore promote the term memetic

algorithm to describe genetic algorithms that use local search heavily.

Usually there exist several heuristic algorithms applicable to a given problem. Besides

being incorporated for the purpose of initialization, some of these algorithms transform one

solution into another by imposing a change in the solution encoding. One can incorporate

such transformations into the operator set of the evolutionary system, which is usually a

very useful addition.

As already defined in this chapter, there is a strong relationship between encodings of

individuals in the population and operators, hence the operators of any evolutionary sys-

tem must be chosen carefully in accordance with the selected representation of individuals.

Davis, in [35], also said that crossover function and encoding techniques, used to han-

dling the chromosomes of parents and offsprings, have to be combined, before applying

the crossover operator. The situation is similar for mutation operators, that can be global or

local, but also in this case they have to combine the encoding with their mutation functions,

since a mutation operator is an operator that introduces variations into the chromosome of

an individual.

Very often, hybridization techniques make use of local search operators, which are

considered as ‘intelligent mutations’. Some of these incorporate gradient-based methods

as ways to achieve a local improvement of individuals; an example is represented by the

backpropagation algorithms; while some others incorporate hill-climbing methods. It is

also not unusual to combine simulated annealing techniques with some evolutionary al-

gorithms. The class of hybrid evolutionary algorithms described so far consists of systems
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which extend evolutionary paradigms by incorporating additional features, like local search

or problem-specific representations and operators. Such hybrid algorithms can also be di-

vided in two classes, that can exploit learning respectively either actively, via Lamarckian

inheritance, or passively, via the Baldwin effect.

In the first case, the performance gains from individual learning are mapped back into

the genotype used for the production of the next generation. This is analogous to Lamarck-

ian inheritance in evolutionary theory, whereby characters acquired during a parent lifetime

are passed on to their offspring. With this approach it is difficult to envision a process by

which acquired information can be transferred into the gametes. Nevertheless, the practical

utility of this algorithm has been demonstrated in some evolutionary optimization applica-

tions.

The Baldwin effect [11, 55, 3, 7] considers that individual learning influences the evo-

lutionary process, and facilitates the assimilation of new genetic innovations. In this tech-

nique, learning guides evolution by assigning ‘partial credit’ for the genetic near misses,

defined above. Individuals with useful genetic variations are thus maintained by learning,

and the corresponding genes increase in frequency in the subsequent generation. As genetic

components necessary for a complex structure accumulate in the gene pool, functions that

previously required supplemental learning are replaced by genetically determined systems.

Further discussion about Baldwin effect is presented in Chapter 5, where issues raised with

computational models are discussed.
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Chapter 3

Neural Networks

3.1 Introduction

Neural Networks are models inspired by the working of the brain, although they do not

pretend to be accurate models of the central nervous system. Even if they are biologically

inspired systems, they are best regarded as basically non linear statistical models [117].

There are several texts of reference and synthesis in the field of neural networks [19,

53, 21] and they can be considered as a combination of neurons and synaptic connections,

which are capable of transmitting data through multiple layers. The end result is a system

which is able to solve different problems like pattern recognition and classification. Artifi-

cial Neural Networks (ANNs) have their origin in the attempt to simulate by mathematical

means the elementary processing units of the brain and their interconnections. Then, an im-

portant feature of these networks is their adaptive nature which allows to achieve learning

by examples.

This feature makes ANNs very useful in problem solving. On the other hand, a neural

network may be considered as an adaptive system that progressively self-organizes in order

to approximate the solution, making the problem solver free from the need to accurately and

unambiguously specify the steps towards the solution. Moreover, ANNs have the ability to

progressively improve their performance on a given task by executing learning.

An example of highly simplified mathematical representation of a neuron encoding is

shown in Fig. 3.1.

 

1x

2x

nx

1w

2w

nw

y

Input OutputSynaptic
weight

.

.

.

Activation
function

)( xwg  
i=1

n

Figure 3.1: Neuron representation

where g(w · x) is called activation function.

All these network units, or neurons, are simple processors whose computing ability is

25



26 CHAPTER 3. NEURAL NETWORKS

typically restricted to a rule for combining input signals and an activation rule that takes

the combined input to calculate an output signal. Output signals may be sent to other units

along weighted connections. The weights, associated to a connection, usually excite or

inhibit the signal that is being communicated. The pattern of connectivity refers to the way

in which the units are connected. In a type of network each unit may be connected to all

other units; in another network model units may be arranged into an ordered hierarchy of

layers where connections are only allowed between units in immediately adjacent layers.

Again, other networks allow feedback connections between adjacent layers, or within a

layer, or for units to send signals back to themselves.

A connection is specified by some parameters, like the unit it connects from, the unit it

connects to, and a number, usually a real value, that denotes the weight value. A negative

weight value will inhibit the activity of the connected-to unit, whilst a positive weight

value will excite the connected-to unit. The absolute weight value specifies the strength

of the connection. Usually, in feedforward and fully connected neural network types, the

two parameters that represent respectively the connection source and destination are not

defined. The pattern of connectivity is usually described with a matrix form, W , where the

entry wij represents the weight from unit j to unit i, or in some cases, viceversa.

3.2 Neural Network Types

The architecture of an ANN is determined by its topological structure, i.e., by the overall

connectivity and transfer function of each node in the network.

There are different kinds of neural network architectures, some common examples be-

ing:

• Multi-Layer Perceptron network (MLP): it usually consists of a feedforward fully

connected network with an input layer of neurons, one or more hidden layers and

an output layer. The output value is obtained through the sequence of activation

functions defined in each hidden layer. Usually, in this kind of network, the super-

vised learning process is the backpropagation algorithm, which uses gradient descent

search in the weight space to minimize the error between the target output and the

actual value.

• Single-layer Perceptron network: this is a particular kind of MLP neural network,

with only one hidden layer.

• Radial Basis Function network (RBF): it consists of three layers, with an input,

an hidden and an output layer. The hidden layer is used to cluster inputs of the

network: for this reason, neurons in that layer are called cluster centres. This model

uses a Gaussian kernel function to calculate the activations of the neurons in the

first layer. The neurons in the output layer perform an ordinary linear weighted

sum of these activations. Learning process is carried out in two stages. First an

unsupervised learning process is carried out and a clustering algorithm is applied to

cluster centres. Then supervised learning is applied to the weights of the output layer

which associates the basis function outputs with specific classes. The performance

of a RBF network depends on the way the inputs are clustered.

• Hopfield network: autoassociative network that acts like a memory and can recall a

stored pattern even when input, with a noisy version of that pattern. This network is
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defined by a fully connected single layer network. After an input pattern is presented,

the network will converge by means of a state update rule to a stable pattern. A

Hopfield network has no input units since an input vector simply defines the initial

activation of each unit. This activation value will be sent to other units, and at any

point in time the state of the network is the vector of all unit states.

• Self-organizing map: has a set of input units that correspond in number to the di-

mension of the training vectors and output units that act as prototypes. The input

units only serve to distribute the input vector to the network’s output units, that shall

be referred to as cluster units. Usually, the map has two layers of neurons and the

signals from input neurons are fed to every neuron in the feature map, while learning

the network generates a two dimensional representation of the input space. During

training all units can be considered as competing to be awarded the training vectors.

When a training vector is presented, the distance to all cluster units is calculated and

the unit that is closest to the training vector is denoted as the winning unit. This will

then adapt its weights in a way that moves that cluster unit even closer to the training

vector.

• recurrent network: this term refers to a particular kind of networks with recurrent

connections. A backpropagation network need not be strictly feedforward, and can

have recurrent connections so that a unit can feed activation back to itself, or to other

units in the same or lower levels. In some cases, this type of neural network can

have connections that feed back from the output to the input layer and some of the

input layer units feed back to themselves. In each case, for every recurrent network

there is a feedforward network with identical behavior. Generally, recurrent networks

are used to process patterns that can have variable lengths, that will be treated as

sequences, divided in parts, and presented to the network at a different time step.

These methods demonstrate the ability to predict the next part of data in a sequence

from the past history of data.

Other two learning methods also implemented for classification and regression con-

sider:

• Support Vector Machine (SVM): a set of related supervised learning methods used

for classification and regression. Their common factor is the use of a technique

known as the ‘kernel trick’ to apply linear classification techniques to non-linear

classification problems. For classification, SVM operates by finding a hypersurface

in the space of possible inputs. This hypersurface attempts to split the positive ex-

amples from the negative examples. The split is chosen to have the largest distance

from the hypersurface to the nearest of the positive and negative examples.

• Independent Component Analysis (ICA): is a statistical and computational tech-

nique for revealing hidden factors that underlie sets of random variables, measure-

ments, or signals. ICA works on learning process that minimizes the dependency

between the output components.

Among the different kind of neural networks, feedforward Multi-Layer Perceptron

(MLP) neural networks receive great attention due to their relative simplicity and compu-

tational capabilities. In a feedforward neural network an input pattern is transformed into
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an output pattern through the processing performed by a series of layers of interconnected

nodes, defining layers of neurons. The layers between inputs and outputs are defined ‘hid-

den layers’ and the neurons that belong to these layers are called ‘hidden nodes’, because

they are not directly connected to the external system through the inputs and the outputs.

Each node performs a transfer function, represented by the following equation:

yi = gi(
n

∑

i=1

wixi) (3.1)

where g(w · x) is always the activation function. Commonly used continuous transfer

functions are linear, hyperbolic tangent and Gaussian, even if most researchers prefer to

use the sigmoid function, whose analytic form is:

y(x) =
1

1 + e−(bx−c)
(3.2)

The sigmoid, as the tangent hyperbolic, is a poor activation function because it is differ-

entiable and it saturates to the horizontal asymptotic axes y = 0 and y = 1. The transfer

function implemented in the neuro-genetic approach, described in the following chapters,

is a kind of sigmoid function, the tan-sigmoid function, that tends asymptotically to -1 and

+1 at the extremes. Figure 3.2 shows the shape of this function. As indicated in [117],

networks of neurons with real-valued inputs and sigmoid transfer function can be used to

approximate mathematical functions, allowing the parameterization of the latter. This is

very useful in situations where the exact expression of the function is unknown.

Figure 3.2: Tangent sigmoidal Function

An example of architecture of a feedforward MLP neural network is depicted in Fig.

3.3, where each activation function ai depends on the contribution of the previous subnet-

work topology.

The expressions of the activation values defined for the example reported in Figure 3.3

are here defined:

a1 = f1(IW1,1 · x + b1) (3.3)

a2 = f2(LW2,1 · a1 + b2) (3.4)

a3 = f3(LW3,2 · a2 + b3) (3.5)

The activation function obtained at each hidden layer will become the input for the

successive layer, with the expression reported in the Equation 3.6.

a3 = f3(LW3,2f2(LW2,1f1(IW1,1 · x + b1) + b2) + b3) (3.6)
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Figure 3.3: Feedforward MLP Structure

3.3 Learning in Neural Networks

The adaptive nature of neural network learning by examples is a very important feature

of these computational paradigms, and explains the distinctive features of ANNs, which

defines the training process as an algorithm that replaces the absence of a pre-defined set

of instructions to follow.

The training process modifies the weights of the ANN, in order to improve a pre-defined

performance criterion, that corresponds to an objective function, over time. This process is

also called learning rule and it can take place in two ways:

• supervised learning, in which a net is defined with a dataset of input/output pairs,

namely the training set. The learning process consists in updating the weights at

each training step so that, for a given input, an error measure between the network’s

output and the desired known target value is reduced.

• unsupervised learning, in which an input/output relationship that has to be produced

by the network is maintained, but no feedback is provided from the environment

as to the correctness of the mapping. In this kind of learning the network must be

able to discover by itself any categories of features possibly presented in the data.

Networks that are able to infer pattern relationships without being supervised are so

called self-organizing.

A third commonly used form of training makes use of the concept of reinforcement

learning. In this case the value of training input/output pairs is not a measure of the differ-

ence between the desired and the obtained value, as in supervised learning, but rather, an

evaluation of the result as ‘wrong’ or ‘right’ result.

3.3.1 Backpropagation Algorithm

The first and most popular method for performing supervised learning is the Backpropaga-

tion algorithm (BP) [103]. BP has been applied to a number of different learning tasks and

has emerged as the standard algorithm for the training of multi-layer perceptron networks.

As conjugate gradient, BP is based on gradient descent [79]. It generally uses a least-square

optimality criterion, defining a method for calculating the gradient of the error with respect
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to the weights for a given input, by propagating error backwards through the network. Er-

ror backpropagation is essentially a search procedure that attempts to minimize a whole

network error function such as the sum E of the squared error of the network output over

an ensemble of training input/output pairs:

E =
1

2

m
∑

j=1

(tj − oj)
2 (3.7)

where tj is the target and oj is the actual jth output of the network.

The backpropagation algorithm defines two sweeps of the network: first a forward

sweep from the input layer to the output layer, and then a backward sweep from the output

to the input layer. In the first step input vectors are propagated through the network to

produce outputs of the network. The backward step is similar to the forward one, except

that error values, calculated by 3.7, are propagated back through the network, in order to

determine how the weights are to be changed during the training phase. The basic procedure

for the backpropagation algorithm is reported in Figure 3.4.

Initialize network weights randomly

while not termination condition do

Assign as net input to each unit in the input layer its corresponding element

in the input vector. The output for each unit is its net input

Calculate network output by forwarding input signals in the network

Calculate the error of each output neuron

for all hidden neurons do

calculate weights updates

propagate the error back through the network.

end for

Update weights of the network.

end while

Figure 3.4: Pseudocode of the backpropagation algorithm.

The training is supervised by having a target pattern associated with an input pattern.

A pattern is presented to the network and an error vector is calculated to determine how

the weights should change; the process is then repeated for each pattern. An epoch is a

complete cycle through each pattern. The patterns are continually presented to the network,

epoch after epoch, and training continues until the change in the absolute value of the

averaged squared error falls to within some tolerance between one epoch and the next one.

3.4 Consideration for ANN design

In the ANN design, the successful application of a neural network usually demands much

experimentation. There are a number of parameters to be set that can affect how easy a

solution is to find. Some of these parameters are the kind of neural network that have to

be considered, the number of layers and nodes that define the network architecture, and

the connection weights. The training data are also an important factor and a good deal of

attention must be paid to the test data to make sure that the network will generalize correctly

on data which has not been trained on.
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There are no easy answers to these questions and no standard design recipes exist for

designing a neural network to solve a given problem.

3.4.1 Architecture

The architecture design is crucial in the successful application of ANNs because has sig-

nificant impact on a network information processing capabilities. Given a learning task, an

ANN with only a few connections and linear nodes may not be able to perform the task

at all due to its limited capability, while an ANN with a large number of connections and

nonlinear nodes may overfit noise in the training data and fail to have good generaliza-

tion ability. The main problem is that there is no systematic way to design a near-optimal

architecture for a given task automatically.

A survey on supervised learning by evolving MLPs was presented by Ribert and col-

leagues [100], where several kinds of neural architecture evolving techniques are presented.

In particular, four techniques are discussed in [100], implemented in incremental and decre-

mental algorithms to achieve training convergence. They considered progressive error min-

imization, transformation of a neural tree into an MLP, active data selection and evolution-

ary algorithms approaches.

Research on incremental and decremental algorithms represents an effort toward the

automatic design of architectures:

• In Incremental algorithms hidden neurons are added to a network of minimum size

until the required precision is reached. This algorithm starts with a minimal network

(network with minimal number of hidden layers, nodes, and connections) and adds

new layers, nodes, and connections when necessary, during training, until the error

is sufficiently small. The main problem with these approaches is that huge ANNs

are usually obtained and the redundant information stored in the weights is never

eliminated.

• Decremental algorithms start with a huge network and delete unnecessary layers,

nodes, and connections during training. The problem with these algorithms is that

they start with excessively large networks, which slows training down; furthermore,

the units to eliminate and their elimination order have to be guessed correctly.

However, as indicated by Angeline and colleagues [4], ‘Such structural hill climbing

methods are susceptible to becoming trapped into structural local optima’. In addition, they

‘only investigate restricted topological subsets rather than the complete class of network

architectures’ [4].

Yao [133] considers the design of the optimal architecture for an ANN as a search

problem in the architecture space, where each point represents an architecture. Given some

performance (optimality) criteria, i.e., lowest training error, lowest network complexity,

etc., about architectures, the performance level of all architectures forms a discrete surface

in the space. The optimal architecture design is equivalent to finding the highest point on

this surface. Miller et al. [78] report several characteristics of such a surface, which are

summarized below:

• the surface is infinitely large since the number of possible nodes and connections is

unbounded;
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• the surface is nondifferentiable since changes in the number of nodes or connections

are discrete and can have a discontinuous effect on EANN performance;

• the surface is complex and noisy since the mapping from an architecture to its perfor-

mance is indirect, strongly epistatic, and dependent on the evaluation method used;

• the surface is deceptive since similar architectures may have quite different perfor-

mance;

• the surface is multimodal since different architectures may have similar performance.

All these characteristics reported by Miller [78], make EAs a better candidate for

searching the surface than incremental and decremental algorithms mentioned above.

3.4.2 Selecting Data

One of the most important factors for training neural networks is the availability and the

integrity of data. They should represent all possible states of the problem considered, and

they should have enough patterns for building also the test and validation set.

The data selected for the training set must be representative of the complete space that

a class might occupy. For instance, if two classes are located very close together, it is

important to include the data from the boundary that separates the classes to ensure that the

network be able to correctly identify the two regions; otherwise samples in that part could

be misclassified.

The consistency of all data has to be guaranteed, since it is common to find errors in

a large data set, introduced by an operator or simply missing data in one or more pattern.

Outlayers are exceptions that sometimes can exist in the data. Outliers are points that

stand out from the rest of the data and can produce errors due to incorrect recording of the

original information. In this situation, care has to be taken because outliers can be treated

as representative of useful information. For example, some faults can occur during data

real measurements.

The training data must be representative of the problem, but if the network is allowed

to adapt too well to the training data by being given it too many degrees of freedom, then

the residual error will be very small but the network is likely to fail to correctly map new,

previously unseen input data of the same class, i.e., it will have poor generalization capa-

bilities. This phenomenon is called overfitting. In order to avoid overfitting, a new method

called early stopping is implemented. With this approach the overall data set can be divided

into three separated sets, training, test and validation set.

Test and validation sets should be selected at random and they also need to be repre-

sentative of the problem. There is no agreement in the literature on the way these sets are

named: some approaches use the convention that the validation set is used to avoid overfit-

ting, while the test set is used to validate the approach. Instead, in some other conventions,

test set is used to monitor network training, avoiding overfitting, while the validation set is

used in order to assess the quality of the neural network. In this thesis, the second conven-

tion is adopted. A graphical representation of the use of training, test and validation sets is

shown in Figure 3.5.

In this case, training set is used for computing the gradient and updating the network

weights and biases. This set can be halted periodically and the test data passed through,

and overfitting can be prevented by monitoring the training with the test set. The error on
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ValidationTrain Test

Control of the Overfitting

Figure 3.5: Representation of the training, test and validation set correlation.

the test set is monitored during the training process. Such error will normally decrease

during the initial phase of training, as does the training set error, and when data start being

overfit the error on the test set will begin to rise. At this point training is stopped, and the

weights and biases at the minimum of the test set error are returned. A validation set acts

like another test except that its data have not been presented to the network in any form

during training. The validation set uses its data in order to validate the neural network.

3.4.3 Handling local minima

The backpropagation algorithm is based on a gradient descent technique. Usually, a gradi-

ent descent algorithm is used to adapt the weights based on a comparison between the de-

sired and actual network response to a given input stimulus. In each iteration of backprop-

agation, the gradient of the search surface is calculated and network weights are changed

in a direction opposite to the gradient. Gradient descent works fine while the slope of the

error function is smoothly heading downhill, but in practice the error surface for a large

network will have many valleys, hills and folds.

Therefore, it is not uncommon for the backpropagation algorithm to get stuck in local

minima. A local minimum might be close to a solution but not close enough to satisfy

the problem requirements; furthermore, backpropagation is not able to finding a global

minimum if the error function is multimodal and/or non-differentiable.

This can be computationally expensive if a large number of iterations is required to find

an acceptable network and to avoid local minima entrapment. Moreover, BP is sensitive to

initial conditions and it can become slow. Oscillations may occur during learning, and, if

the error function is shallow, the gradient is very small leading to small weight changes.

3.4.4 Generalization

Generalization represents the ability of a learning system to correctly map new inputs, not

used during training into the correct output. Good generalization depends on the training

set and the network architecture.

An improvement of the generalization ability of a neural network is given by the early

stopping method, defined in Section 3.4.2, which also prevents the overfitting problem.

The appropriate number of hidden units and the number of training data are also related

and play a role in the quality of the resulting network. A large network may create complex

functions, but a small architecture may not have enough power to fit the data. As previously

indicated, the problem is that is difficult to know beforehand how large a network should be

for a specific application. A method for improving generalization is called regularization.

This involves the modification of a performance function, which is normally chosen like
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the following equation, similar to the error backpropagation function:

MSE =
1

N

N
∑

j=1

(tj − oj)
2 (3.8)

that corresponds to the typical performance function used for training feedforward neural

networks. This is called Mean Square Error value (MSE). With this method, networks with

high dimensions will be penalized. The problem with regularization is that the optimum

value for the performance ratio parameter is difficult to determine. Too large a value of this

parameter may give overfitting; on the other hand, if the ratio is too small, the network will

not adequately fit the training data.

Evolutionary Algorithms can be considered as useful methods to solve this problem.

Indeed, with EAs, the performance function of a neural network can be ‘evolved’ propor-

tionally to the fitness function of the evolutionary algorithm. This thesis will present in the

following chapters an example of this approach, in which fitness function of each individual

depends on the MSE of the correlated network.

Considering the size of data sets, there are no rigorous results here, but a rule of thumb

asserts that the number of hidden units needed will increase as the number of training data

increases for a given level of performance. General guidelines exist for network design,

like those suggested by Haykin [53], who defines the training data set size as a function of

the number of the network weights and of the percentage of errors allowed in the testing

phase.

3.4.5 Training process

Another important issue in the ANN design considers the training process, carried out by

adjusting the connection weights iteratively, so that learned ANNs can perform the desired

task. Weight training is usually formulated as the minimization of an error function, such

as the mean square error between target and actual outputs averaged over all examples,

by iteratively adjusting connection weights. In methods which are most frequently used

to train neural networks, BP has emerged as the standard algorithm for finding a set of

satisfactory connection weights and biases [48], like previously indicated. There have been

some successful applications of BP in various areas [65], but BP has different drawbacks

due to its use of gradient descent, previously indicated as local minima trapping, non-

differentiability of the function and sensitivity to initial conditions.

One way to overcome the shortcomings of gradient-descent-based training algorithms

is to adopt EAs, i.e., to formulate the training process as the evolution of connection weights

in the environment determined by the architecture and the learning task.

EAs can then be used effectively to find a near-optimal set of connection weights glob-

ally without computing gradient information. The fitness of an ANN can be defined ac-

cording to different needs. Two important factors which often appear in the fitness (or

error) function are the error between target and actual outputs and the complexity of the

ANN. Unlike in gradient-descent-based training algorithms, the fitness (or error) function

does not have to be differentiable or even continuous since EAs do not depend on gradient

information.



Chapter 4

Evolutionary Artificial Neural

Networks

4.1 Evolutionary Learning

Chapter 2 uses the general term ‘evolutionary algorithms’ to define algorithms implement-

ing evolutionary computation. They are useful for complex optimization problems, where

the number of parameters is large and the analytical solutions are difficult to obtain, and

they help to find out the optimal solution globally over a domain.

A particular type of evolving systems, namely neuro-genetic systems, have become a

very important topic of study in evolutionary computation. They are included in the frame-

work of evolutionary learning and, as defined by Yao et al. [137], they are biologically-

inspired computational models that use evolutionary algorithms in conjunction with neural

networks (NNs) to solve problems.

In this sense, evolutionary artificial neural networks (EANNs) become an important

topic of study in ANN design. EANNs refer to a special class of artificial neural networks

in which evolution is another fundamental form of adaptation in addition to learning [133].

One distinct feature of EANNs is their adaptability to a dynamic environment. In other

words, EANNs can adapt to an environment as well as to changes in the environment. The

two forms of adaptation, i.e., evolution and learning in EANNs, make their adaptation to

a dynamic environment much more effective and efficient. EANNs can be regarded as a

general framework for adaptive systems, i.e., systems that can change their architectures

and learning rules appropriately without human intervention.

Much research effort has been spent to improve the performance of EAs and different

selection schemes and genetic operators have been proposed in the literature. As previ-

ously indicated, evolutionary learning for ANNs has also been introduced to reduce and, if

possible, to avoid the problems of traditional gradient descent techniques, such as BP, that

lies in the chance of being trapped in local minima. EAs are generally much less sensitive

to initial conditions of training. They always search for a globally optimal solution, while

a gradient descent algorithm can only find a local optimum in a neighborhood of the initial

solution. EANNs provide a solution to these problems and an alternative for the task of

controlling the complexity of the network.

One of the most important benefits of evolutionary artificial neural networks is that,

considering generalization, a near-optimal artificial neural network with both structure and

35
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weights can be evolved automatically without going through a tedious trial-and-error man-

ual design process.

Several researches regarded the design of an ANN as an optimization problem. In [117],

discussions about evolutionary systems and their interaction with neural and fuzzy systems

are presented. Some EAs have implemented search over the topology space, or a search for

the optimal learning parameters and neural network transfer functions. Some others focus

on weight optimization: these can be regarded as alternative training algorithms, and in this

case the evolution of weights assumes that the architecture of the network must be static.

An interesting area for new research directions lies in the conjunction of these techniques,

combining the advantages of each of them.

The aim of this chapter is to provide, seven years later, an update of Yao’s milestone

review [133], taking into account the most recent literature about EANNs. Evolutionary

algorithm and state of the art design of Evolutionary Artificial Neural Network (EANN)

were also introduced by Abraham [2], followed by the proposed MLEANN framework.

In that framework, in addition to the evolutionary search of the connection weights and

architectures, local search techniques were used to fine-tune the weights (meta-learning).

This chapter is organized as follows: Section 4.2 defines the approaches to evolving

ANNs, and is linked to the corresponding main categories of evolutionary computation.

Section 4.3 focuses on weight optimization describing some work presented in the liter-

ature. The process of learning-rules optimization is then reported in Section 4.4, briefly

describing one of the most important works, carried out by Chalmers, and other approaches

carried out later, based on the same idea, while the transfer function optimization process is

described in Section 4.5. The evolution of network topologies is presented in Section 4.7,

introducing a distinction between direct and indirect encoding, and then considering some

related work. One of the most important evolutionary approaches regards the simultaneous

evolution of architecture and weights described in Section 4.8; also in this section several

applications are described.

4.2 Evolving ANN Approaches

There are several approaches to evolving ANNs and EAs which are used to perform various

tasks, such as connection weight training, architecture design, learning rule adaptation,

input feature selection, connection weight initialization, rule extraction from ANNs, etc.

Three of them are considered as the most popular approaches at these levels:

• Connection weights, that concentrates just on weight optimization, assuming that the

architecture of the network must be static. The evolution of connection weights in-

troduces an adaptive and global approach to training, especially in the reinforcement

learning and recurrent network learning paradigm where gradient-based training al-

gorithms often experience great difficulties.

• Learning rules, that can be regarded as a process of ‘learning to learn’ in ANNs,

where the adaptation of the rules is achieved through evolution. It can also be re-

garded as an adaptive process of automatic discovery of novel learning rules.

• Architecture, that enables ANNs to adapt their topologies to different tasks without

human intervention, and provides an approach to automatic ANN design, as both
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ANN connection weights and structures are evolved. In this kind of optimization

method, a further subdivision can be made by distinguishing between a ‘pure’ archi-

tecture evolution and a simultaneous evolution of both architectures and weights.

Other approaches consider the input feature selection and the evolution of the transfer

functions of a neural network, but they are usually applied in conjunction with one of the

three methods above in order to obtain better results.

All these approaches usually fall into different categories of evolutionary computation.

The most important are described in Chapter 2 and regard genetic algorithms, which de-

fine other two particular sub-branches like genetic programming and evolution programs,

evolutionary strategies and evolutionary programming techniques.

Another class of optimization programs has been presented in the recent literature in

[88], where two classes of evolutionary methods are identified. The first one considers a

typical approach, which uses a population of gradient-learning ANN undergoing weight

adaptation through BP training and structure evolution through EA. The second considers

approaches that rely solely on EA for both ANNs structure evolution and weight adaptation.

They are so-called invasive and non-invasive approaches:

• non-invasive method: it uses evolutionary algorithms, but fitness evaluation requires

local methods, like BP or other gradient training techniques. In this approach, the

explicit separation between network adaptation by local optimal approaches and

structure evolution by EAs often requires the development of a dual representation

scheme, so it is natural for this approach to adopt a GA-type evolution. It does not

change heavily the typical learning mechanisms of the individual network. The EA

is only used as a background process during evolution. Its successful performance

still heavily relies on the proper initialization of BP parameters and the proper choice

of BP implementation. Individual network still undergoes gradient error minimiza-

tion which is prone to the ‘local optima’ problem. An approach that implements a

non-invasive method is also defined a hybrid algorithm, like previously described in

Chapter 2.

• invasive method: it relies solely on an EA for ANN evolution. Since weight adapta-

tion and structure evolution are carried out directly using the perturbation functions

of evolutionary algorithms, it avoids the mapping problem by representing individu-

als at the genotype level. By using direct representation and avoiding BP fitness eval-

uation, the main EA operations are fast and make it feasible to use a larger population

size for a more robust search coverage. Important issues that have to be considered

in this approach are the development of an appropriate encoding scheme, supporting

causality and evolvability, and the development of an appropriate stopping criterion

to avoid premature learning and overlearning.

One major issue defined by Palmes and colleagues [88] in their work considers the

reliance to dual representations in ANN genetic algorithm implementations. Like indicated

in Chapter 2, during the mapping from genotype to phenotype deceptive problems [45]

may occur. Some of the major consequences of these problems include the permutation

problem or the many-to-one problem and the opposite one-to many problem, like indicated

in [137]. Such problems also occur in architecture optimization, along with evolvability

and causality problems. In each mapping phase must be ensured that small changes in the
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genotype must corresponding to small changes in its phenotype, trying to prevent evolution

from becoming inefficient and hard to control.

Another problem that can arise in the non-invasive method regards the use of BP. In-

deed the high sensitivity of BP to the initial setup of its parameters causes a noisy evaluation

of the corresponding fitness function, which makes the entire process unreliable. Further-

more, no well defined stop-training criterion is defined in this algorithm. For these reasons,

several approaches preferred invasive approaches.

The use of evolutionary learning for designing neural networks is no more than two

decades old. However, a lot of work has been made in these years, which has produced

many approaches and working models for different ANNs optimizations. Some of these

are reported below.

A synoptic table, 4.1, is reported in order to summarize the approaches presented in the

literature and also in this chapter, for each of the different evolutionary ANN techniques

considered.

Table 4.1: Synoptic table of some evolving ANNs techniques presented in literature.

EANNs

Techniques Examples in Literature

Weight Optimization GA with real encoding (Montana et al)

GENITOR (Whitley et al)

Mutation-based EAs (Keesing et al)

Improved GA (Yang et al)

NN weight evolution (Zalzala et al)

MLP training using GA (Seiffert)

STRE (Pai)

Parameter Optimization GA for competitive learning NNs (Merelo Guervós et al)

G-prop II/III (Merelo Guervós et al)

ANOVA (Castillo et al)

Rule Optimization GA for learning rules (Chalmers)

GP for learning rules (Poli et al)

Transfer Function EANNs through EPs (Yao et al)

Optimization Hybrid method with GP (Poli et al)

Input Data EAs for fast data selection (Brill et al)

Selection Selecting Training set (Reeves et al)

Architecture Optimization: Design of ANN (Yao et al)

Constructive and Design NN using GA (Miller et al)

destructive NEAT

algorithms EP-Net

Evo-design for MLP (Filho et al)

genetic design of NNs (Harp et al)

Simultaneous Evolution ANNA ELEONORA (Maniezzo)

of Architecture EP-Net (Yao et al)

and Weights Improved GA (Leung et al)

COVNET (Pedrajas et al)

CNNE (Yao et al)

MGNN (Palmes et al)

GNARL (Angeline et al)

GAEPNet (Tan)

4.3 Weight Optimization

The evolution of weights can be regarded as an alternative to training algorithms, and as-

sumes that the architecture of the network must be static. The primary motivation for using

evolutionary techniques to establish the weight values rather than traditional gradient de-
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scent techniques such as BP [103], lies in avoiding being trapped in local minima and the

requirement that the activation function be differentiable. For this reason, rather than adapt-

ing weights based on local improvement only, EAs evolve weights based on the fitness of

the whole network.

Several approaches in this direction have been presented for network weight optimiza-

tion which use genetic algorithms.

Genetic algorithms with real encoding Montana and Davis [80] encode the biases and

the weights of a neural network in a list of real numbers and initialize them by choosing

a random probability distribution function, that reflects the empirical observation that op-

timal solutions tend to contain weights with small absolute values. The rationale of this

choice is to allow the genetic algorithm to explore the range of all possible solutions, favor-

ing those solutions which are a priori defined as the most likely. In their work, Montana

and Davis created different types of genetic operators, that can be grouped in three basic

categories, namely mutations, crossovers and gradients. Mutation applies random pertur-

bation to some of the entries in the chromosome of an individual (i.e. neural network),

in order to create its offspring. Crossover generates one or two children containing some

of the genetic material of each of two selected parents. The gradient operator defines the

child of a selected individual by adding to its entries a multiple of the gradient value with

respect to the evaluation function. The goal of their approach was to find out how different

operators perform in different situations, and thus be able to select a good set of operators

for that problem. This idea was carried out by retaining useful feature detectors formed

around hidden nodes during evolution. Their results showed that the evolutionary training

process was much faster than BP for the problems they considered.

GENITOR: genetic algorithms with binary encoding Whitley and colleagues imple-

mented a purely genetic approach using binary encodings of weights, called GENITOR

[123]. In this algorithm each string was evaluated and the population was sorted by ranking

strings in terms of their evaluations. A random selection function with a linear bias towards

the higher ranked strings was used to stochastically choose two parents for recombination.

The parents were then recombined to produce a single offspring (in this algorithm two off-

spring were created, but one was randomly discarded). After the offspring was evaluated,

it replaced the lowest ranked string in the population and was inserted into its appropriate

rank location. Generally speaking, one or two offspring can be created and replacement

can be probabilistic such that lower ranked strings are typically replaced.

Whitley and colleagues carried out, in [105], a comparison between the GENITOR

algorithm and that implemented by Montana and Davis. Considering the latter, the main

differences regard the kinds of network representations, with real-valued strings imple-

mented instead of binary encoding. Then, the representation of each weight was by a

single real value so that recombination occurred only between weights. In this algorithm,

too, a small population was considered, and mutation rates were higher than those used

by most traditional genetic algorithms. The approach of Montana and Davis also provided

an option that improved offspring using backpropagation, obtaining better solutions than

those implemented by considering only BP.

Whitley and colleagues then implemented, in [122, 124], a modified version of the

GENITOR algorithm, to reflect the algorithm changes used by Montana and Davis. They

defined a new network representation, based on real-valued encoding, a small population
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and relatively high mutation rates. With this new approach they found that the modified

genetic algorithm produced better results, competitive with the backpropagation algorithm.

Mutation-based evolutionary approaches In other work presented in the literature, an

EA and a gradient descent algorithm have been combined [63]. Usually, as described in

Chapter 2, a classical genetic algorithm requires a modification of an original problem

into an appropriate form, suitable for it, as well as a well-defined dual representation and

an algorithm for mapping the genotype into phenotype of the neural network. In order

to overcome these problems of GAs, like in [133], a natural way to evolve real-number

chromosome representation would be defined by the use EP or ES, since they are partic-

ularly well-suited for treating continuous optimization. Unlike GAs, the primary evolu-

tionary operator in these techniques is mutation. One of the major advantages of using

mutation-based evolutionary approaches is that they can reduce the negative impact of the

permutation problem, providing a more efficient process.

Improved genetic algorithm Few years ago, Yang and colleagues [131] proposed an im-

proved genetic algorithm based on a kind of evolutionary strategy. Often, during the ap-

plication of GAs, some problems of premature convergence and stagnation of solution can

also occur [46]. Indeed, higher selective pressure often leads to the loss of diversity in

the population, causing solutions to converge prematurely. A genetic algorithm, based on

evolutionary stable strategy (ESSGA), was implemented to keep the balance between pop-

ulation diversity and convergence speed during evolution. This is obtained by means of

a kind of mutation operator in conjunction with a controller stable factor: this mutation

operator only acts on some of the preponderant individuals under the control of such stable

factor. ESS was proposed by Smith [111], which defines a controller that keeps the percent-

age of quantity of preponderant individuals to stable quantity of the population dimension

in each generation.

With this solution the population diversity is maintained by restricting the over repro-

duction of preponderant individuals, and the search space is enlarged as well. The authors

confirm that, with their approach, the selective pressure can be alleviated, and the problem

of premature convergence can be avoided without increasing the running time. Yang and

colleagues carried out experiments with the "XOR-problem", showing an increase in speed

and accuracy.

NN evolution with mutation and multi-point crossover Zalzala and Mordaunt [81] stud-

ied an evolutionary NN suitable for gait analysis of human motion evolving the connection

weights of a predefined feed-forward neural network structure. As previously indicated,

traditional methods for training neural networks can have some problems in finding an op-

timal solution when the error surface is multi-modal. In this case evolutionary algorithms

are not influenced by the impact of the random initialization of network weights. In Za-

lzala’s work, real number representation was chosen to evolve weights, and evolution was

analyzed with mutation and a multi-point crossover separately implemented as the best

combination search mechanism. In the mutation operator, mutation rate and step size are

varied, the latter being the maximum value that can be added/subtracted to/from a gene

value, while in the recombination algorithm the variable parameters are crossover rate and

the number of crossover points. In order to implement multi-point crossover, two binary
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chromosomes, equal in length to the actual, real number, chromosomes were created, one

with all zeros and the other with all ones. These new chromosomes were split into portions

and a single point crossover was performed on each portion. Multi-point crossover was

performed on the binary chromosomes and these were decoded to produce the offspring of

the original real number chromosomes. Simulation results showed that both mutation and

crossover type evolution produce systems that are good classifiers when compared with the

control MLP network. The results indicate also that the BP algorithm is over-fitting the

training data, giving an error more than that obtained with the evolutionary approach.

MLP training using GA Training of MLPs using genetic algorithms was also carried out

by Seiffert [108], who described an approach to completely substitute a traditional gradient

descent algorithm by a genetic algorithm in the training phase. In this work the architec-

ture of the neural network was predefined and remained fixed after initialization, and the

chromosome solely consisted of the weight values and did not contain any topological or

structural information. Genetic operators like selection and reproduction were considered

as the main operators to perturb weights, while mutation was only taken as secondary op-

erator. Several benchmark problems were implemented by the author in order to make a

comparison with BP solutions. Results demonstrated that the more complex the problems,

the more BP failed, and the more considering its substitution by a GA was advantageous.

STRE: Short Term Reproduction Expectancy Recently, Pai [87] proposed a genetic

approach employing a genetic inheritance operator, the so-called Short Term Reproduction

Expectancy (STRE), that has been implemented to determine the weights of an EANN,

considering a multi-layer feedforward neural network with a predefined fixed topology. The

most relevant aspect of the STRE scheme is that a selective set, among the best fit parent

chromosomes, is allowed a short-term life expectancy and participates in the subsequent

reproduction process, along with a portion of highly-fit offspring chromosomes. In other

words, the life expectancy of a portion of the best-fit parents in a population is extended

by a short term of at least one more generation, while the rest of the chromosomes in the

mating-pool are the best-fit offspring.

Unlike evolutionary strategies, the author does not use mutation operators in the evolu-

tion cycle, but only defines a two-point crossover for reproduction, and applies it to decimal

coded chromosomes, corresponding to non-binary encoding, with values between 0 and 9.

The inverse of the root mean square of the error obtained while learning the training data is

set as the fitness value for each chromosome.

The author made a the performance analysis of this scheme on the application of pre-

diction of uplift capacity in the field of geotechnical engineering, and concluded that STRE

allowed for faster convergence and reduced learning error in comparison with its predeces-

sor approach. The new method made a closer prediction to the expected values than the

previous solution.

4.4 Learning Rules Optimization

Supervised learning algorithms are, as previously defined in Chapter 3, the most frequently

used methods to train ANNs, and, among them, standard backpropagation is the first and

most applied method for training multilayer networks. Unfortunately, this method presents
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some drawbacks, like its sensitivity to initial conditions and trapping in local minima. Fur-

thermore, since oscillations may occur during learning, usually an increase in the learning

rate results in an unfruitful attempt to speed up convergence. The design of training algo-

rithms, in particular the learning rules used to adjust connection weights, depends on the

type of architecture of the considered neural network. Several standard learning rules have

been proposed, but designing an optimal learning rule becomes very difficult when there is

little priori knowledge about the network topology, producing a very complex relationship

between evolution and learning.

The evolution of learning rules is considered as an interesting application of evolution-

ary algorithms to the design of neural networks, and has been applied in several works in

the past. The evolutionary approach is important not only in providing an automatic way of

optimizing leaning rules and in modeling the relationship between learning and evolution,

but also in modeling the creative process since newly evolved learning rules can deal with

a complex and dynamic environment.

4.4.1 Parameter Optimization

The first kind of optimization considers the adjustment of learning parameters and can be

seen as a first attempt to evolve learning rules. Learning parameters comprise BP para-

meters, like the learning rate and momentum, and genetic parameters, like mutation and

crossover probabilities. They can be difficult to assign by hand, and therefore become good

candidates for evolutionary adaptation. Typically, the parameters are encoded into the gene

code of each individual and allowed to evolve.

Several studies have been carried out in this direction: Merelo and colleagues [49],

presented a search for the optimal learning parameters of multilayer competitive-learning

neural networks. These authors presented also another well-known approach, the so-called

G-prop [26, 25, 27]. This algorithm can also be considered as an evolutionary approach

for architecture and weights evolution, as indicated in Section 4.8. Indeed, as indicated

by Merelo and colleagues, the algorithm is designed to determine the learning parameters,

the initial weights, and a suitable hidden-layer size of multilayer perceptrons, setting the

parameters that the method requires.

This algorithm is considered a hybrid algorithm, as described in Chapter 2, since trains

multi-layer perceptrons based on a GA-BP approach. G-prop uses neither binary nor real

encoding, i.e. representations of the networks in a binary or real number string, nor an

indirect coding. Instead, the initial parameters of the network, initial weights and learning

constants, are evolved using specific genetic operators, such as mutation, crossover, addi-

tion, and elimination of hidden neurons and the training QP operator, which act on the MLP

data structure. In this approach, an EA is implemented to find a solution close to the global

optimum, in conjunction with local search algorithm, the backpropagation algorithm, in

order to tune a solution and reach the nearest local minimum by means of local search from

the solution found by EA.

The genetic operators are included directly on the ANN object, but only initial weights

and the learning constant are subject to evolution, not the weights obtained after training.

In particular, in the mutation operator, the learning rate is modified by adding a small ran-

dom number with a uniform distribution. The crossover operator performs a multi-point

crossover between two chromosome nets and swaps the corresponding learning parame-

ters. G-prop have been evaluated using different classification problems, presented in the
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literature. Experiments proved that this method can achieve better results than other BP

algorithms, giving also more information like network size and learning parameter values.

Moreover, the ANalysis Of the VAriance (ANOVA) tool was applied by the authors [26]

to determine whether the influence of a change in the parameter values over the obtained

error and/or size is significant to establish the most suitable value for these parameters.

This is equivalent to obtain satisfactory solutions as fast as possible, and decide whether

the element operation, for example genetic operator or selector, is as desired. In most of

these cases, the goal is to obtain the smallest generalization error, while keeping the size as

small as possible. The parameters considered by the authors took into account evolutionary

and learning processes, and were defined by Merelo and colleagues to be the number of EA

generations, the size of the population, the initial weight range, that was also depending

on the initial point of the search space, the selection rate, the number of training epochs

and finally the genetic operators application priority. the ANOVA was used to determine

whether the effect of all these parameters on the error and size obtained was statistically

significant. The most suitable value was determined using the ANOM tool. A high number

of parameters was involved in this step, and they were grouped into different sets. ANOVA

was applied in four steps to different sets of parameter simulations.

The results presented in this work showed that those parameters that affected directly

the MLP, like the training operator application priority and the learning constant mutation

range, had greater effects on the error and size obtained. Then, initial weight generation

range and selection percentage, that are two parameters related to the initial population,

influenced the results obtained, and were statistically significant as expected. Merelo and

colleagues concluded confirming that the fact that parameters directly related to the MLP

and not to the EA had significant effects, indicated that such parameters were even most

important in the hybrid methods, contrary to the claims of those researchers which used

only a GA to train MLP, and justifying also their aim of optimizing the parameters by

means of the EA.

Another method to search for the optimal set of weights, the optimal topology and

learning parameters, using EA and BP, was proposed by Castillo et al. [23]. In this work,

however, the learning constant was set by hand.

4.4.2 Rule Optimization

Considering the field of learning-rule optimization, one of the first studies was conducted

by Chalmers [28]. The aim of his work was to see if the well-known delta rule, or a

fitter variant, could be evolved automatically by a genetic algorithm. Chalmers fixed the

changes in the weight of a given connection to be a function only of information local to

the connection. The learning rule was expressed as a quadratic function. A number of

assumptions were made at the outset, in order to restrict the form of the learning algorithm

to a linear function of the relevant parameters, corresponding to the dependent variables:

the input, output and target values, as well as the weight change and a scale parameter

similar to the learning rate constant. The pairwise products of the parameters were also

used in the linear combination. The function had the following form:

∆wij = k0(k1wij + k2ojp + k3oip + k4tip
+k5wijojp + k6wijoip + k7wijtip
+k8ojpoip + k9ojptip + k10tipoip)

(4.1)
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The network architecture was feedforward with input and output layers only, which can

only learn mappings that are linearly separable. With a suitable chromosome encoding and

using a number of linearly separable mappings for training, Chalmers was able to evolve

a rule analogous to the delta rule, as well as some of its variants. Although this study was

limited to somewhat constrained network and parameter spaces, it paved the way for further

progress.

Chalmers also noticed that discovering complex learning rules using GAs is not easy,

mainly due to the fact that the discovery of learning rules used highly complex genetic

coding, that makes the search space large and hard to explore, while GAs used a simpler

coding which allows known learning rules as a possibility, making the search very biased.

In order to overcome limitations caused by GAs during learning-rule evolution, Chalmers

suggested that GP, particular kind of GA, might have an advantage over GAs. Several

studies have been carried out in this direction and some of them are described, along with

a new approach, in the work presented by Poli and colleague [96].

Their approach considered a genetic programming algorithm with the objective to ex-

plore a larger space of rules using different parameters and two different rules for the hidden

and output layers. Their long-term objective was to obtain a rule which was general, like

standard backpropagation algorithm, but that was faster and more stable than the canonical

approach. The function identified to discover learning rules was with the following form:

∆wl
ij(s) = Fo(w

l
ij , o

l
jp, tip, o

l+1
ip ) (4.2)

Fh(wl
ij , o

l
jp, o

l+1
ip , ǫl+1

ip ) (4.3)

The first equation Fowas defined for the output layer, while the second one, Fh for the

hidden layers. In these equations ol
jp was the output of neuron xl

j when pattern p was

presented to the network, and ǫl+1
ip was the error of the considered layer.

In the first stage of the algorithm, Poli and colleague used GP to evolve rules for the

output layer, while the hidden layers were trained with the standard backpropagation al-

gorithm. In the second stage, they used GP to evolve rules for the hidden layers, while

the output layer was trained with the best rule discovered in the first stage. In the exper-

iments carried out, they used two different activation functions to attempt to obtain acti-

vation function-independent learning rules, and, in order to test the generality, additional

experiments were carried out on several problems, like recognition and classification, dif-

ferent from those implemented to obtain the rules.

The most interesting result of their experiments was that BP has discovered a learning

rule in which the weaknesses of a supervised learning rule, like standard backpropagation,

were removed by combining it with an unsupervised learning rule, the Hebbian rule. So,

their experiments suggested that a good learning rule for the hidden layers should have the

following form:

LRh = ηSBP + βHB (4.4)

with η and β representing the learning rates, respectively . To see if the rule could be

improved even more by using some of the SBP speed-up techniques, the authors compared,

in another set of tests, its convergence behavior with SBP, with and without the Momentum

and Rprop speed-up algorithms. In this run the learning rule NLR defined with the GP

approach achieves its target output at the same epoch as SBP with Momentum, while NLR

with Momentum converges much more quickly than the other algorithms. Further runs
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were carried out, by comparing NLR with Rprop and SBP with Rprop: in the character

recognition problem considered, the NLR outperformed SBP.

The results obtained indicated that rules found perform very favourably with respect to

canonical algorithms, with faster optimized rules. The authors concluded that their work

indicates that there are supervised learning algorithms that perform better and which are

more stable than standard backpropagation learning rule and that genetic programming can

help to discover them.

4.5 Transfer Function Optimization

Usually the transfer function of all neurons of a neural networks is defined at the beginning

and maintained fixed during the evolution, although some attempts have been made to

allow its adaptation over the generations. Transfer function perturbations can begin with a

fixed function, like linear, Sigmoidal or Gaussian, and allow the genetic algorithm to adapt

to a useful combination according to the situation. In this direction some work has been

carried out by Yao and colleague in [129] in order to apply a transfer function adaptation

over generations. In order to obtain better and more interesting solutions, often, this kind

of evolution is carried out together with the other kinds of neural network optimizations,

described in the other sections.

In this section also another work is presented in the literature, carried out by Poli and

colleagues [95]. Their work considered a particular hybrid method, where genetic pro-

gramming evolved a mapping function to adapt the weights, whereas a genetic algorithm-

based approach evolved the architecture. GP was previously used in several other works

to evolve architecture and weights simultaneously [66], or to evolve rules for constructing

neural networks [96]. Here it is used to build a non iterative mapping function, that is

evolved concurrently to the architecture.

The authors defined a parse tree to implement the mapping function in their algorithm.

In particular, all individuals, genotypes, in the population were structure which had one

part to describe the architecture of the encoded network, and a second part to represent

the function to map the raw random weights, which were fixed throughout a run, into

the values used to evaluate the network performance. In order to evolve the architecture,

they implemented a modified version of a previous work [94], in which a two dimensional

individual representation was defined.

In this work, the most important issue regarded the representation of the individuals of

the population, and particular attention was given to the function representation. Indeed,

in order to define the parse tree in the second part of the genotype, a set of terminals,

different from those used for the first part of the genotype, and a set of functions was

defined. The set of terminals included a variable representing the weight which the function

was applied to, and also a variable used to initialize random constants when the individuals

of the initial population were created. In order to simultaneously evolve such parts of

each element, Poli and colleague defined also a particular kind of ‘combined’ crossover

operator, that was applied first to the architecture of both parents, and then to the encoding

of the mapping function. In this second part, a standard GP crossover, described in Chapter

2, was performed by replacing subtrees of the parents.

Several experiments were carried out in this work, also considering benchmark prob-

lems. In particular, two applications to feedforward and to recurrent neural networks were
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described respectively. Results compared well with other approaches and were promising.

Furthermore, the authors said that their method not only had suitable results, but it also

opened new possibilities for GP in EANNs.

4.6 Input Data Selection

EAs are attractive for dimensionality reduction of the input data set when it is quite large.

Indeed, in these situations there may be some redundancy among different inputs. A large

number of inputs to an ANN increase its size and thus require more training data and

longer training times in order to achieve a reasonable generalization ability. The input data

reduction can be made with EAs without loss in performance [20]. In this approach, each

individual in the population represents a portion of the input data. The ANN is trained

with these individuals and the result is part of its fitness. Another related issue is the

partitioning of the input data of a network into a training and a validation set. This operation

is almost always done quite arbitrarily, although it may influence the network performance

significantly. For this reason, Reeves and colleagues [99] apply genetic algorithms to select

training sets for a kind of neural network.

4.7 Architecture Optimization

Architecture design is an important issue in the successful application to the ANN evolu-

tion, because the architecture has significant impact on the network information processing

capabilities. There is no systematic way to design a near-optimal architecture for a given

task automatically. For this reason, pattern classification approaches [121] can be used to

design the network structure, and constructive and destructive algorithms represents an ef-

fort toward the automatic design of network topologies [133]. The constructive algorithm

starts with a small network. Hidden layers, nodes, and connections are added to expand

the network dynamically [137]. The destructive algorithm starts with a large network. Hid-

den layers, nodes, and connections are then deleted to contract the network dynamically

[83]. These algorithms define incremental and decremental neural networks respectively,

as described in detail in Chapter 3.

The design of an optimal NN architecture can be formulated as a search problem in

the architecture space, where each point represents an architecture. As pointed out by

Yao [137, 139, 133], given some performance (optimality) criteria, e.g., minimum error,

learning speed, lower complexity, etc., about architectures, the performance level of all

these forms a surface in the design space. Determining the optimal architecture design is

equivalent to finding the highest point on this surface. There are several features of the

surface considered which make the case for using EAs for searching for the best network

topology, and which make them better candidates rather than incremental and decremental

algorithms [78, 113]. Characteristics presented by Miller [78] all refer to the surface of

possible solutions, and they are described in detail in Chapter 3.

Stanley and Miikkulainen in [113, 114] presented a neuro-evolutionary method using

augmenting topologies (NEAT), that is designed to take advantage of structure as a way of

minimizing the dimensionality of the search space of connection weights. So, this approach

can also be included into the class of algorithms for simultaneous evolution of architecture

and weights. NEAT was designed specifically to address three main issues, like outper-
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forming the solutions that employ a principled method of crossover of different topologies,

protecting structural innovation using speciation, and incrementally growing from minimal

structure. Structural mutation expanded the genome, adding a connection between two pre-

viously unconnected nodes, or adding a node; in this case an existing connection was split

and the new node placed where the old connection used to be; the old connection was dis-

abled and two new connections were added to the genome. This method of adding nodes

was chosen by the authors to integrate new nodes immediately into the network. Speed

was asserted to be one benefit of this approach, since smaller structures optimized faster,

so the system was able to optimize the minimal number of connections necessary to obtain

a solution. Furthermore, being trapped in local minima may be avoided by adding new

connections to network topologies. Crossover was implemented by taking a chronology

of every gene in the system, in order to cross over only genomes with the same histori-

cal origin. Stanley and colleagues implemented this method in order to solve the problem

of competing conventions for disparate topologies, and avoiding the need for expensive

topological analysis.

The authors also underlined that, in contrast with methods generally implemented to

seed the initial population, in their work the population was seeded with a uniform distrib-

ution, with no hidden nodes. Since NEAT protected innovation using speciation, a network

started from a minimal configuration and the topology was grown only as necessary. Struc-

ture were modified, and only those structures that were found to be useful through fitness

evaluations survived. In this way they also said that the number of generations necessary

to find a solution were significantly reduced.

In NEAT also the fitness landscape was altered by structure-mutation operators. The au-

thors concluded that the ablation studied demonstrated that historical markings, speciation,

and incremental growth from minimal structure were all integral components of efficient

evolution of network structure.

4.7.1 Critical Issues

One of the most important forms of deception in ANNs structure optimization arises from

the many-to-one and from one-to-many mapping from genotypes in the representation

space to phenotypes in the evaluation space. The existence of networks functionally equiv-

alent and with different encodings makes evolution inefficient. This problem is usually

termed as the permutation problem [50] or the competing convention problem [105]. It

is clear that the evolution of pure architectures has difficulties in evaluating fitness accu-

rately. As a result, evolution would be very inefficient. Other important issues in evolving

architecture regard the genotype representation scheme and the definition of the EA used

to evolve the network topology. In the encoding phase, an important issue is to decide how

much information about an architecture should be encoded into a chromosome (genotype).

Then, the performance of MLPs strongly depends on the topology of the networks,

considering size and structure. As a result, the definition of the network topology charac-

terizes networks features like its learning process speed, learning precision, noise tolerance

and generalization capacity. There are two major ways in which EAs have been used for

searching network topologies: either all aspects of a network architecture are encoded into

an individual or a compressed description of the network is evolved. The first case defines

a direct encoding, while the second leads to an indirect encoding.
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Direct Encoding

In direct encoding each parameter of the neural network is exactly specified and little ef-

fort in decoding is required, since a direct transformation of genotypes into phenotypes is

defined. Under this scheme, the connection topology is represented by means of an adja-

cency matrix, that is, an N -node architecture is represented by an N ×N matrix A, where

aij = 1 means that there is a connection between units i and j and aij = 0 stands for

no connection. An individual in a population of architectures is simply the string resulting

from the concatenation of successive rows of the matrix. Several examples of this approach

are shown in the literature, like in [78, 124]. Another work is presented in [137], in which

the direct encoding scheme is used to represent ANN architectures and connection weights

(including biases). EP-Net [137] is based on evolutionary programming with several dif-

ferent sophisticated mutation operators and is described also in Section 4.8.

This encoding is easy to understand and to implement, but it also has a major drawback,

that refers to the fact that it does not scale well, since an N -node network potentially has

on the order of N2 connections, leading to very long chromosomes. As a consequence,

training a whole population of networks by backpropagation or similar methods can be

extremely slow. Another problem of this approach is that incorrect structures can be pro-

duced, i.e, it can, for example, produce feedback connections for feedforward networks.

Direct encoding is thus only useful for small architectures.

Indirect Encoding

In view of the scalability problems brought about by direct encoding methods and of their

consequences in terms of performance, several researchers focused their efforts on tech-

niques for developing or growing neural networks, rather than looking for a complete net-

work description at the individual level. Indirect representations, on the other hand, require

a considerable effort for neural network decoding, but, in some cases, the network can be

pre-structured, using restrictions in order to rule out undesirable architectures, which makes

the searching space much smaller. A few sophisticated encoding method is implemented

based on network parameter definitions. These parameters may represent the number of

layers, the size of the layers, i.e., the number of neurons in each layer, the bias of each

neuron and the connections among them.

Although no general conclusions as to whether this approach is actually better can

be drawn yet, indirect encoding is an interesting idea that has been further pursued by

other researchers, like Filho and colleagues [39], and Harp and colleagues [51]. Their

method is aimed at the choice of the architecture and connections, and uses a representation

which describes the main components of the networks, dividing them in two classes, i.e.,

parameter and layer sections. In particular, the parameter section specifies the learning rate

and the momentum term for all network connections; while the layer section specifies the

number of units in each layer. In this algorithm, network performance evaluation is based

on the error costs of the network and the losses caused by the network in each transaction,

giving a fitness which is representative of network performance. In the reproduction phase,

the roulette wheel method was used to select the candidates and networks with higher

fitness were preferentially chosen. Furthermore, an elitist policy was implemented, and

the architecture with the highest fitness is automatically copied in the next generation. The

genetic operators implemented in this work consider crossover as the predominant operator,

while mutation is defined as the secondary operator, only responsible for slight qualitative
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changes in the network features architecture.

4.8 Simultaneous Evolution of Architecture and Weights

One solution to takle the effects of the noisy fitness evaluation problem in ANNs structure

optimization is to consider a one-to-one mapping between genotypes and phenotypes of

each individual. This is possible by performing simultaneous evolution of the architecture

and the network weights. The advantage of combining these two basic elements of a NN

is that a completely functioning network can be evolved without any intervention by an

expert.

Some methods that evolve both the network structure and the connection weights were

proposed in the literature. Castillo and colleagues [25] present a method to search for

the optimal set of weights, the optimal topology and learning parameters using a genetic

algorithm for the network evolution and backpropagation for network training, even though

the initial learning constant is set by hand.

ANNA ELEONORA: simultaneous evolution with genetic algorithm Maniezzo pro-

posed a genetic algorithm [75], ANNA ELEONORA, implemented for learning both topol-

ogy and connection weights, considering two design techniques. The first is a genetic oper-

ator, called GA-simplex [17]. The second one is an encoding procedure, called granularity

encoding [73, 74], that allows the algorithm to autonomously identify an appropriate suit-

able length of the coding string. In this approach an extended direct encoding scheme is

defined, where each connection is represented directly by its binary definition. This kind

of representation uses the network nodes as basic functional units and encodes all infor-

mation relevant for a node in nearby positions, including its input connectivity pattern and

the relative weight distribution. Connectivity is coded by presence/absence, i.e. 1/0, bit

values, defining the connectivity bits. When connection is present, after each connectivity

bit there is the binary encoding of the relative weight. The first byte of the string speci-

fies the granularity, i.e., the number of bits according to which the weights of the present

connections have been codified in the binary representation. In the algorithm implemented,

coding granularity is a control parameter that evolves concurrently to the net structure, in

order to find the best solution in the space of the granularities. This approach employs four

genetic operators, reproduction, crossover, mutation and GA-simplex, and two versions,

sequential and parallel, were considered respectively. A particular attention was given to

the GA-simplex algorithm. This is a ternary operator implemented to exploit the fitness

landscape identified by the solutions. GA-simplex algorithm operates on three individuals

of the population in order to generate a new individual. The new individual is generated

considering the binary string encodings of the three individuals, ranked by their fitness val-

ues. A bit to bit comparison is carried out between the three individuals. If the first and the

second bits are the same, the new string maintains, for that bit position, the same bit value

of the first individual, otherwise, the opposite bit value of the third individual is assigned to

the new string. The ANNA ELEONORA algorithm has been validated with several prob-

lems. Results of this approach, applied to Rumelhart’s test suite, showed the effectiveness

of GA-simplex algorithm for architecture evolution, even though applying it too often can

lead to early convergence.
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EP-Net: evolve feedforward ANN with EP An evolutionary system, EP-Net [137], was

also presented for evolving feedforward ANNs. The evolutionary algorithm implemented

in EP-Net to evolve ANNs is based on Fogelś evolutionary programming [44]. The idea

behind this approach is to put more emphasis on evolving ANN behaviors; in particular,

a number of techniques have been adopted to maintain a close behavioral link between

parents and their offspring. In EP-Net, the only mutation operation for modifying ANN

weights is implemented by a hybrid training algorithm, consisting of a modified backprop-

agation (MBP), with adaptive learning rules, and a simulated annealing (SA) algorithm. It

could be regarded as two mutations driven by BP and SA algorithms separately. The main

purpose of this weight mutation algorithm is to discourage architectural mutation if train-

ing, which often introduces smaller behavioral changes in comparison with architectural

mutations, can produce a satisfactory ANN. Only when the hybrid training algorithm fails

to reduce the error of the neural network, architectural mutations will take place. In the

architecture mutation algorithm node or connection deletions are always attempted before

connection or node additions, in order to encourage the evolution of small ANNs. Con-

nection or node additions will be tried only after deletions fail to produce good offspring.

EPNet evolves ANN architectures and weights simultaneously in order to reduce noise in

fitness evaluation even though evolution simulated by this approach is closer to Lamarckian

than to Darwinian evolution. In their follow-up study [138] Yao and colleagues combined

the solutions of EP-Net population ensembles, and produced solutions which compared

well with those obtained from isolated networks. Since the best solution found in the first

work was obtained only on a validation set, without considering a testing set, Yao and col-

leagues considered then all individuals of the last generation, and linearly combined them

together, forming an esemble. They considered this as a method to show the importance

of using population information, but they also said that non-linear combination methods

could give better results.

Improved genetic algorithm Leung and colleagues developed a new system [69] for tun-

ing the structure and parameters of a neural network in a simple manner. A given fully

connected feedforward neural network may become a partially connected network after

training. The topology and weights are tuned simultaneously using a proposed improved

GA. In this approach the weights of the network links govern the input-output relationships

mapping of the NN, while the structure of the neural network is governed by introducing

switches elements for each NN connection.

COVNET: co-evolutionary models Simultaneous evolution of architecture and weights

of a network was also implemented in a new kind of models for evolving ANNs, named

co-evolutionary models. García Pedrajas and colleagues presented COVNET, an example

of cooperative co-evolutionary method [89]. In COVNET each species is a subnetwork

that constitutes a partial solution of a problem; the combination of several individuals from

different species makes up the network that is to be applied to the specific problem. Here

a population of networks evolves by means of a steady-state genetic algorithm that keeps

track of the best combinations of modules for solving the problem, and different species

must cooperate in order to be rewarded with high fitness values. In this work the diversity

is maintained all along evolution due to the fact that each species is evolved without ex-

changing genetic material, since this may produce non-viable offspring, and may reduce

population diversity. Although usually direct comparison with other work is difficult be-
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cause the algorithms and methods to obtain the generalization of the models are different,

the results of the model in solving three real problems were compared with a modular net-

work, and with the results of other work presented in the literature. In particular, for each

of the three problems, Pedrajas and colleagues presented results comparable with those ob-

tained with EPNet algorithm [137] and with an ensemble of networks evolved with EPNet

[138].

CNNE: constructive algorithm with NN ensembles Another recent work by Yao defines

a new constructive algorithm, called constructive NN ensemble (CNNE) [58], for training

cooperative NN ensembles. This approach emphasises both accuracy and diversity among

individual NNs in an ensemble. In order to maintain accuracy among individual NN, the

number of hidden nodes in individuals are also determined by a constructive approach. In-

cremental training based on negative correlation is used to train individual NNs for differ-

ent numbers of training epochs, which are determined automatically by its training process.

CNNE algorithm determines automatically also the number of individuals in an ensemble.

The cost function considered in this work, for determining ensemble architecures, is the en-

semble error. This is quite different from some previous works that divide the cost function

into accuracy and diversity. In this sense a major drawback of CNNE lies in the inherent

difficulty in weighing and combining the two factors in one function. Another important

feature of this approach regards architecture modifications. Indeed, in CNNE, only when

the criteria for node or NN addition are met, will architecture modifications take place.

For architecture modifications, node additions are always attempted before NN additions.

CNNE maintains diversity among individual NNs primarily by using negative-correlation

training. Hidden nodes are added to individual NNs in a constructive fashion to improve the

ensemble accuracy. Network additions to an ensemble will be attempted only after adding

a certain number of hidden nodes to individual NNs has failed to reduce the ensemble error

significantly. Such an ordering by which training is preferred to adding hidden nodes in

existing NNs and growing the existing NNs is preferred to adding new NNs bears certain

similarity to previous Yaoś work on the order of application of architectural mutation in

evolving NNs [137].

MGNN: mutation based genetic neural network Further work was carried out in order

to address drawbacks of BP gradient descent approach previously introduced. P.P. Palmes

and colleagues [88] implemented a mutation-based genetic neural network (MGNN) to re-

place BP by using an invasive approach based on the mutation strategy of local adaptation,

typical of evolutionary programming (EP), to perform weight learning. This algorithm

also dinamically evolves structure and weights at the same time and a stopping criterion is

implemented, by monitoring overfitness occurrences in order to avoid premature learning

and overlearning. Individuals are represented by vectors and matrices of real numbers as

connection weights of the NN. These vectors and matrices are subjected to random per-

mutations during mutation to improve the ANN fitness. Dynamic structure changes and

local adaptation of weights through mutation are implemented using a defined perturba-

tion function, based on an adapted strategy parameter and on a mutation strength intensity

parameter, dynamically computed during evolution.

In MGNN a gaussian perturbation is implemented together with a stochastic (GA-

inspired) and a scheduled stochastic (EP-inspired) mutation. In the first method each weight

in connection matrices and threshold vectors have the same probability of perturbation.
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On the other hand, the scheduled mutation assigns higher rather than lower probabilities.

MGNN works under the principle that individuals located away from the best solution need

drastic changes to improve their fitness than those located near the optimal solution [4].

The stopping criterion is based on the observation that a good training performance

does not necessarily imply a good validation performance. MGNN uses the validation data

to measure overfitness occurrences in an interval sampling, sliding-window. The validation

performance of the currently fittest network is compared with the validation performance

of the second fittest networks: if there is overfitness in n consecutive windows, the stopping

criteria will can the training to stop. The last best network found before the training stops

is the optimal solution found by MGNN.

GNARL: evolutionary algorithm for recurrent neural networks Another ‘invasive’ evo-

lutionary approach, namely the GNARL algorithm [4], has been carried out by sharing

some of features employed by the previous MGNN [88], such as the use of structural and

weight learning by mutation and the definition of sparse connections instead of uniform

and symmetric topologies. In this algorithm, the number of hidden nodes and connection

links for each network is randomly chosen within a defined range from 0 to a user-specified

limit, and network weights are defined as real values. In the genetic core of this approach

the selection strategy chooses the better half of the entire population to become the parents

of the new generation. The reproduction is then carried out using two types of muta-

tion: parametric mutation, that is carried out by changing network weights using Gaussian

noise, structural mutation, that involves addition or deletion of nodes or connections, that

are selected uniformly within a user-defined interval. GNARL defines also three fitness

functions, namely sum of squared errors, sum of absolute errors and sum of exponential

absolute errors, respectively. In any case, since the algorithm does not use any gradient

information, like in MGNN, changes in the fitness function have no significant bearing on

the evolutionary process.

GAEPNet: hybrid evolutionary algorithm A recent hybrid evolutionary approach for

designing neural networks for classification was presented [116]. This work introduced a

linear combination crossover operating on a real-valued multi-matrix encoding. A hybrid

evolutionary algorithm, the so-called HEA, was proposed to combine the crossover opera-

tor in GAs with the mutaiton operator in EP, defining a new method called GAEPNet, where

connection weights and architecture of ANNs evolve simultaneously. In this approach, the

real-valued multi-matrix encoding scheme was presented to encode each feedforward ANN

with one hidden layer as a genotype encompassing the matrices, which described all weight

and bias values of all neurons. Such a scheme encoded both architecture and weights and

eliminated the need for an interpretation function, indicating that the dual space problem

was avoided. It was also a flexible scheme as the only restriction on the architecture was to

set a maximum number of hidden neurons.

To benefit from both EP and GAs, Tan introduced a hybrid algorithm where the pro-

portion of crossover and mutation changed adaptively. Tan set crossover as the dominant

variation operator, and the conventional crossover used to generate offspring was arithmetic

recombination operator; the mutation operators were parametric and structural; the latter

one was implemented only when the parametric had been failed to increase the fitness of

an ANN. Both genetic operators were followed by a partial training using backpropagation
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algorithm, with a fixed number of epochs aiming at increasing the behavioural link be-

tween the parents and their offspring, and avoiding overfitting. Experiments were carried

out on benchmark problems. After a comparison with other approaches in the literature,

the author concluded that his hybrid algorithm was capable of generating ANN with high

stability and generalization, and defined as a further improvement the significant reduction

in computational time.

4.9 Hybrid EANNs and Baldwin Effect

Hybrid evolutionary algorithms, previously described in Chapter 2, become useful in the

ANN design. Hybrid neuro-evolutionary approaches may be inspired on Darwinian or

Lamarckian evolution. Several studies that consider the lamarckian or the darwinian mech-

anisms are presented in the literature, and Merelo Guervós and colleagues presented in a

recent work [22] a state of the art conducted in this direction. The aim of their work was to

carry out an experimental study into how learning can improve G-Prop genetic search on

MLP neural networks. Two ways of combining learning and genetic search were explored:

one exploited the Baldwin effect, while the other used a Lamarckian strategy. Their exper-

iments showed that using a Lamarckian operator makes the algorithm find networks with a

low error rate, and the smallest size, while using the Baldwin effect obtains MLPs with the

smallest error rate.

Some studies presented in the literature have investigated whether a strategy based on

a hybrid evolutionary neural network approach that take advantage of the Baldwin effect is

better or worse than one implementing Lamarckian mechanisms, but the results obtained

are different and problem dependent.

In the case of Darwinian evolution, the Baldwin effect, that is, the progressive incor-

poration of learned characteristics to the genotypes, can be observed and leveraged to im-

prove the search. Baldwin effect is a consequence of hybrid algorithms. Several studies

presented in the literature have demonstrated the Baldwin effect using a variety of learning

algorithms. Hinton and Nowlan [55] presented a contribution to understand the interac-

tions between learning and evolution, in order to better explain the main issues raised when

a Baldwin effect is considered in a computational model.

In order to make some of these issues more explicit, studies of Baldwin effect under

the general assumption of quantitative genetics has been described by Anderson [7, 3]. In

this sense it is important to underline that all essential elements of an evolutionary process

subject to the Baldwin effect determine the entire evolutionary process. These elements in-

clude the generation of new genotypes thorough mutation and/or recombination, the map-

ping from genotype to phenotype and the assumption that learning allows an individual to

modify its phenotype in response to its environment. An important aspect that has to be

considered is such cases is that the introduction of individual learning can radically alter

fitness landscapes. This is especially true if the learning algorithm operates on pheno-

types according to a fundamentally different process. Anderson also defined in his work

[7] that, under certain conditions, learning slows genetic change by protecting suboptimal

genotypes from selection. Thus, the benefits of individual learning probably are accrued

early in optimization, when the population is far from equilibrium, and learning can even-

tually impede algorithmic convergence. Accordingly, for optimizations on fixed fitness

landscapes, a ‘variable learning investment’ strategy, where the computational resources
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applied toward learning are subject to change, should be considered [3].

In the approach implemented in this thesis, the learning process of all the individuals in

the population can be carried out by using the backpropagation algorithm, which produces

also a Baldwin effect, because BP allows to each learnt individual (e.g. neural network) to

modify its phenotype in response to its environment.

4.10 Situating the State of the Art

The three most important lines in the evolutionary artificial neural network research have

summarized in this chapter as the optimization of basic elements of a neural network, as the

connection weights, the learning rules and the architecture. Starting from these, also other

different lines can be depicted, and one of the most interesting defines the simultaneous

evolution of the architecture and weights of a neural network.

When a connection weight evolution is considered, the architecture of the neural net-

work is fixed. One of the most critical aspects that can rise from this technique is that the

structure that will be used to define all neural networks in a population has to be set at

first time, giving some problems when such a topology is difficult to define at first step.

Also in learning rule evolution, the design of training algorithms, in particular the learn-

ing rules used to adjust connection weights, depends on the type of the neural network

architecture. Therefore, the design of such rules can become very difficult when there is a

little priori knowledge about the network topology, giving a complex relationship between

evolution and learning. The architecture evolution has an important impact on the neural

network evolution, and also the recent literature shows how the evolution of pure architec-

ture presents difficulties in evaluating fitness accurately. For this reason, in recent works,

sophisticated mutation operators are defined in order to overcome these problems. Nowa-

days, the simultaneous evolution of architecture is one of the most interesting evolutionary

ANNs techniques. Different works are carried out in this directions, considering different

kinds of genetic operators that act on weights and topologies, taking advantage from the

combination of these techniques.



Chapter 5

Neuro-Genetic Approach

5.1 Introduction

As defined in Chapter 1 the subject of this P.h.D. dissertation aspires to the definition of a

robust, well defined and easy approach, that is able to solve complex problems, that could

be identified with patter recognition, classification, etc., by using soft computing tech-

niques. In particular, the aim of this work regards the definition and the implementation of

an approach in order to design and optimize artificial neural networks by using evolutionary

algorithms.

The attractiveness of ANN, as described in Chapter 3, comes from the remarkable infor-

mation processing characteristics such as nonlinearity, high parallelism, robustness, fault

and failure tolerance, learning, ability to handle imprecise information, and their capability

to generalize. It is important to underline that the successful application of an ANN usu-

ally requires a high number of experimentation, and all the features are available only in a

well defined ANN. Moreover, several parameters of an ANN can affect, during the design,

how easy a solution is to find. Some of these parameters are related to the architecture

design of the neural network, concerning the number of layers and nodes, and the connec-

tion weights. Some others consider the selection of data that will define the training, the

test and the validation set, in order to guarantee their availability and their integrity. Other

important factors consider, then, the handling of local minima and the training of the ANN,

trying to avoid the entrapment in local minima, and to avoid the overfitting of the network.

Finally, a good deal of attention must be paid to the data set definition, so that the network

will generalize correctly on data which it has not been trained on.

There is no standard design that is able to solve all these questions for a given problem.

Evolutionary algorithms become, in this sense, helpful and they represent a good solution

to solve the problem of the ANN design. As previously described in Chapter 2, the evo-

lutionary process is a more integrated and rational way of designing ANNs since it allows

single aspects of the design to be taken into account at the same time as several interacting

aspects and does not require any expert knowledge of the problem. Evolutionary algorithms

are especially useful for complex optimization problems where the number of parameters

is large and the analytical solutions are difficult to obtain, and they can help to find out the

optimal solution globally over a domain.

A particular type of evolving systems, namely neuro-genetic systems, have become a

very important topic of study in evolutionary computation and, as presented in Chapter 4,

they define the so-called EANNs, that are biologically-inspired computational models that

55
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use evolutionary algorithms in conjunction with neural networks to solve problems.

5.2 Evolutionary Algorithm

Evolutionary algorithms can be applied to neural networks in several ways. The most

important are already described in the previous chapter, and consist of setting the weights in

a fixed topology network, determining network structures, evolving learning rules and input

feature selection. Several systems also allow an interesting conjunction of the evolution of

network architecture and weights, carried out simultaneously. The last one also corresponds

to the approach implemented in this thesis.

Important aspects of the simultaneous evolution underline that an evolutionary algo-

rithm allows all aspects of a neural network design to be taken into account at once, with-

out require any expert knowledge of the problem. Furthermore, the conjunction of weights

and architecture evolution overcomes the possible drawbacks of each single technique and

joins their advantages. The main advantage of weight evolution is to simulate the learn-

ing process of a neural network, avoiding the drawbacks of the traditional gradient descent

techniques, such as BP. Given then some performance optimality criteria about architec-

tures, as momentum, learning rate, etc., the performance level of all these forms a surface

in the design space. The advantage of such representation is that determine the optimal

architecture design is equivalent to find the highest point on this surface. The simultane-

ous evolution of architecture and weights limits also the negative effects of a noisy-fitness

evaluation in a ANN structure optimization, by defining a one-to-one mapping between

genotypes and phenotypes of each individual.

The general idea implemented is similar to other approaches presented in the literature,

but it differs from them in the novel aspects implemented in the genetic evolution.

This work can be considered as a hybrid algorithm, since a local search based on the

gradient descent technique, backpropagation, can be used as local optimization operator on

a given data set. The basic idea is to exploit the ability of the EA to find a solution close

enough to the global optimum, together with the ability of the BP algorithm to finely tune

a solution and reach the nearest local minimum.

The approach is designed to take advantage of BP when possible and beneficial; how-

ever, it can also do without it. Backpropagation becomes useful when the minimum of

the error function currently found is close to a solution but not close enough to solve the

problem; BP is not able to find a global minimum if the error function is multimodal and/or

non-differentiable. Moreover, the adaptive nature of NN learning by examples is a very im-

portant feature of these methods, and the training process modifies the weights of the ANN,

in order to improve a pre-defined performance criterion, that corresponds to an objective

function over time. In several methods to train neural networks, BP has emerged as a suit-

able solution for finding a set of good connection weights and biases. The neuro-genetic

approach defines the possibility to take into account different learning process for neural

network training by defining a parameter of the algorithm: in the case in which the user

would implement a training process of the neural network with backpropagation algorithm,

a bp parameter will be set to 1. Otherwise, the training process will be carried out only con-

sidering the genetic evolution, and the bp parameter will be set to 0. A supervised learning

scheme, as presented in Chapter 3, is implemented in the approach, in which each instance

of the data set includes all input attributes and the target output. During the training process
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the set of training data is repeatedly applied to the network until the difference between the

outputs and the target values are within a desired tolerance.

A peculiar aspect of this approach is that BP is not used as some genetic operator, as is

the case in some related work [93]. Instead, the EA optimizes both topology and weights

of the networks; BP is optionally used to decode a genotype into a phenotype NN. Accord-

ingly, it is the genotype which undergoes the genetic operators and which reproduces itself,

whereas the phenotype is used only for calculating the genotype’s fitness.

Feedforward neural networks are a basic type of ANNs capable of approximating

generic classes of functions, including continuous and integrable ones. The neuro-genetic

approach restricts the attention to a specific subset of feedforward neural networks, namely

MLP. This neural network has features such as the ability to learn and generalize, smaller

training set requirements, fast operation, ease of implementation and with simple struc-

tures. MLPs are described in detail Chapter 3, and they are feedforward NNs with one

layer of input neurons, one layer of one or more output neurons and one or more “hidden”

(i.e., internal) layers of neurons in between; neurons in a layer can take inputs from the

previous layer only. In the algorithm, fully connected feedforward MLP will be considered

for simplicity.

The idea proposed in this work is close to the solution presented in EPNet [137]: a

new evolutionary system for evolving feedforward ANNs, that puts emphasis on evolving

ANNs behaviors. This neuro-genetic approach evolves ANNs architecture and connection

weights simultaneously, as EPNet, in order to reduce noise in fitness evaluation.

Close behavioral link between parent and offspring is maintained by applying different

techniques, like weight mutation and partial training, in order to reduce behavioral disrup-

tion. Genetic operators defined in the approach include:

• Truncation Selection,

• Mutation, divided into:

– weight mutation

– topology mutation

• Crossover.

that will be described in detail in the rest of this chapter.

In this context, the evolutionary process attempts to mutate weights before performing

any structural mutation; however, all different kinds of mutation are applied before the

training process. Weight mutation is carried out before topology mutation, in order to

perturb the connection weights of the neurons in a neural network. After each weight

mutation, a weight control is carried out, in order to delete neurons whose contribution is

negligible with respect to the overall network output. This allow to obtain, if possible, a

reduction of the computational cost of the entire network before any architecture mutation.

Particular attention has to be given to all these operators, since they are defined in

order to emphasize the evolutionary behavior of the ANNs, reducing disruptions between

them. Examples are also reported in the description of the weights and topology mutations,

described in detail in the rest of this chapter.

As indicated in the introduction, this thesis is primed by an industrial application [2,

1], in which a neural engine-controller design is implemented, with particular attention

to reduced power consumption and silicon area occupation. The validity of the resulting
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approach, however, is by no means limited to hardware implementations of NNs. A further

application describes a brain wave signal processing system[5], in particular a classification

algorithm for the analysis of P300 Evoked Potential. Finally, the third application considers

two financial problems, whereby a factor model capturing the mutual relationships among

several financial instruments is sought for, and a time series prediction problem.

5.2.1 Detailed Description of the Algorithm

The general framework of the evolutionary process can be described by the pseudo-code

shown in Figure 5.1. Individuals in a population compete and communicate with other

individuals through genetic operators applied with independent probabilities, to perform

certain tasks. In this thesis the objective function of the problem is directly proportional

to the global cost of each neural network considered. For this reason, the convention that

the best fitness corresponds to the lower fitness is adopted, defining the objective of each

task as a cost minimization problem. The fitness function defined for each individual of the

population is described in detail in section 5.4.

Initialize the population, either by generating new random individuals or by

loading a previously saved population, with a specified dimension parameter

for each genotype do

Create the corresponding MLP

calculate its mean square error (MSE), its cost, and its fitness value

end for

Save the best individual as the best-so-far individual with the best (lowest) fit-

ness value

while not termination condition do

Apply genetic operators to each network

Decode each new genotype into the corresponding network

Compute the fitness value for each network

Save statistics of the generation

end while

Figure 5.1: Pseudocode of the evolutionary process.

The genetic cycle iterates until the termination conditions are reached. In this approach

they are defined as a maximum number of executions, including those carried out during

the training phase, to be reached; or the maximum number of evolution generations, or,

simply the achievement of a satisfactory solution.

The genetic operators are described by the pseudo-code depicted in Figure 5.2. They

are used to generate offspring, new individuals, from parents, existing individuals, and they

define the evolutive cycle.

5.2.2 Initialization

The framework of the neuro-genetic approach requires that a new population be created

either by loading a previously saved population, or by generating a new one. In this P.h.D.

work, all applications implemented create a new population at first. In this case, a number

of individuals that corresponds to the dimension of the population, previously defined, is
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Select from the population (of size n) ⌊n/2⌋ individuals by truncation

Create a new population of size n with copies of the selected individuals

for all individuals in the population do

Perform crossover

Mutate the weights and the topology of the offspring

Train the resulting network using the training and test sets if bp = 1
Calculate f and f̂ (see Section 5.4), i.e. the fitness values calculated on train

and test sets respectively

Save the individual with lowest f̂ as the best-so-far individual if the f̂ of the

previously saved best-so-far individual is higher (worse)

end for

Save the statistics of the generation

Figure 5.2: Pseudocode of the evolutionary process.

created and all individuals have not pre-established topology, the population is initialized

with different hidden layer sizes and different number of neurons for each individual, in

order to maintain diversity between all the individuals in the new population. Two expo-

nential distributions are used to determine the number of hidden layers and the number of

neurons for each layer in each individual, while a normal distribution is used to initialize all

the weights and biases values of the new network. Variance matrices are also defined for all

weights and bias matrices, and will be applied in conjunction with evolution strategies in

order to perturb network weights and bias. Variance matrices are initialized with matrices

of all ones.

Unlike other approaches, like [139], the maximum size, that corresponds to the number

of the hidden layers, and the maximum number of neurons in each layer is not determined

in advance, nor bounded. This method is implemented in order to avoid the definition

of more algorithm parameters, like the boundaries of network topology dimension. In

this direction, the fitness function implemented in this approach works as a controller and

selector, because it penalizes large networks.

With this solution the problem of over-sized neural networks is avoided.

5.3 Individual Encoding

Each individual is encoded in a structure that maintains basic information on the network

as illustrated in Table 5.1. The values of all elements that define the individual represen-

tation are affected by the genetic operators during evolution. Such genetic operators, and

in particular the topology mutation operator, enable the algorithm to perform incremen-

tal (adding hidden neurons or hidden layers) and decremental (pruning hidden neurons or

hidden layers) learning.

An example of a simple full connected feedforward MLP neural network, defined in the

neuro genetic approach, is depicted in Figure 5.3. The neural network structure is created

with a number of hidden layers (together with the output layer) equal to the genotype vector

size. The input layer is equal for all the neural networks, so is not specified in the genotype

vector. The number of hidden nodes in the ith hidden layer corresponds to the number

specified in the ith element in the genotype vector. All the nodes in each layer are connected
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Table 5.1: Individual Representation.

Element Description

l Length of the topology string, corresponding to the number of

layers.

topology String of integer values that represent the number of neurons

in each layer.

W
(0) Weight matrix of the input layer neurons of the network.

Var
(0) Variance matrix of the input layer neurons of the network.

W
(i) Weight matrix for the ith layer, i = 1, . . . , l.

Var
(i) Variance matrix for the ith layer, i = 1, . . . , l.

bij Bias of the jth neuron in the ith layer.

Var(bij) Variance of the bias of the jth neuron in the ith layer.

to all the nodes of the following one with the corresponding matrix of weights, defined for

any layers. For each weight matrix, the corresponding Variance matrix is also created, and

is used to perturb, in the mutation, the corresponding weights. For each layer also the bias

vector is defined, which contains, in each element, the bias value of the corresponding node

in the neural network.
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Figure 5.3: Representation of an individual.

Table 5.2 lists all the parameters of the algorithm, and specifies the values that they

assume when the default setting is taken for a considered problem.

Some problem-specific parameters of the algorithm are the costs α of a neuron and

β of a synapsis used to establish a parsimony criterion for the network architecture; a bp

parameter, which enables the use of BP if set to 1, and other parameters like probability

values used to define topology, weight distribution and ad hoc genetic operators.

All the experiments are carried out by specifying the algorithm parameters and by tun-
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Table 5.2: Parameters of the Algorithm.

Symbol Meaning Default Value

n Population size 60

seed Previously saved population none

bp Backpropagation selection 1

p+
layer Probability of inserting a hidden layer 0.1

p−layer Probability of deleting a hidden layer 0.05

p+
neuron Probability of inserting a neuron in a hidden layer 0.05

pcross Probability of crossover 0.2

r Parameter used in weight mutation for neuron elimination 1.5

ǫ Alternative threshold used for neuron elimination 0

h Mean for the exponential distribution 3

Nin Number of network inputs *

Nout Number of network outputs *

α Cost of a neuron 2

β Cost of a synapsis 4

λ Desired tradeoff between network cost and accuracy 0.5

k Constant for scaling cost and MSE in the same range 10−5

*) Problem-specific dependent.

ing the genetic parameters to obtain the best solution. A few experiments are carried out

in each problem without considering backpropagation, i.e. by setting BP parameter equal

to 0. However, the results obtained in that cases have been showed solutions worse with

respect to those obtained in experiments with backpropagation. An example of such results

is showed in Section 7.3.1 in Tables 7.2 and 7.3.

Particular attention has to be given to the bp parameter, because its use allows one to

adopt two different types of genetic encoding schemes, as defined in Chapter 3:

• Direct Encoding, that specifies, in the genome, every connection and node that will

appear in the phenotype;

• Indirect Encoding, that usually only specifies rules for constructing a phenotype.

These rules can be layer specifications or growth rules through cell division.

Generally, indirect encoding allows for a more compact representation than direct en-

coding, because not every connection and node are specified in the genome, although they

can be derived from it. On the other hand, the major drawback of indirect schemes is that

they require more detailed genetic and neural knowledge. In this evolutionary process, if

no BP-based network training is employed, a direct encoding is defined, in which the net-

work structure is directly translated into the corresponding phenotype; otherwise, there is

an indirect encoding of networks, where the phenotype is obtained by training an initial

(embryonic) network using BP.

While promising results can be obtained by combining backpropagation and evolu-

tionary search, fast variants of backpropagation are sometimes required to speed up the

efficiency of these algorithms. In this work, considering the computational trade-offs be-

tween local and evolutionary search, the Resilient backpropagation algorithm RPROP [98]

is adopted as the local search method. The aim of this algorithm is to eliminate the harmful
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effects of the magnitudes of the partial derivatives, during the training phase. In particu-

lar, in this method only the sign of the derivative is used to determine the direction of the

weight update, while the magnitude has no effect on them, as is modified by a separate

update process.

5.4 Fitness Function

An optimization problem requires a solution such that a certain quality criterion, called ob-

jective function, is maximized (or, equivalently, minimized). The fitness of each individual

in a population, reflects its objective function value with respect to the particular objective

to be optimized.

Although it is customary in EAs to assume that better individuals have higher fitness,

the convention that a lower fitness means a better NN is adopted in the neuro-genetic ap-

proach. This maps directly to the objective function of the genetic problem, which is a cost

minimization problem.

In this work two kinds of fitness function are defined, and, for each application con-

sidered, only one has been chosen and applied to each individual of the population in the

evolutionary process.

As defined in successful evolutionary approaches to neural network evolution presented

in the literature [137], the general difficulty in using a fitness function like f = ferror +
αfcomplexity in practice lies in the selection of suitable coefficient α, which often involves

tedious trial-and-error experiments.

Moreover, each of the two fitness function implemented in this thesis has to solve a

multi-objective problem, because each of them is defined by combining two aspects that

usually come into conflict, which are respectively the cost and the accuracy of the neural

network considered. In particular an arbitrary parameter λ which specifies the desired

trade-off between network cost and accuracy is defined in the two fitness functions. Ac-

cordingly an array of Pareto-optimal designs should be identified by the approach.

The two kinds of fitness functions are defined as follows:

• MSE Fitness Function: this kind of fitness depends both on the accuracy, that is

its mean square error, and on the cost of each individual. Therefore, the fitness is

proportional to the value of the MSE and to the cost of the considered network. It is

defined as in Equation 5.1:

f = λkc + (1− λ)MSE (5.1)

where λ ∈ [0, 1] is a parameter which specifies the desired trade-off between network

cost and accuracy, k is a constant for scaling the cost and the MSE of the network to

a comparable scale, and c is the overall cost of the considered network. This cost is

defined by Equation 5.2:

c = αNhn + βNsyn (5.2)

where Nhn is the number of hidden neurons, and Nsyn is the number of synapses.
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The MSE depends on the Activation Function, the same for all nodes of a layer of the

neural network. In this work the tangent sigmoid transfer function is implemented

according to Equation 5.3:

y =
2

1 + e−2x
− 1 (5.3)

• Corrcoeff Fitness Function: this fitness function is proportional to the statistical cor-

relation coefficient, so-called Corrcoeff and to the cost of each individual. The new

coefficient is defined by Jones in [60]. The correlation fitness is defined between the

target output and the output obtained from the neuro-genetic evolution. This coeffi-

cient is expressed by Equation 5.4:

Corrcoeff(i,j) =
Cov(i, j)

σiσj
(5.4)

where Cov(i, j) represents the Covariance of the considered values, σi and σj rep-

resent the corresponding standard deviation values.

Then, the fitness function is defined with the equation 5.5:

f = λkc + (1− λ)(1− Corrcoeff) (5.5)

in which the parameters λ, k, and c, correspond to the same parameters of the MSE

fitness function 5.1, and they respectively represent the desired trade-off between

network cost and accuracy, the constant for scaling the cost and the MSE, and the

overall cost of the considered network, that is defined by the same equation 5.2.

For both objective functions, the rationale behind introducing a cost term in the ob-

jective function is the search for networks which use a reasonable amount of resources

(neurons and synapses), which makes sense in particular when a hardware implementation

is envisaged. Simulations carried out with both these types of objective functions produce

very similar solutions, resulting a substantially statistically equivalent from this point of

view.

In the evolutionary process, two fitness values are calculated for each individual: the

fitness f , used by the selection operator, and a test fitness f̂ . Following the commonly

accepted practice of machine learning, the problem data are partitioned into three sets:

• training set, used to train the network;

• test set, used to decide when to stop the training and avoid overfitting;

• validation set, used to test the generalization capabilities of a network.

There is no agreement in the literature on the way these sets are named: some work

consider the definitions of test and validation sets exchanged.

The fitness f̂ is calculated according to the equation of the objective function consid-

ered, by using the MSE over the test set, or the correlation coefficient. When BP is used,

i.e., if bp = 1, then f = f̂ , which corresponds to considering only the fitness calculated

on the test set, since the network has learned the train set in the learning process. In the

opposite case, when (bp = 0), the fitness f is calculated according to its equation, by using

the MSE (or correlation coefficient) over both the training and test sets.
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5.5 Selection

In the evolution process two important and closely related issues are population diversity

and selective pressure. Indeed, an increase in the selective pressure decreases the diversity

of the population, and vice versa. Like indicated by Michalewicz [77], it is important to

strike a balance between these two factors, and sampling mechanisms are attempted to

achieve this goal. As observed in that work, many of the parameters used in the genetic

search affect these factors. In this sense as selective pressure is increased, the search focuses

on the top individuals in the population, causing a loss of diversity population. Using larger

population, or reducing the selective pressure, increases exploration, since more genotypes

are involved in the search.

In the work by De Jong [61], several variations ot the simple selection method were

considered; the first variation, named elitist model, enforces the genetic algorithm by pre-

serving the best chromosome during the evolution. An important result, by G. Rudolph

[102], is that elitism is a necessary condition for convergence of an evolutionary algorithm;

of course, convergence is only probabilistic, and there is no guarantee that just one run of

an evolutionary algorithm for a given number of generations will yield the globally optimal

solution.

The selection method implemented in this work is based on breeder genetic algorithm

approach [84], that differs from natural probabilistic selection since the evolution of a

population considers only the individuals that better adapt themselves to the environment.

Elitism is considered also in this work, allowing the best individual to survive unchanged

in the next generation and solutions to monotonically get better over time.

The selection strategy implemented in this genetic algorithm is truncation. This kind

of selection is not a novel solution in this thesis, indeed, several studies in the literature

consider evolutionary approaches described the truncation selection, as in [25]. In this,

and perhaps in other works, truncation is chosen in order to prevent the population from

remaining too static and perhaps not evolving at all. Moreover, this kind of selection is a

very simple technique and produces satisfactory solutions through conjunction with other

strategies, like elitism.

All the individual in a population are initially ranked in ascending order of fitness, since

the neuro-genetic approach considers a minimization problem. Each solution is assigned

to an element of a ranked vector. Starting from a population of n individuals, the worse

⌊n/2⌋ (with respect to f ) are eliminated. The remaining individuals are duplicated in order

to replace those eliminated. Finally, the population is randomly permuted. The population

created as a result of the selection operator will become the population of the parents for

the new population of the next generation.

In each new generation, a new population has to be created. The first operator imple-

mented is selection. The first half of the new population corresponds to the best parents that

have been selected with the truncation operator, while the second part of the new population

is defined by creating offspring from the previously selected parents.

5.6 Mutation

The main function of this operator is to introduce new genetic materials and to maintain

diversity in the population. As indicated in Chapter 2, in some evolutionary algorithms,

like genetic algorithms, mutation is generally considered as a main operator.
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Generally, the purpose of mutation is to simulate the effect of transcription errors that

can occur with a very low probability pmut, the mutation rate, when a chromosome is

duplicated.

In the neuro-genetic approach, two types of mutation operators are used: a general

random perturbation of weights, applied before the BP learning rule, and four mutation

operators which affect the network architecture. All these kinds of mutation are defined

with different and independent probability parameters, considered as algorithm parameters.

They could be set with pre-defined constant values, but in most cases, they are, together

with other probability parameters like for crossover operator, problem dependent. For this

reason, in each application described in this thesis, several settings have been tested in the

experiments, in order to define the better set of related algorithm parameters.

In all real-world problems considered, and obviously in all benchmark problems during

the validation, mutation probabilities have been defined with low values, defined between

0 and 1, in order to limit the disruptive effects of mutation.

In this work, the weight mutation is applied first, based on the concept of evolution-

ary strategies, while topology mutations are applied only after a weight control operator.

This operator is always carried out in the genetic algorithm after weight mutation, because

a perturbation of weight values changes the behavior of the network with respect to the

activation functions; in this case, all neurons whose contribution become negligible with

respect to the overall behavior, are deleted from the structure.

All these kinds of network mutations are applied to the neural networks in the evo-

lutionary cycle, and they are implemented in order to provide a high correlation between

parents and offspring in the population, and to reduce the negative effects that can occur in

mutation operator.

5.6.1 Weight Mutation

This kind of mutation defines a Gaussian distribution for the Variance matrix values of each

network weight. This solution wants to be similar to the approach implemented by Schwe-

fel [106], who defined evolution strategies, described in detail in Chapter 2, algorithms

in which the strategy parameters are proposed for self-adapting the mutation concurrently

with the evolutionary search. The main idea behind these strategies is to allow a control

parameter, like mutation variance, to self-adapt rather than changing their values by some

deterministic algorithm.

Evolution strategies perform very well in numerical domains, since they are dedicated

to (real) function optimization problems. They are defined by Michalewicz [77] as exam-

ples of evolution programs which use appropriate data structures, corresponding to floating

value vectors extended by control strategy parameters.

All the weight matrices W
(i), i = 0, . . . , l and the biases are perturbed by using vari-

ance matrices and evolution strategies applied to the number of synapses of the entire neural

network Nsyn. This mutation is implemented by the following equation:

W
(i)
j ← W

(i)
j + N(0, 1) ·Var

(i)
j (5.6)

Var
(i)
j ← Var

(i)
j · eτ ′N(0,1)+τN(0,1) (5.7)
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with

τ ′ =
1

√

2Nsyn

(5.8)

τ =
1

√

2
√

Nsyn

(5.9)

As Schwefel has defined for his first procedure [106], this kind of mutation offers a

simplified method for self-adapting each single value of the Variance matrix V ar
(i)
j , whose

values are defined as log-normal perturbations of their parent parameter values. The weight

perturbation implemented in this neuro-genetic approach allows network weights to change

in a simple manner, by using evolution strategies.

Weight Control and Neuron Elimination

After this perturbation has been applied, neurons whose contribution to the network output

is negligible are eliminated, based on a threshold. The neuron elimination is theoretically

included into the topology mutation, and also is the consequence generated by the weight

control process when a node in the network has a negligible contribution. For this reason

the neuron elimination is not applied with an independent probability, as for the other kinds

of topology mutations, that are described in the next section. An example of neuron elimi-

nation is shown in Figure 5.4. When a neuron is deleted, all weight connections both to the

previous and to the next layer are deleted, and the corresponding matrices are updated, as

well as the biases vector of the considered layer. The node and the corresponding activation

function block are deleted from the network structure.
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Figure 5.4: Neuron elimination
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In the neuro-genetic approach two different kinds of thresholds are considered and

alternatively applied to weight perturbation.

• Fixed threshold The first is a fixed threshold, simply defining a ǫ parameter, set be-

fore execution. The following pseudocode is implemented in mutation operator by

applying a comparison between that parameter and all weight matrices values.

for i = 1 to l − 1 do

if Ni > 1
for j = 1 to Ni do

if ||W (i)
j || < ǫ

delete the jth neuron

where Ni is the number of neurons in the ith layer, and W
(i)
j is the jth column of

matrix W
(i).

This solution presents the drawback that the fixed threshold value ǫ could be difficult

to set for different real-world application. A solution to this problem has been imple-

mented in this approach by defining a variable threshold, as following described.

• Variable threshold In this case the new threshold is defined, depending on a norm

(in this case L∞) of the weight vector for each node, as well as a relevant average

and standard deviation of the norms of the considered layer. This task is carried out

according to the following pseudo-code:

for i = 1 to l − 1 do

if Ni > 1
for j = 1 to Ni do

if ||W (i)
j || < (avgk(||W

(i)
k ||)− r · σk(||W (i)

k ||))
delete the jth neuron

where Ni is the number of neurons in the ith layer, W
(i)
j is the jth column of matrix

W
(i), and r is a parameter which allows the user to tune how many standard devia-

tions below the layer average the contribution of a neuron must be before it is deleted.

In this solution the settings of r parameter is only for tuning standard deviation and

corresponding variances are not so invasive in mutation.

5.6.2 Topology mutation

This operator affects the network structure, i.e., the number of neurons in each layer and

the number of hidden layers. In particular, the three mutations consider the insertion of

a new hidden neuron or a new hidden layer, and the elimination of a hidden layer. The

fourth kind of topology mutation, that regards the elimination of a neuron, is not considered

with an independent probability in order to avoid disruptive effects, but is carried out as a

consequence of the weight control process, as previously described in Section 5.6.1.

The three topology mutations are defined with the following steps:
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1. Insertion of one hidden layer: with probability p+
layer, a hidden layer i is randomly

selected and a new hidden layer i + 1 with the same number of neurons is inserted

after it, with W
(i+1) = I(Ni) and bi+1,j = bij , with j = 1, . . . , Ni, where I(Ni) is

the Ni ×Ni identity matrix. Figure 5.5 shows an example of layer insertion.

y

Input First Layer Second Layer

New Hidden Layer

lw

Output

1

1

Parent Layer

Third Layer

1x

2x

3x

4x

1,1IW 1,2LW 2,3LW 3,4LW

1,1a

1,2a

2,1a

3,1a

2,2a

1,1b

2,1b

3,1b

1,2b

2,2b

1,3b

2,3b

1,4b

1,3a

2,3a

Figure 5.5: Hidden layer insertion

An important aspect underlined in the neuro-genetic approach also regards the weight

connections of the new network. Indeed, in the insertion of a new hidden layer, all the

nodes of the parent layer are connected to all the nodes of the offspring by defining

an Identity matrix. The previous weight connections of the parent are then shifted

to the output connections of the offspring layer. These operations allow to maintain

such a mutation as much neutral as possible.

2. Deletion of one hidden layer: the deletion of a whole hidden layer is carried out with

probability p−layer. A hidden layer i is randomly selected, but the conditions that the

ith layer must have exactly one neuron and that the neural network must have at least

two hidden layers have to be verified before deleting that layer. Then, the layer i is

removed from the structure and the connections between the (i − 1)th layer and the

(i + 1)th layer (to become the ith layer) are rewired as follows:

W
′(i−1) ←W

′(i−1) ·W′(i).

The weight connections between the (i − 1)th layer and the (i + 1)th layer are not

randomly initialized, but they are redefined by combining their values in order to

reflect the influence of the hidden layer that is removed from the neural network.

Since W
(i−1) is a row vector and W

(i) is a column vector, the result of the product

of their transposes is a Ni+1 × Ni−1 matrix. An example of layer elimination is

depicted in Figure 5.6.

3. Insertion of one neuron: with probability p+
neuron, the jth neuron in the hidden layer

i is randomly selected for duplication. A copy of it is inserted into the same layer i
as the (Ni + 1)th neuron; the weight matrices are then updated as follows:

(a) a new row is appended to W
(i−1), which is a copy of jth row of W

(i−1);
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Figure 5.6: Hidden layer elimination

(b) a new column W
(i)
Ni+1 is appended to W

(i), where

W
(i)
j ← 1

2
W

(i)
j ,

W
(i)
Ni+1 ←W

(i)
j .

A graphical representation of this mutation is depicted in Figure 5.7. In this mutation

the high correlation between parents and offspring is achieved, first, by duplicating

the input connection weights of the parent in order to define the connection weights

of the offspring. Then, the output weights of the parent are equally divided and the

half is assigned to the offspring. The rationale for halving the output weights from

both the jth neuron and its copy is that, by doing so, the overall network behavior

remains unchanged, and this kind of mutation is neutral.

All three topology mutation operators are aimed at minimizing their impact on the

behavior of the network; in other words, they are designed to be as little disruptive, and

as much neutral, as possible, preserving the behavioral link between the parent and the

offspring better than by adding random nodes or layers.

5.7 Recombination

It is well known that recombination of neural networks arbitrary structure is a very hard

issue, due to the detrimental effect of the permutation problem [137]. No satisfactory solu-

tions have been proposed so far in the literature. As a matter of facts, the most successful
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approaches to neural network evolution do not use recombination at all [137]. Recombi-

nation contributes to population variability. For this reason, as also indicated in [75], there

has been some debate in the literature about the opportunity of applying crossover to ANN

evolution, based on the disruptive effects that could have on the neural model.

In this neuro-genetic approach two kinds of crossover are independently studied and

implemented, in order to improve the behaviour between parents and offspring in an evolv-

ing population. In particular, two kinds of crossover are defined. The first is a kind of

single-point crossover with different cutting points for each of the two parents; the second

implements a kind of vertical crossover, defining a merge-operator between the topologies

and weight matrices of two parents in order to create the offspring. The proportion of par-

ents undergoing crossover during a generation is controlled, in the neuro-genetic approach,

by the crossover rate pcross, a parameter of the genetic algorithm, which has a value defined

in [0,1], and determines how frequently the crossover operator is invoked.

The results obtained from the applications of the two crossover operators appear promis-

ing, even though they do not boost the performance of the neuro genetic approach signif-

icantly in the present form. Further studies of new crossover design could improve it, by

being as little disruptive as possible.

5.7.1 Single-Point Crossover

This operator represents a kind of single-point crossover, where cutting points are inde-

pendently extracted for each parent, because in this neuro-genetic approach, the genotype

length of each individual is variable, and not bounded. The only ‘restriction’ implemented

in this method is that genotypes can be cut only in ‘meaningful’ places, i.e., only between

one layer and the next, avoiding so-called ‘diagonal’ cutting points. This means that a

new weight matrix has to be created to connect the two layers at the crossover point in

the offspring. These new weight matrices are initialized from a normal distribution, while

corresponding variance matrices are set to matrices of all ones.

In this crossover operator, the individuals can be seen as vectors, and for two parents

vectors a and b, that can have different dimensions, a single-point crossover is performed

by selecting two different cutting points, "Cutting point a" and "Cutting point b", and ex-

changing the elements occurring after cutting point "a" in parent "A", with those that occur

after point ‘b’ in the corresponding parent "B". This kind of crossover is illustrated in
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Figure 5.8.
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Figure 5.8: Single-Point Crossover Representation.

5.7.2 Vertical Crossover

The second type of crossover operator is a kind of "vertical" crossover and is implemented

as shown in Figure 5.9.

Once the new population has been created by the selection operator previously de-

scribed in this chapter, two individual are chosen for coupling and their neural structures

are compared. If there are some differences in the topology length l, the hidden layer in-

sertion mutation operator will be applied to the shortest neural topology in order to obtain

individuals with the same number of layers.

Then a new individual will be created, the child of the two parents selected. The neural

structure of the new individual is defined by adding the number of neurons in each corre-

sponding hidden layer of each parent, except for the input and output layers (they are the

same for each neural network).

The new input-weights matrix W
(0) and the corresponding variance matrix Var

(0) are

respectively obtained by appending the matrix of the second parent to the matrix of the first

parent. Then, the new weight matrix W
(i) and the corresponding variance matrix Var

(i)

for each hidden layer of the new individual are respectively defined as the block diagonal

matrix made up of the matrix of the first parent and the matrix of the second parent. Bias

values and corresponding variance matrices of two parents are concatenated in order to

obtain the new values for the new biases bij and variances Var(bij).

All the weights associated the inputs to the new output layer will be set to be the half

of the corresponding weights in the parents. The rationale of this choice is that, if both

parents were ‘good’ networks, they would both supply the appropriate input to the output

layer; without halving it, the contribution from the two subnetworks would add and yield
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Figure 5.9: Merge-Crossover Representation.
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an approximately double input to the output layer. Therefore, halving the weights helps to

make the operator as little disruptive as possible.

5.8 Conclusion

The neuro-genetic approach implemented in this thesis performs the simultaneous evolu-

tion of topology and weight connections of a population of neural networks, combining the

advantages of these two techniques. Furthermore, the backpropagation algorithm can be

used to improve the learning of each evolutionary neural network. The direct encoding of

each individual, i.e. neural network, in the population allows each of them to have all the

information available in the encoding. With such a network encoding, few constant values

related to the structure definition of each neural network have to be set at initialization, and

a few algorithm parameters are set at first time, while the genetic parameters are tuned dur-

ing the experiments in order to find the best settings, even if all the obtained results show

how the neuro-genetic approach is robust with respect to that parameter setting.

The behavioral link between parents and offspring during the evolution is allowed by

the genetic operators implemented in the approach.

Different kinds of mutation operators are defined, considering the mutation of the

weights and the biases of each neural network and the mutation of the architecture, with

independent probabilities. All the experiments, carried out in order to validate the neuro-

genetic approach, show the satisfactory performances resulting from the simultaneous ap-

plication of these mutation operators.

The neuro-genetic approach also considers the recombination operator, even if it is

known that is a hard issue, due to the disruptive effects that can occur during different

network crossover. Nevertheless, two kinds of possible crossover operators are presented

and a study about implementation and result is also carried out.



74 CHAPTER 5. NEURO-GENETIC APPROACH



Chapter 6

Validation on Benchmark Problems

6.1 Research Applications

The neuro-genetic approach presented in Chapter 5 has been applied to three different real-

world problems, and, in order to validate this approach, also two benchmark problems are

considered and described in this chapter.

Chapter 7 describes an industrial application for neural engine controller design.

The second application presented in Chapter 8 concerns a neural classification algo-

rithm for brain wave signal processing, considering in particular the analysis of P300

Evoked Potential.

Finally, the third application presented in Chapter 9, considers financial modeling,

whereby a factor model capturing the mutual relationships among several financial instru-

ments is sought for.

Generally, in each real-world problem, the availability and the integrity of the data is

one of the most important aspects that has to be considered in each approach that attempts

to solve it. Data analysis in neural network training is a crucial factor, because, in that

process, the data should fully represent all possible states of the problem being tackled,

and furthermore, they should be sufficient and valid for the defined problem. A discussion

about such aspect of neural network training is described in Chapter 3.

Data have to be usually specified in an operational range of the network, defined for

each problem considered. For example, the target data for a backpropagation network with

sigmoid activation functions needs to lie between 0 and 1, because that is the range defined

for the sigmoid function, and in some cases, different individual features might need to be

scaled differently.

In each of the three applications and in the validation problems, all data are analyzed

before applying evolutionary approach, and, since the network training process considers

the tangent sigmoid transfer function to calculate all layer outputs, all the target data will

have to be specified in the range of definition of that function. For this reason, a preprocess-

ing of the data is carried out when necessary, so that their values will fall in the interval of

the defined transfer function, that corresponds to [-1,1].

The following sections present the validation of the approach on a non-linear regression

problem and on two benchmark problems.

75
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6.2 Synthetic non linear Validation

As a preliminary validation of the approach, a non-linear regression problem has been set

up, in which a synthetic function is defined as a combination of 32 input values. Each

input randomly generated, belongs to the interval [−1, +1]. The synthetic output equation

is defined as:

y =
1

32

32
∑

i=1

sin

(

2πxi

νi

+ φi

)

(6.1)

where xi is the input, νi and φi are, respectively, the frequency and the phase vectors related

to xi. Functions of this general form combine different parameters in a highly non-linear

fashion and are usually difficult to predict. For simplicity, in this case νi is set to i for each

input, while φi is kept equal to zero, giving the equation:

y =
1

32

32
∑

i=1

sin

(

2πxi

i

)

(6.2)

Three datasets are created with 1000 cases for training, 250 cases for test and 100 cases for

validation, respectively.

Problem parameters are set to their default values, while several simulations have been

carried out with different mutation parameter settings in order to identify the combination

that returns the best solution. For each setting, 10 runs have been carried out and average

and standard deviation of fitness values obtained on the test set are reported in Table 6.1.

Table 6.1: Experimental results of non-linear synthetic function.

Setting Parameter Setting BP=1

p+
layer

p−
layer

p+
neuron avg stdev

1 0.05 0.05 0.05 0.1703 0.0031

2 0.05 0.05 0.1 0.1710 0.0039

3 0.05 0.05 0.2 0.1696 0.0049

4 0.05 0.1 0.05 0.1680 0.0023

5 0.05 0.1 0.1 0.1744 0.0064

6 0.05 0.1 0.2 0.1687 0.0030

7 0.05 0.2 0.05 0.1691 0.0057

8 0.05 0.2 0.1 0.1703 0.0043

9 0.05 0.2 0.2 0.1675 0.0068

10 0.1 0.05 0.05 0.1689 0.0035

11 0.1 0.05 0.1 0.1689 0.0015

12 0.1 0.05 0.2 0.1711 0.0018

13 0.1 0.1 0.05 0.1674 0.0070

14 0.1 0.1 0.1 0.1746 0.0150

15 0.1 0.1 0.2 0.1681 0.0024

16 0.1 0.2 0.05 0.1689 0.0028

17 0.1 0.2 0.1 0.1692 0.0031

18 0.1 0.2 0.2 0.1704 0.0068

19 0.2 0.05 0.05 0.1693 0.0018

20 0.2 0.05 0.1 0.1687 0.0022

21 0.2 0.05 0.2 0.1706 0.0024

22 0.2 0.1 0.05 0.1691 0.0039

23 0.2 0.1 0.1 0.1711 0.0064

24 0.2 0.1 0.2 0.1703 0.0030

25 0.2 0.2 0.05 0.1687 0.0021

26 0.2 0.2 0.1 0.1675 0.0026

27 0.2 0.2 0.2 0.1701 0.0037
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The best model has been found by the algorithm taking advantage of backpropagation,

and is a multi-layer perceptron with a phenotype of type [2, 1], which obtained a fitness on

the test set of 0.1530 and a mean square error of 0.2791 on the same set. The agreement

between the output of the best model with the output of the synthetic non-linear function

implemented is shown in Figure 6.1. These two output shapes are obtained on the validation

set and they have a high correlation coefficient equal to 0.9183.

In order to validate the quality of the model, a comparison with a linear regression

model of the same data has been performed. The linear regression yields a linear model

represented by Equation 6.3:

y =
32

∑

i=1

wixi, (6.3)

The neuro-genetic solution obtained with the neuro-genetic approach has a MSE of

6.7642 ∗ 10−4, better than 7.3724 ∗ 10−4, MSE of the simulation based on the linear re-

gression on the same validation set.
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Figure 6.1: Comparison between the output of the best model (black bars) with the desired

values (white bars) of the validation set.

6.3 Benchmark Problems

The application to benchmark problems considered two well-known historical problems,

defined in the literature, that have been used also for several comparison works. The first

problem approached is the Pima Indians Diabetes problem, while the second is the Breast

Cancer Wisconsin problem; they are both classification problems.

All data included in the training, validation and test sets are acquired from the UCI

Machine Learning Repository [85]. It is a repository of databases and data generators that

are used by the machine learning community for the empirical analysis of machine learning

algorithms. In this repository, different and several benchmark problems are collected and

all the corresponding data can be fully downloaded.
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6.3.1 Pima Indian Diabetes Problem

The Pima Indians Diabetes database data refers to a medical problem, in which the diagno-

sis is carried out on several patients, in order to investigate whether a patient shows signs

of diabetes according to World Health Organization criteria (i.e., if the 2 hour post-load

plasma glucose is at least 200 mg/dl at any survey examination or if it has been found

during routine medical care).

The dataset available for this problem has been uploaded into the UCI repository in

1990, and includes 768 instances, composed of 8 attributes plus a binary class value, which

corresponds to the target classification value. A value equal to 1 for this attribute means

that the patient tested positive for diabetes, while a 0 value means that the test was negative

for that disease. All input and output features are summarized in Table 6.2.

Table 6.2: Set of features considered for PIMA Indian Diabetes problem.

Number Attribute

1 Number of times pregnant

2 Plasma glucose concentration a 2 hours

in an oral glucose tolerance test

3 Diastolic blood pressure (mm Hg)

4 Triceps skin fold thickness (mm)

5 2-Hour serum insulin (mu U/ml)

6 Body mass index, with weight expressed in kg
and height expressed in m (kg/m2)

7 Diabetes pedigree function

8 Age (years)

9 Class variable (0 or 1)

A past test on these data is the one by Smith and colleagues [112]. The authors tested

the ability of an early neural network model, ADAP, to forecast the onset of diabetes mel-

litus in a high risk population of Pima Indians. ADAP is an adaptive learning routine that

generates and executes digital analogs of perceptron-like devices. Their ADAP algorithm

developed a real-valued prediction between 0 and 1. This was transformed into a binary

decision using a threshold of 0.448. As previously indicated, all data necessary to create

the data sets were acquired from the UCI Machine Learning Repository. The ADAP algo-

rithm used 576 instances for the training set, while the remaining 192 instances were used

for the validation set (according to the terminology used in this thesis). After running the

learning algorithm, accuracy of their algorithm was 76% on the validation set. A relevant

information concerning their approach was that several constraints have been placed on

the selection of these instances from a larger database. In particular, all patients here were

females at least 21 years old of Pima Indian heritage.

Classification with neuro-genetic approach

The validation of the neuro-genetic approach is carried out considering all the data avail-

able from UCI repository. The first 500 instances were used to create the training set, the

following 134 to create the test, and, finally, the remaining 134 were used for the validation

set. As previously reported in Chapter 5, concerning the fitness function implementation,
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it is important to point out that there is no agreement in the literature on the way these sets

are named, as the naming of validation and test set are often exchanged. In this thesis, the

test set is used to decide when to stop training, avoiding overfitting, while the validation set

is used to test the generalization capabilities of a neural network. This terminology is also

adopted in this thesis to compare the neuro-genetic approach with the other approaches.

The neuro-genetic approach is implemented by choosing backpropagation as training

algorithm, and the evolutionary approach is carried out with all parameters set to the default

values shown in Table 5.2. Several settings of the three mutation probabilities relevant to

structural mutation, p+
layer, p−layer and p+

neuron, have been explored in order to assess the

robustness of the approach and to determine the optimal solution. Ten runs are executed

for each setting, and the average and the standard deviation values of the test fitness of the

best individual found are summarized in Table 6.3.

Table 6.3: Experimental results for the Pima Indian Diabetes problem.

setting p+
layer

p−
layer

p+
neuron Avg Std Dev

1 0.05 0.05 0.05 0.72861 0.0233

2 0.05 0.05 0.1 0.7365 0.0172

3 0.05 0.05 0.2 0.7374 0.0140

4 0.05 0.1 0.05 0.7264 0.0261

5 0.05 0.1 0.1 0.7410 0.0167

6 0.05 0.1 0.2 0.7281 0.0231

7 0.05 0.2 0.05 0.7377 0.0229

8 0.05 0.2 0.1 0.7308 0.0189

9 0.05 0.2 0.2 0.7300 0.0252

10 0.1 0.05 0.05 0.7383 0.0251

11 0.1 0.05 0.1 0.7267 0.0311

12 0.1 0.05 0.2 0.7331 0.0234

13 0.1 0.1 0.05 0.7416 0.0276

14 0.1 0.1 0.1 0.7378 0.0280

15 0.1 0.1 0.2 0.7345 0.0148

16 0.1 0.2 0.05 0.7339 0.0130

17 0.1 0.2 0.1 0.7305 0.0254

18 0.1 0.2 0.2 0.7229 0.0187

19 0.2 0.05 0.05 0.7205 0.0202

20 0.2 0.05 0.1 0.7395 0.0177

21 0.2 0.05 0.2 0.7312 0.0220

22 0.2 0.1 0.05 0.7283 0.0150

23 0.2 0.1 0.1 0.72486 0.0275

24 0.2 0.1 0.2 0.7196 0.0306

25 0.2 0.2 0.05 0.7342 0.0129

26 0.2 0.2 0.1 0.7366 0.0257

27 0.2 0.2 0.2 0.7359 0.0163

The best solution, on average, is found with p+
layer = 0.2,p−layer = 0.1 and p+

neuron =
0.2. The best solution is a MLP neural network with a phenotype of [2, 2, 1], which obtained

an error percentage on the validation set equal to 24.5%, with a sensitivity on the validation

set equal to 75.5%. The summary of the comparison between the ADAP algorithm and the

neuro-genetic approach is carried out in Table 6.4.
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Table 6.4: Comparison between accuracy of neuro-genetic approach and ADAP algorithm.

Problem Experimental Results

PIMA Indian ADAP Neuro-Genetic

Diabet Algorithm Approach

Instances of

Training set 576 500

Test set – 134

Validation set 192 134

Accuracy on

Validation set 76% 75.5%

Comparison to the Literature

In order to better validate the approach proposed in this P.h.D. dissertation, a comparison

with a list of some, more recent works presented in the literature, is shown in Table 6.5. All

these works have used the Pima Indian Diabetes problem as a benchmark. The results show

that the neuro genetic approach compares well with respect to the other works, obtaining

good consistency and accuracy.

Table 6.5: Comparison of classification performance on the Pima Indian Diabetes problem.

Author (year) Method Accuracy (%)

G. Arulampalam et al (2001) SIANN LM 78.7

SIANN GDA 73.9

MLP LM 78.9

MLP GDA 78.33

H.A. Abbass (2003) Multiobjective EA:

MPANN 74.9

SPANN 70.7

J. Basak (2006) ExOADT-K-NN 77.49

K-NN 70.44

Naive Bayes 75.78

SVM 73.30

G.L. Tsirogiannis et al (2004) AdaBoost with Decision Trees 74.5

Fuzzy with Decision Trees 72.4

X. Yao et al (1997) EPNet 77.6

X. Yao et al (2003) CNNE 77.8

N. García Pedrajas et al COVNET 80.1

A. Azzini et al (2006) Neuro genetic approach 75.5

Briefly, the basic idea implemented in each work reported in Table 6.5 are presented

here. G.Arulampalam and colleague developed a shunting inhibitory artificial neural net-

work model [5], in which neurons interact between each other through a non linear mech-

anism called shunting inhibition, allowing the neurons to operate as adaptive nonlinear
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filters. The performances of the SIANN topologies were compared in that work with those

obtained by MLP neural networks, and some results are reported in Table 6.5.

H.A. Abbass presented an optimization algorithm [1], comprising a multiobjective evo-

lutionary algorithm and a gradient-based local search as classification approach. This was

referred to as the Memetic Pareto Artificial Neural Network algorithm (MPANN), with a

performance on Pima Indian Diabetes problem equal to 74.9%. He also presented a self-

adaptive version, called SPANN, to reduce the time for parameter tuning, that obtained an

accuracy of 70.7%.

J. Basak asserted in his work [14] that the decision trees can be trained in the on-

line adaptive (OADT) mode. In this work an architecture based on OADT, ExOADT, was

described, which can handle multiclass classification tasks, able to perform function ap-

proximation. Some of the results showed that ExOADT was structurally similar to OADT

extended with a regression layer. ExOADT with K-NN obtained an accuracy equal to

77.49%, while for K-NN it was equal to 70.44%, for naive bayes equal to 75.78% and, for

SVM to 73.30%.

G.L. Tsirogiannis and colleagues proposed a new meta-classifier approach [118], which

combined several different combination methods, in analogy to the combination of simple

classifiers. Among the meta classifiers considered, AdaBoost with decision trees had an

accuracy equal to 74.5%, while the fuzzy classifier with decision trees, had an accuracy

equal to 72.4%.

X. Yao and colleagues presented in their most successful approaches to neural network

evolution also the results obtained, with the evolutionary algorithm presented in [137] and

with the constructive algorithm presented in [58]. The first algorithm was based on Fo-

gel’s evolutionary programming (EP), in order to evolve ANN architecture and connection

weights and biases simultaneously. In this approach the accuracy was equal to 77.6%. The

second work by Yao and other colleagues presented a more sophisticated idea, based on

constructive algorithm for training cooperative neural network ensembles, with an accu-

racy of 77.8%.

N. García Pedrajas and colleagues defined a cooperative coevolutionary model for

evolving artificial neural networks [89]. Their model was based on the idea of co-evolving

subnetworks that must cooperate to form a solution, instead of evolving complete networks.

They showed in their work how this idea can achieve very high satisfactory results on this

classification problem, with very high accuracy, equal to 80%.

The experiments carried out with the neuro-genetic approach implemented in this thesis

confirm that the results obtained are comparable with those obtained from other simulations

carried out in the literature on the same data of this problem, giving a satisfactory assess-

ment of the neuro genetic approach on this benchmark problem. Although in the present

state of research the results appear worse than those obtained by García Pedrajas and col-

leagues in [89], the neuro-genetic work is in progress and further studies of co-evolutionary

approaches may be considered in future.

Figure 6.2 shows the sensitivity and the specificity shapes obtained with the experi-

ments carried out with the neuro-genetic approach on the validation set, which correspond

to the true positive and to 1 - false positive cases, respectively.

In signal detection theory, a receiver operating characteristic (ROC) [76], also receiver

operating curve, is a graphical plot of the sensitivity versus (1 - specificity) for a binary

classifier system as its discrimination threshold is varied. The best possible prediction

method would yield a graph that is a point in the upper left corner of the ROC space,
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Figure 6.2: Sensitivity (dashed line) and specificity (solid line) shapes of the best model on

the validation set.
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Figure 6.3: ROC Shape of the best solution on the validation set.
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i.e. 100% sensitivity (all true positives are found) and 100% specificity (no false positives

are found). The ROC statistic is often used in classification problems, since this measure

can be interpreted as the probability that when one positive and one negative example are

randomly picked, the classifier will assign a higher score to the positive example than to

the negative.

Figure 6.3 shows the ROC curve defined on the sensitivity and the specificity values

obtained from the classifier by varying the threshold.

6.3.2 Breast Cancer Problem

The second benchmark problem considers a breast cancer classification problem. The

breast cancer database was obtained from Dr. W.H. Wolberg of the University of Wis-

consin Hospitals, Madison. This problem was approached in the past in several works

that considered a multisurface method of pattern separation [127], or a pattern recognition

approach defined through linear programming [72, 16].

Relevant information has to be considered about the data set creation, because samples

were provided by Dr. Wolberg, who periodically reported his clinical cases. Therefore,

the database reflects the chronological grouping of the data, and all the approaches carried

out in the literature have been implemented by considering different data set dimensions.

Since 1992 a dataset of 699 instances has been completed and now is available in the UCI

machine learning repository [85], even if some features have missing values.

In all data instances are represented by 10 attributes for the input values and 1 for the

target values: each instance has one of two possible classes: benign or malignant. All the

features considered in this problem are listed in Table 6.6.

Table 6.6: Set of Features considered for Breast Cancer Wisconsin problem.

Number Attribute

1 Sample code number

2 Clump Thickness

3 Uniformity of Cell Size

4 Uniformity of Cell Shape

5 Marginal Adhesion

5 Single Epithelial Cell Size

6 Bare Nuclei

7 Bland Chromatin

8 Normal Nucleoli

9 Mitoses

10 Class: malignant (4) /benign (2)

The class distribution is not equally divided between the two cases, because 458 are

benign, corresponding to 65.5% of the instances at this time, while 241 are malignant,

corresponding to the 34.5% of the entire actual database. For this reason the creation of a

balanced dataset is generally difficult to obtain.

The first work on this problem carried out by Wolberg and colleagues had a number of

instances equal to 369 (at that point in time). In their work a linear classifier was constructed

to separate benign from malignant samples. Classification results on an equally divided
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dataset, in order to create training and validation set, respectively, gave an accuracy equal

to 93.5%. During the simulations, three pairs of parallel hyperplanes were found to be

consistent with 67% of data, while accuracy on the remaining 33% of data was increased

to 95.9%.

Zhang [140] presented another approach in the literature, in which the size of the data

set was the same as in the approach previously described, 369. He applied 4 instance-

based learning algorithms, collecting classification results averaged over 10 trials. The best

accuracy was obtained using 1-nearest neighbor: 93.7%. The simulation was carried out

on a training set of 200 instances, and tested on the other 169.

Classification with the neuro-genetic approach

Although in total there were 699 individual measurements (of the set of all parameters),

16 instances have been found with missing parameters which occurred for measurements.

The neuro-genetic approach have been carried out on this problem considering all instances

available today, that have no missing, unavailable, data. Therefore, all incomplete instances

are removed from the set, leaving a total of 683 data vectors for network training, validation

and test. All the data are divided in order to create the three sets, using 400 instances for

the training, 140 for the test and 140 for the validation set.

Backpropagation is implemented for the training process, and all parameters are set to

the default values. Several settings of the three mutation probabilities, p+
layer, p−layer and

p+
neuron, have been explored in order find the optimal solution. Ten runs are executed for

each setting, and the average and the standard deviation values of the test fitness of the best

individual are reported in Table 6.7.

The best solution, on average, is found with very low probabilities, respectively with

p+
layer = 0.05, p−layer = 0.05 and p+

neuron = 0.05. The best solution is a neural network

with a phenotype equal to [5, 1], which obtained a percentage of error on the validation set

equal to 0.7%.

The experiments carried out with the neuro-genetic approach implemented on this prob-

lem confirm that the results obtained are satisfactory, reinforcing the validation of the ap-

proach. Table 6.8 shows the size of each dataset considered during all the experiments

carried out.

The accuracy of the different models is also reported in Table 6.8.

Comparison to the Literature

As for the other clinical diagnosis problems, classifiers have been developed for breast

cancer diagnosis problem, too. A great variety of methods were used, obtaining high clas-

sification accuracies. Among these, a comparison has been carried out by considering some

works most recently presented in the literature. Table 6.9 shows the comparison between

the neuro genetic classification performance for the breast cancer problem with classifica-

tion accuracies obtained by other methods in the literature.

Briefly, the basic idea implemented in each work are also described. FNNCA [109]

implemented by Setiono described a rule classifier, that obtained a percentage of accuracy

on the Breast Cancer Diagnosis problem equal to 98.10%.

S.G. Pierce and colleagues defined in [90] a non-probabilistic approach to develop a

classification algorithm based on MLP neural networks. The information-gap robustness
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Table 6.7: Experimental results for the Wisconsin Breast Cancer problem.

setting p+
layer

p−
layer

p+
neuron Avg Std Dev

1 0.05 0.05 0.05 0.0204 0.0076

2 0.05 0.05 0.1 0.0237 0.0055

3 0.05 0.05 0.2 0.0264 0.0069

4 0.05 0.1 0.05 0.0274 0.0050

5 0.05 0.1 0.1 0.0249 0.0056

6 0.05 0.1 0.2 0.0250 0.0066

7 0.05 0.2 0.05 0.0256 0.0084

8 0.05 0.2 0.1 0.0208 0.0067

9 0.05 0.2 0.2 0.0284 0.0075

10 0.1 0.05 0.05 0.0242 0.0054

11 0.1 0.05 0.1 0.0243 0.0055

12 0.1 0.05 0.2 0.0250 0.0060

13 0.1 0.1 0.05 0.0249 0.0063

14 0.1 0.1 0.1 0.0248 0.0085

15 0.1 0.1 0.2 0.0257 0.0042

16 0.1 0.2 0.05 0.0248 0.0073

17 0.1 0.2 0.1 0.0224 0.0064

18 0.1 0.2 0.2 0.0244 0.0072

19 0.2 0.05 0.05 0.0212 0.0063

20 0.2 0.05 0.1 0.0209 0.0065

21 0.2 0.05 0.2 0.0248 0.0058

22 0.2 0.1 0.05 0.0257 0.0073

23 0.2 0.1 0.1 0.0231 0.0058

24 0.2 0.1 0.2 0.0239 0.0066

25 0.2 0.2 0.05 0.0256 0.0042

26 0.2 0.2 0.1 0.0246 0.0056

27 0.2 0.2 0.2 0.0259 0.0043

Table 6.8: Comparison between experimental results.

Problem Experimental Results

Wisconsin Wolberg Wolberg Zhang Neuro

Breast Cancer (1) (2) Genetic

Instances of

Training set 185 247 200 400

Test set – – – 140

Validation set 184 122 169 140

accuracy on

Test set 93.5% 95.9% 93.7% 99.3%
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Table 6.9: Comparison of classification performance on the Wisconsin Breast Cancer prob-

lem.

Author (year) Method Accuracy (%)

S.G. Pierce et al (2006) Information GAP:

for Maximum-Likelihood training 80.4

for Bayesian-Evidence training 78.5

K. Polat et al (2005) FS-AIRS 98.51

E. D. Ubeyli (2005) Mixture of Experts (ME) 98.85

Y. Sun et al (2002) approaches implemented:

NEFCLASS 89.70

RBFs 91.24

K-mean 97.09

Fuzzy C-Mean 96.77

Z.H. Tan (2004) GAEPNet 99.27

J. Basak (2006) ExOADT K-NN 97.18

K-NN 96.13

Naive Bayes 93.15

SVM 96.48

A. Abraham et al (2003) Fuzzy rule classifiers:

Mean & Deviation 85.94

Histogram 84.36

Simple Grid 62.39

Modified Grid 85.96

H.A. Abbass (2003) Multiobjective EA:

MPANN 98.1

SPANN 98.3

Setiono (2000) Neuro Rule 98.10

J.J. Merelo et al (1999) G-prop III with QP 99

X. Yao et al (1997) EPNet 98.62

X. Yao et al (2003) CNNE 98.90

A. Azzini et al (2006) Neuro genetic approach 99.3
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function was used in the algorithm to select the network with the highest robustness of

uncertainty in the validation. The authors obtained an accuracy percentage of 80.4% on

the validation set, by applying maximum-likelihood training, while 78.5% by applying the

bayesian-evidence update training.

K. Polat and colleagues [91] obtained 98.51% by implementing a feature selection arti-

ficial immune recognition system algorithm: the number of the features was reduced in the

feature-selection program by forming rules related to data with a decision tree algorithm.

The aim of this algorithm was to eliminate useless features in determining malignancy. The

performance was evaluated using 10 fold cross validation method, dividing the data set into

10 clusters each having similar values for the features.

E.D. Ubeyli obtained 98.85% accuracy with a modular neural network architecture

(ME) [119]. The expectation-maximization algorithm was used for training the ME so that

the learning process was decoupled in a manner that fit well with the modular structure.

The algorithm considered MLP neural networks.

Y. Sun and colleagues [115] obtained different classification performances by consider-

ing different approaches. They obtained an accuracy of 89.70% with NEFCLASS, a neuro-

fuzzy classification algorithm, based on a MLP structure, where the shared weights were

encoded as fuzzy sets and the activation function used fuzzy operators. Different mem-

bership functions were defined, corresponding to broken-line and triangular functions. In

[115], a comparison with other standard classification approaches was carried out on the

same data set, showing that K-mean obtained a percentage of accuracy of 97.09%, RBFs

obtained 91.24%, and fuzzy c-mean obtained 96.77%.

Z.H. Tan obtained a very high accuracy rate equal to 99.27% in [116] with a hybrid

evolutionary algorithm, implemented to the structural and parametric learning of MLP with

one layer neural networks.

A. Abraham and colleague presented a comparison of the performance of four fuzzy

rule generation methods on the breast cancer problem. These methods were described in

detail in their work in [59]. The first approach, that generated fuzzy rules using the mean

and the standard deviation of the attribute values, obtained an accuracy of 85.94%, while

for the second, which generated rules using the histogram of the attribute values, accuracy

was 84.36%. The accuracy of the third, that used homogeneous fuzzy sets, was equal to

62.39%, while for the last, a grid based approach, the accuracy was 85.96%.

Also in the work previously reported for Pima Indian Diabetes problem of H.A. Abbass

[1], who presented a multi-objective evolutionary algorithm with a gradient-based local

search, the application to Wisconsin Breast Cancer problem was considered, obtaining an

accuracy equal to98.1% for MPANN, and to 98.3% for SPANN.

In the work already presented in Pima Indian Diabet problem, J. Basak [14] discussed

a further comparison of the accuracy of ExOADT with K-NN, equal to 97.18%, with other

classification models regarding the breast cancer Wisconsin problem. With K-NN accu-

racy was 96.13%, while with naive bayes was 93.15%, and in SVM with gaussian kernels

96.48%.

J.J. Merelo and colleagues [25] presented an evolutionary algorithm to obtain global

optimization of multi-layer perceptrons, based on a genetic algorithm and a implement-

ing a Lamarckian training process. This approach provided highly satisfactory results in

classification problems; the accuracy obtained in this problem was equal to 99%.

X. Yao and colleagues also reported in their most successful approaches to neural net-

work evolution [137, 58], already presented for the Pima Indian Diabetes problem, their
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performances for Breast Cancer problem. In these approaches the accuracy was equal to

98.62% in [137], while was equal to 98.90% in [58].

The neuro-genetic approach presented in this thesis, provides an accuracy equal to

99.3%. Figure 6.4 shows the sensitivity and the specificity of the classifier with different

threshold values, and Figure 6.5 shows the ROC shape, that gives a satisfactory perfor-

mance in generalizing classifiers.
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Figure 6.4: Sensitivity (dashed line) and specificity (solid line) shapes of the best model on

the validation set.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

1−Specificity

S
en

si
tiv

ity

Figure 6.5: ROC Shape of the best solution on the validation set.



Chapter 7

Fault Diagnosis

7.1 Introduction

The usefulness of the approach, subject of this P.h.D. dissertation, has then been validated

on real-world problems, as already mentioned in Chapter 5. The neuro-genetic approach

works as a selector of possible solutions, providing the neural network design that corre-

sponds, in an evolved population, to the best model for a given task. In this chapter, the first

real-world problem considered is the design of an incipient fault detector in an electrical

drives monitoring.

7.2 Application

Every industrial application requires a suitable monitoring system for its processes in order

to identify any decrease in efficiency and any loss. A monitoring system consists of a set

of devices, procedures and diagnostic tools that follow every single step of a process. Early

detection of operating conditions of the electrical drive that deviate from the optimal may

avoid subsequent failures, or even faults.

In the diagnostic tool considered it is reasonable to assume that the only accessible

points of the system are the alternating current (AC) input terminals (having in mind the

recent trend to more and more integrated systems where the drive can be considered as

a black-box). The opportunity of combining diagnostic and monitoring operations on an

AC motor drive without using dedicated sensors cannot achieve a diagnosis as reliable as

that provided by totally customized systems. Nevertheless, useful diagnostic indications

can be obtained by this low-cost extension of the monitoring activity, and the reliability of

the obtained indications can be significantly increased by considering the combination of

advanced time-frequency, or time-scale, transforms, such as the wavelet transform, and the

novel neuro-genetic approach described in Chapter 5. The output of the ANN, designed by

this approach, will represent an index, that can be considered a risk coefficient giving the

user the likelihood of being in fault conditions.

The investigated real-world system is depicted in Figure 7.1. The current signals are

acquired at the input terminal of a Pulse-Width Modulation (PWM) inverter connected to a

three-phase induction motor (230V, 50Hz). In the utilized induction motor both stator and

rotor winding are available to the operator.

The Direct Current (DC) link between the Rectifier and the PWM inverter performs

89
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a filtering action with respect to the AC input, theoretically suppressing most information

about the output circuits of the drive and the motor. Instead, it was proved that the faulty

operating condition of the AC motor will appear on the AC side as a transient phenomenon

or a sudden variation in the load power. The presence of this electrical transient in the

current suggests an approach based on time-frequency or, better, time-scale analysis. In

particular, the use of Discrete Wavelet Transform (DWT) [110] could be efficiently used in

the process of separating the information.
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Figure 7.1: Block diagram of an AC drive with highlight on the measurement location and

processing flow.

A classification of most common faults in an AC drive-motor system is reported in

Figure 7.2. In particular, in this work only motor faults are considered.
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Figure 7.2: Classification of common fault types.

The application of the neuro-genetic approach to this problem involves the analysis

of the signal, the load current, through wavelet series decomposition. The decomposition

results in a set of coefficients, each carrying local time-frequency information. An orthog-

onal basis function is chosen, thus avoiding redundancy of information and allowing for

easy computation.

The computation of the wavelet series coefficients can be efficiently performed with

the Mallat algorithm [71]. Figure 7.3 shows the bandpass filtering, which is implemented

as a lowpass gi(n) - highpass hi(n) filter pair which has mirrored characteristics.
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Figure 7.3: Bandpass filtering.

In particular, in the neuro-genetic application the 6-coefficient Daubechies wavelet [33]

was used. In Table 7.1 the filter coefficients of the utilized wavelet are reported.

Table 7.1: Filter coefficients of the 6-coefficient Daubechies wavelet.

Filter Low-pass filter High-pass filter

Coefficients decomposition decomposition

1 0.035226 -0.33267

2 -0.085441 0.80689

3 -0.13501 -0.45988

4 0.45988 -0.13501

5 0.80689 0.085441

6 0.33267 0.035226

The wavelet coefficients allow a compact representation of the signal to be achieved

and to condense the features of the normal operating or faulty conditions in the wavelet

coefficients. Conversely, the features of given operating modes can be recognized in the

wavelet coefficients of the signal and the operating mode can be identified.

Employing the wavelet analysis, both the identification of the drive operating conditions

(faulty or normal operation) and the identification of significant parameters for the specific

condition have been obtained.

Figure 7.5 depicts the logical structure of the data describing a case of study. Each

vector is known to have been originated in faulty or non-faulty conditions, so it can be

associated with a fault index C equal to 1 (faulty condition), or 0 (normal condition).

The numerical representation of the current signals are then elaborated by a Matlab

function to perform a wavelet transform [33, 71], as shown in Figure 7.4.

In this pseudocode the wavelet decomposition is carried out by iterating the algorithm

described in Figure 7.1 for each wavelet decomposition level. Then, for each condition, the

wavelet coefficients vector is created: in each decomposition level the maximum value of

the wavelet coefficients is taken and considered as one element of the wavelet coefficients

vector, whose size corresponds to the number of decompositions carried out. The process

is defined by Equation 7.1, where i is the index correlated to the coefficient and j is the

index correlated to the decomposition level.
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for each case of study do

Read the sample current signal

Perform the wavelet decomposition

for each level of decomposition do

Extract the coefficients with maximum value

end for

Build an array of the max coefficients

Normalize the array to infinity Norm

end for

Figure 7.4: Pseudocode of wavelet processing.

Dj =
n

max
i=1
{|wij |} (7.1)

Then, each vector is normalized with infinity norm, by applying Equation 7.2

dj =
Dj

‖D‖∞
(7.2)

This problem has been already approached with a neuro-fuzzy network, whose structure

was defined a priori, trained with BP [31], as indicated in Figure 7.6.

w8 w7 w6 w1 Cw5 w4 w3 w2

Figure 7.5: A depiction of the logical structure of a case of study in the fault diagnosis

problem. The elements w1 to w8 are the maximum coefficients for each level of wavelet

decomposition; C indicates whether the case is faulty or not.
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Figure 7.6: Approach previously implemented for the fault diagnosis problem by means of

a neuro-fuzzy network with pre-defined topology trained by BP.

The neuro-genetic approach, subject of this P.h.D. dissertation, defines in this problem

a suitable ANN, that represents a good classifier. In particular, the best EANN identified
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Figure 7.7: Neuro-genetic approach to the fault diagnosis problem.

will be able to recognize both complete and partial faults as indicated in Figure 7.8. Cases

of faults have been obtained when the resistor value of a phase was artificially changed.

A breakage of contiguous bars in a rotor can be, indeed, modeled by a varying winding

resistance of one of the windings of the three-phase wound machine [15].

%&'()*+,-.
Figure 7.8: Fault index obtained: the test was performed considering the case of incipient

fault situation.

In the simulations carried out all instances of the data are defined with 8 input attributes,

corresponding to the maximum coefficients for each level of wavelet decomposition, and

the parameter C, the fault index, is fixed, to simplify the problem, equal to 1 or 0 during

the learning, testing, and validation steps, in order to respectively represent faulty (C = 1)

or non faulty (C = 0) conditions.

In order to improve the usefulness of the neuro-genetic approach defined in this work,

interesting studies could consider cases of partial fault, by defining different real values

for the fault index C, for example C = 0, 0.2, 0.4, ..., 1, in the creation of virtual or real

measurements. In this case, different instances with different graduated indexes would be

defined in each neural training, test, and validation set.

Two kinds of simulations are carried out in this application: the first considers a data set
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created from a virtual model simulator. This simulation constitutes a kind of validation step,

and at this point experiments are carried out by considering different mutation parameter

settings and different population sizes, in order to find out the number of individuals that

would be likely to give the best results for real simulations.

In the second kind of simulation, the data used for learning are obtained from a real

engine. The following two sections describe in detail all the experiments carried out with

the two different datasets.

7.3 Experiments on Virtual Simulator

All the data used for the ‘simulated classification’ have been obtained from a Virtual Test

Bed (VTB) model simulator of a real engine. Few instances are obtained from the virtual

simulator to create the datasets, giving 28 cases for the training, 12 for the test, and only

4 cases for the validation set. Several settings of five parameters, backpropagation bp,

population size n, and the three mutation probabilities relevant to structural mutation, p+
layer,

p−layer, and p+
neuron, have been explored in order to assess the robustness of the approach

and to determine an optimal set-up. The pcross parameter, that defines the probability to

crossover, is set to 0 for all runs, because neither single-point crossover nor merge crossover

give satisfactory results for this problem, due to the reasons explained in Section 5.7. All

other parameters are set to the default values shown in Table 5.2.

For each run of evolutionary algorithm all the network evaluations are allowed (i.e.

simulations of the network on the whole training set), including those performed by the

backpropagation algorithm. All runs have been allocated the same fixed amount of neural

network executions, to allow for a fair comparison between the cases with and without

backpropagation. The results are summarized respectively in Table 7.3 and in Table 7.2.

Ten runs are executed for each setting, of which the average and standard deviation for the

best solutions found are reported.

7.3.1 Results

A first comment can be made regarding population size. In most cases it is possible to

observe that the solutions found with a larger population are better than those found with

a smaller population. With bp = 1, 15 settings out of 27 give better results with n = 60,

while with bp = 0, 19 settings out of 27 give better results with the larger population.

In addition, it is possible to observe that, for this problem, there is a clear tendency

for the runs using backpropagation (bp = 1) to consistently obtain better quality solutions

(lower average fitness and smaller standard deviation).

In all cases, the corresponding standard deviation is sufficiently small to guarantee that

suitable results can be found in a few runs. The experiments showed that the algorithm is

somewhat robust with respect to the setting of its parameters, i.e., its performance is little

sensitive of the fine tuning of the parameters.

7.4 Experiments on Real Simulator

After completion of the above phase, the neuro-genetic approach is applied to another kind

of data set. Here, the data used for learning have been obtained from experiments of a real
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Table 7.2: Experimental results for the engine fault diagnosis problem with BP=0.

bp = 0

setting p+
layer

p−
layer

p+
neuron n = 30 n = 60

avg stdev avg stdev

1 0.05 0.05 0.05 0.14578 0.013878 0.13911 0.0086825

2 0.05 0.05 0.1 0.1434 0.011187 0.13573 0.013579

3 0.05 0.05 0.2 0.13977 0.014003 0.13574 0.010239

4 0.05 0.1 0.05 0.14713 0.0095158 0.13559 0.011214

5 0.05 0.1 0.1 0.14877 0.010932 0.13759 0.014255

6 0.05 0.1 0.2 0.14321 0.0095505 0.1309 0.012189

7 0.05 0.2 0.05 0.14304 0.014855 0.13855 0.0089141

8 0.05 0.2 0.1 0.13495 0.015099 0.13655 0.0079848

9 0.05 0.2 0.2 0.14613 0.010733 0.14165 0.013385

10 0.1 0.05 0.05 0.13939 0.013532 0.13473 0.0085242

11 0.1 0.05 0.1 0.13781 0.0094961 0.13991 0.012132

12 0.1 0.05 0.2 0.13692 0.017408 0.13143 0.012919

13 0.1 0.1 0.05 0.13348 0.009155 0.1363 0.013102

14 0.1 0.1 0.1 0.13785 0.013465 0.13836 0.0094587

15 0.1 0.1 0.2 0.14076 0.01551 0.13994 0.011786

16 0.1 0.2 0.05 0.1396 0.0098416 0.13719 0.016372

17 0.1 0.2 0.1 0.13597 0.012948 0.14091 0.014344

18 0.1 0.2 0.2 0.14049 0.013535 0.13665 0.011426

19 0.2 0.05 0.05 0.13486 0.0079435 0.14068 0.013874

20 0.2 0.05 0.1 0.13536 0.0112 0.12998 0.013489

21 0.2 0.05 0.2 0.13328 0.0087402 0.1314 0.0088282

22 0.2 0.1 0.05 0.13693 0.0096481 0.13456 0.012431

23 0.2 0.1 0.1 0.13771 0.015971 0.13939 0.0092643

24 0.2 0.1 0.2 0.13204 0.010325 0.1378 0.01028

25 0.2 0.2 0.05 0.14062 0.012129 0.14005 0.011195

26 0.2 0.2 0.1 0.14171 0.008802 0.13877 0.0094973

27 0.2 0.2 0.2 0.14216 0.015659 0.13965 0.015732
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Table 7.3: Experimental results for the engine fault diagnosis problem with BP=1.

bp = 1

setting p+
layer

p−
layer

p+
neuron n = 30 n = 60

avg stdev avg stdev

1 0.05 0.05 0.05 0.11114 0.0070719 0.106 0.0027268

2 0.05 0.05 0.1 0.10676 0.003172 0.10606 0.0029861

3 0.05 0.05 0.2 0.10776 0.0066295 0.10513 0.0044829

4 0.05 0.1 0.05 0.10974 0.0076066 0.10339 0.0036281

5 0.05 0.1 0.1 0.1079 0.0067423 0.10696 0.0050514

6 0.05 0.1 0.2 0.10595 0.0035799 0.10634 0.0058783

7 0.05 0.2 0.05 0.10332 0.0051391 0.10423 0.0030827

8 0.05 0.2 0.1 0.10723 0.0097194 0.10496 0.0050782

9 0.05 0.2 0.2 0.10684 0.007072 0.1033 0.0031087

10 0.1 0.05 0.05 0.10637 0.0041459 0.10552 0.0031851

11 0.1 0.05 0.1 0.10579 0.0050796 0.10322 0.0035797

12 0.1 0.05 0.2 0.10635 0.0049606 0.10642 0.0042313

13 0.1 0.1 0.05 0.10592 0.0065002 0.10889 0.0038811

14 0.1 0.1 0.1 0.10814 0.0064667 0.10719 0.0054168

15 0.1 0.1 0.2 0.10851 0.0051502 0.11015 0.0055841

16 0.1 0.2 0.05 0.10267 0.005589 0.10318 0.0085395

17 0.1 0.2 0.1 0.10644 0.0045312 0.10431 0.0041649

18 0.1 0.2 0.2 0.10428 0.004367 0.10613 0.0052063

19 0.2 0.05 0.05 0.10985 0.0059448 0.10757 0.0045103

20 0.2 0.05 0.1 0.10593 0.0048254 0.10643 0.0056578

21 0.2 0.05 0.2 0.10714 0.0043861 0.10884 0.0049295

22 0.2 0.1 0.05 0.10441 0.0051143 0.10789 0.0046945

23 0.2 0.1 0.1 0.1035 0.0030094 0.1083 0.0031669

24 0.2 0.1 0.2 0.10722 0.0048851 0.1069 0.0050953

25 0.2 0.2 0.05 0.10285 0.0039064 0.1079 0.0045474

26 0.2 0.2 0.1 0.10785 0.008699 0.10768 0.0061734

27 0.2 0.2 0.2 0.10694 0.0052523 0.10652 0.0050768
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engine, and the Table 7.4 shows some of the engine parameters settings used in the real

measurement process.

Table 7.4: Experimental Setup Settings.

Motor Inverter

Condition Location Fault Type Frequency

Fault Rotor Additional 50 Ω on KL phase 10

Fault Rotor Additional 100 Ω on KL phase 25

Fault Rotor Additional 200 Ω on KL phase 30

Fault Rotor Additional 500 Ω on KL phase 45

Non Fault No Location No Fault 10

Non Fault No Location No Fault 25

Non Fault No Location No Fault 30

Fault Rotor Phase K open 10

Fault Rotor Phase L open 25

Fault Rotor Phase M open 30

... ... ... ...

All parameters are set to default values as indicated in Table 5.2. The bp parameter

is kept to 1 for all runs, because, as seen in the previous application on virtual simulator,

experiments without backpropagation algorithm do not give satisfactory results with respect

to those with backpropagation. Also in this case, several settings of the three mutation

probabilities relevant to structural mutation, p+
layer, p−layer and p+

neuron, have been explored

in order to identify an optimal set-up also for the fault diagnosis application: the results are

summarized in Table 7.5.

For each run of the evolutionary algorithm, up to 25,000 network evaluations are al-

lowed, and as for the virtual simulator experiments, including those performed by the back-

propagation algorithm. Ten runs were executed for each setting, for which the average and

standard deviation of the test fitness values are reported. The approach is substantially ro-

bust with respect to the setting of mutation parameters, and the best solutions, on average,

have been found with p+
layer = 0.1, p−layer = 0.2, and p+

neuron = 0.05.

The best model is a multi-layer perceptron with a phenotype of type [4, 4, 4, 4, 1], which

obtained a mean square error of 0.0050 on the test set. Figure 7.9 shows the median and

minimum fitness functions of the best solution.
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Figure 7.9: Median and Minimum fitness functions of best solution. The evolutionary

process is stopped by the reaching of the maximum number of executions.
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Table 7.5: Experimental results for the engine fault diagnosis problem.

setting p+
layer

p−
layer

p+
neuron Avg Std Dev

1 0.05 0.05 0.05 0.016754 0.0049053

2 0.05 0.05 0.1 0.018100 0.0092000

3 0.05 0.05 0.2 0.015825 0.0044010

4 0.05 0.1 0.05 0.014598 0.0032488

5 0.05 0.1 0.1 0.019499 0.0039437

6 0.05 0.1 0.2 0.015624 0.0020334

7 0.05 0.2 0.05 0.016075 0.0055915

8 0.05 0.2 0.1 0.017830 0.0041311

9 0.05 0.2 0.2 0.015934 0.0034586

10 0.1 0.05 0.05 0.016972 0.0072452

11 0.1 0.05 0.1 0.016880 0.0077800

12 0.1 0.05 0.2 0.015212 0.0039362

13 0.1 0.1 0.05 0.017032 0.0048141

14 0.1 0.1 0.1 0.017127 0.0056274

15 0.1 0.1 0.2 0.020672 0.0045185

16 0.1 0.2 0.05 0.013074 0.0059628

17 0.1 0.2 0.1 0.016231 0.0067702

18 0.1 0.2 0.2 0.015693 0.0026016

19 0.2 0.05 0.05 0.017530 0.0070005

20 0.2 0.05 0.1 0.019999 0.0044805

21 0.2 0.05 0.2 0.015552 0.0060033

22 0.2 0.1 0.05 0.014446 0.0042192

23 0.2 0.1 0.1 0.014501 0.0058740

24 0.2 0.1 0.2 0.013158 0.0062964

25 0.2 0.2 0.05 0.016855 0.0049215

26 0.2 0.2 0.1 0.015516 0.0059256

27 0.2 0.2 0.2 0.013769 0.0055727



7.4. EXPERIMENTS ON REAL SIMULATOR 99

The validation set is created with further measurements on the real engine, by defining

parameter settings different from those used for the learning step, as indicated in Table 7.6.

Table 7.6: Validation Engine Settings.

Motor Inverter Values

Condition Fault Type Frequency Expected Predicted

No Fault Load 20 0 0.5729

Fault Load 10 1 0.9187

No Fault Load 25 0 0.3574

No Fault Load 35 0 0.0780

Fault Load 15 1 0.8326

No Fault No Load 35 0 0.1598

Fault Load 20 1 0.8668

Fault No Load 10 1 0.7399

No Fault No Load 50 0 0.9137

Fault No Load 50 1 0.7354

Fault No Load 25 1 0.8185

Fault No Load 50 1 0.9164

Fault No Load 10 1 0.9111

Fault No Load 50 1 0.8185

Fault No Load 10 1 0.7534

7.4.1 Results

The results obtained from the execution of the best solution on the validation set are de-

picted in Figure 7.10, in which a comparison between the expected values (solid marker)

and values predicted by the neuro-genetic model (asterisk marker) is reported. The first

observation is that the major part of the neuro-predicted values compare well with respect

to expected values, giving a success percentage of 87%. As reported in Figure 7.10, only

two of 15 validation cases do not compare well with respect to real engine simulations.

This fact is substantially due to the use of unbalanced set of 0 or 1 cases for training and a

test sets during the neuro-genetic simulation.

Better results are then obtained by considering output threshold values different from

those considered in the validation set, equal to 0.5. Indeed, as Figure 7.10 shows, a setting

of the output threshold equal to 0.6 improve the results previously obtained on the same

validation set, because in that case only 1 validation case does not compare well with

respect tho real engine experiments, increasing the percentage of success up to 93%.

The sensitivity and the specificity shapes of the best solution found with the neuro-

genetic approach on the validation set are depicted in Figure 7.11, while the ROC shape on

the same set is shown in Figure 7.12.

The results are also successfully compared with those obtained with a traditional neural

network implementation [30, 31]. A comparison with the results obtained in [32] for a

handcrafted neuro-fuzzy network did not reveal any significant difference. This is an ex-

tremely positive outcome, given the expert time and effort spent in hand-crafting the neuro-

fuzzy network, as compared to the practically null effort required to set up the experiments

carried out with the neuro-genetic approach. On the other hand, the amount of required

computing resources was substantially greater with the neuro-genetic approach, and the

relative standard deviation is sufficiently small to guarantee finding a satisfactory solution

in a few runs.
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Figure 7.10: Comparison between expected validation outputs (solid marker) and predicted

validation outputs (asterisk marker).
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Figure 7.11: Sensitivity (dashed line) and specificity (solid line) shapes of the best model

on the validation set.
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Figure 7.12: ROC Shape of the best solution on the validation set.
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A further comparison can be carried out with a handcrafted neural network, with a pre-

defined topology set to [8, 4, 1] and with weight connections randomly initialized. The

neural network is trained with the backpropagation algorithm, on the same training set,

obtaining a fitness value on the same test set equal to 0.2074 and a MSE of 0.4110. Figure

7.13 shows the sensitivity and the specificity shapes, while Figure 7.14 shows the ROC

shape of that neural network.
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Figure 7.13: Sensitivity (dashed line) and specificity (solid line) shapes of the trial neural

network on the validation set.
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Figure 7.14: ROC Shape of the trial neural network on the validation set.

The results obtained from all the experiments show how the best solution found with

the neuro-genetic approach is better than the solution obtained from a handcrafted neural

network, both in terms of MSE values and in terms of the receiver operating characteristic.
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Chapter 8

Brain Wave Analysis

8.1 Introduction

Brain Computer Interfaces (BCI) define a mode of communication for people affected by

neuromuscular impairment. Neural diseases can break the slim and fragile line between

thoughts and actions of a person affected by these disorders. In these cases, signal process-

ing algorithms, like wavelets decomposition or Independent Component Analysis algo-

rithms, may become helpful in exploiting of the residual functions of the brain at their

best. Problems regarding the identification of healthy and pathological cases are solved by

considering well-defined approaches, like Genetic Algorithms, Support Vector Machine,

Neural Network models, etc, and several works presented in the literature have been used

to classify electroencephalogram signals (EEG) and guess user intentions.

An example is recently presented in the literature by J.J. Merelo Guervós and col-

leagues [101], in which they consider an evolutionary Brain Computer Interface (BCI)

design, based on a MLP neural network, that is trained by an evolutionary algorithm im-

plemented with Evolving Objects (EO).

An application to a classification problem regarding brain stimuli is also considered in

this chapter and the neuro-genetic approach, subject of this P.h.D. dissertation, is applied

as a different sort of classifier to such a problem.

8.2 Problem Description

Brain Computer Interfaces (BCI) represent a new communication option for those suffering

from neuromuscular impairment that prevents them from using conventional input devices,

such as mouses, keyboards, joysticks, etc. This methodology has been developing quickly

during the last few years, thanks to the increase of computational power and the avail-

ability of new algorithms for signal processing that can be used to analyze brain waves.

During the first international meeting on BCI technology, Jonathan R. Wolpaw formalized

the definition of the BCI systems as follows:

A brain-computer interface (BCI) is a communication or control system in

which the user’s messages or commands do not depend on the brain’s normal

output channels. That is, the message is not carried by nerves and muscles,

and, furthermore, neuromuscular activity is not needed to produce the activity

that does carry the message [128].

103
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According to this definition, BCI system appears as a possible and sometimes unique

mode of communication for people with severe neuromuscular disorders like spinal cord

injury or cerebral paralysis. In this sense, the exploitation of the residual functions of the

brain may allow those patients to communicate.

8.3 Brain Wave Application

As pointed out by several works presented in the literature by Donchin, Wolpaw and

colleagues[128, 36, 18], the human brain has an intense chemical and electrical activity,

partially characterized by peculiar electrical patterns, which occur at specific times and at

well-localized brain sites. All that activity is observable with a certain level of repeatability

under well-defined environmental conditions. These simple physiological issues can lead

to the development of new communication systems.

One of the most utilized electrical activities of the brain for BCI is the so-called P300

Evoked Potential. This wave is a late-appearing component of an Event Related Potential

(ERP) which can be auditory, visual or somatosensory. It has a latency of about 300 ms

and is elicited by rare or significant stimuli, when these are interspersed with frequent or

routine stimuli. Its amplitude is strongly related to the unpredictability of the stimulus: the

more unexpected the stimulus, the higher the amplitude. This particular wave has been

used to make a subject choose by using different stimuli [38, 36].

The general idea of Donchin’s solution is that the patient is able to generate this signal

without any training. This is due to the fact that the P300 is the brain response to an

unexpected or surprising event and is generated naturally. Donchin developed a BCI system

able to detect an elicited P300 by signal averaging techniques (to reduce the noise) and used

a specific method to speed up the overall performance.

A fundamental aspect for a human machine interaction system, such as BCI, is the

need for a proper development environment that allows a real time interaction between the

subject and the machine (this necessity is directed by the fact that the users need a short re-

sponse time to keep their attention high). For this reason, a flexible modular environment is

considered, useful to develop and to experiment various BCI systems. There are essentially

two parts that every BCI system needs:

1. A dedicated hardware system that manages the stimulation, the EEG information

acquisition (electrodes and amplifier samplers etc) from the subject, and the feedback

obtained from him (visual, acoustic, haptic,etc.).

2. A system that deals with advanced signal processing and interpretation.

Donchin’s idea has been adopted by Beverina and colleagues [18], in a brain-wave

classification problem, implemented with a SVM approach, based on two kinds of BCI: the

first one based on the Event Related Potential (ERP) and the second one based on Steady-

State Visual Evoked Potential (SSVEP).

All instances of the datasets are then used in the neuro-genetic approach in order to

identify the neural network that better works as classifier in this problem.

In the rest of the chapter the task and the stimulation paradigm defined by Beverina

is presented, in order to better explain how the acquisition process works, by defining the

brain features that are considered for each instance.
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8.3.1 Task and Stimulation Paradigm

Beverina and colleagues developed in [18] a whole system with the purpose of controlling

the motion of an object on a computer screen by means of visual stimuli. A graphical

representation of the system implemented for BCI development is depicted in Figure 8.1.

The experimental protocol has been divided in training and testing phases. The aim of the

first is to set the parameters of the typical activity of every subject, i.e. maximal amplitude,

in order to fix the threshold for the classification part. Then, in the testing phase, the

subjects amplitude thresholds are recalculated adaptively in order to track the changes on

the individual behavior.

Figure 8.1: BCI Development System.

The authors show in Figure 8.2 what a subject sees during the interaction with the

stimulator machine.

Figure 8.2: Stimuli.

The subject’s task is to move an object (the blue ball) till it reaches the target (the red

cross). The subject communicates to the machine which direction he is interested in, by

posing his visual attention to only one of the four arrows and waiting until the arrow be-

comes yellow. Random target-direction visual stimuli, blinking green/yellow are presented

in four positions: up arrow (as ⇑), right arrow (as ⇒), down arrow (as ⇓), and left arrow

(as⇐) on the computer screen.

The subject is seated in a sound attenuated room facing the computer screen, and is

instructed to only look at the stimulus related with the desired object’s movement direction,

also called target stimulus. In that system, each stimulus consists in a single flash of an

arrow which lasts for 150ms. A single trial may be defined as a sequence of user chosen

target stimuli, subset of the random sequence, that allows the object to reach the end point.

Each stimulus is called target stimulus when it is chosen by the subject to move the
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object closer to the final target; otherwise it is called non-target stimulus. The authors

suppose that every target stimulus elicits a P300 wave. Each stimulus occurred with a

probability rate equal to 0.25. The trajectory of the object in each trial is decided by the

subject.

Electrodes placed on the scalp of the subject capture the brain signals produced in

response to the brain stimuli. At the end of the data acquisition process a new representation

in a space of 78 features is given for every single sweep analyzed. Each of the instances

obtained from this acquisition process defines the dataset used at first by Beverina and

colleagues, and then in the experiments carried out by using the neuro-genetic approach.

8.4 Experiments and Results

The dataset provided by Beverina and colleagues consists of 700 negative cases and 295

positive cases. As previously defined, the features are based on wavelets, morphological

criteria and power in different time windows, for a total of 78 real-valued input attributes,

that correspond to the features of the signal response to the brain stimuli, and 1 binary

output attribute, indicating the class (positive or negative) of the relevant case. A positive

case is one for which the response to the stimulus is correct; a negative case is one for

which the response is incorrect.

In [18], the authors created datasets with equal number of positive and negative cases.

In the neuro-genetic approach two kinds of experiments are carried out. The first considers

three balanced datasets of positive and negative cases, maintaining the same cardinality

defined by Beverina and colleagues in their work, while the second considers the same

instances, but with non-balanced datasets.

In the first experiment, for each run of the evolutionary algorithm, 218 positive cases

from the 295 positive cases of the original set, and 218 negative cases from the 700 negative

cases of the original set are extracted, to create a 436 case training dataset. For each run,

also a 40 case test set is created, by randomly extracting 20 positive cases and 20 negative

cases from the remainder of the original dataset, so that there is no overlap between the

training and the test sets. The validation set contains only 10 cases equally distributed. In

this experiment, for each run of the evolutionary algorithm, up to 25,000 network evalu-

ations are allowed (i.e., simulations of the network on the whole training set), including

those performed by the backpropagation algorithm.

In the first experiment several runs of the neuro-genetic approach have been carried out

in order to find out optimal settings of the genetic parameters p+
layer, p−layer, and p+

neuron.

All the runs are executed by considering bp = 0 and bp = 1, i.e., both without and with

backpropagation, while the other parameters of the algorithm are set to the default values

listed in Table 5.1.

The pcross parameter is fixed to 0 for all runs, because neither single-point crossover

nor merge crossover give satisfactory results also f or these simulations, due to the reasons

explained in Section 5.7. The best solution has been found by using backpropagation algo-

rithm, i.e. with the parameter bp = 1, and with p+
layer=0.05, p−layer=0.1, and p+

neuron = 0.2,

although they do not differ significantly from other solutions found with bp = 1. The best

solution is a network with a phenotype equal to [4, 1] and with an accuracy on the validation

set equal to 80%.

In the second experiment the training set is defined with 660 non-balanced instances,
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taken from the global dataset provided by Beverina and colleagues, while the test set and

the validation set are defined with 143 non-balanced instances. Also in this case all runs

of the neuro-genetic approach have been carried out in order to find out optimal settings of

the genetic parameters p+
layer, p−layer, and p+

neuron, while the pcross parameter is maintained

to 0 for all runs. The mean and the standard deviation of the test fitness, calculated for each

mutation parameter setting, are reported in Table 8.1.

Table 8.1: Brain Wave Experimental Results.

Setting Parameter Setting BP=1

p+
layer

p−
layer

p+
neuron avg stdev

1 0.05 0.05 0.05 0.1493 0.0053

2 0.05 0.05 0.1 0.1505 0.0070

3 0.05 0.05 0.2 0.1489 0.0136

4 0.05 0.1 0.05 0.1488 0.0148

5 0.05 0.1 0.1 0.1557 0.0149

6 0.05 0.1 0.2 0.1498 0.0070

7 0.05 0.2 0.05 0.1487 0.0053

8 0.05 0.2 0.1 0.1453 0.0080

9 0.05 0.2 0.2 0.1494 0.0082

10 0.1 0.05 0.05 0.1536 0.0128

11 0.1 0.05 0.1 0.1486 0.0118

12 0.1 0.05 0.2 0.1500 0.0090

13 0.1 0.1 0.05 0.1504 0.0098

14 0.1 0.1 0.1 0.1493 0.0101

15 0.1 0.1 0.2 0.1499 0.0094

16 0.1 0.2 0.05 0.1547 0.0077

17 0.1 0.2 0.1 0.1541 0.0075

18 0.1 0.2 0.2 0.1530 0.0094

19 0.2 0.05 0.05 0.1480 0.0140

20 0.2 0.05 0.1 0.1501 0.0072

21 0.2 0.05 0.2 0.1503 0.0070

22 0.2 0.1 0.05 0.1486 0.0129

23 0.2 0.1 0.1 0.1502 0.0079

24 0.2 0.1 0.2 0.1495 0.0136

25 0.2 0.2 0.05 0.1550 0.0049

26 0.2 0.2 0.1 0.1517 0.0090

27 0.2 0.2 0.2 0.1510 0.0141

The best solution found is a neural network with a phenotype equal to [211], with bp =
1 and with mutation parameter setting equal to p+

layer=0.05, p−layer = 0.2, and p+
neuron = 0.1.

The best solution found has an average accuracy on the validation set equal to 84% with a

best accuracy of 87.5%.

8.5 Comparison

A comparison of the results obtained with the neuro-genetic approach, and other previous

results obtained from other works presented in the literature, are reported in Table 8.2, in

which the accuracy obtained from the approaches is shown.

In the first experiment, that is carried out with balanced datasets, the sensitivity and

the specificity shapes of the best solution found with the neuro-genetic approach on the

validation set are depicted in Figure 8.3, and the ROC shape is shown in Figure 8.4. Then,

the sensitivity and the specificity shapes of the best solution found in the second experiment,

considering the unbalanced validation set, are reported in Figure 8.5, while the ROC shape

on the same set is shown in Figure 8.6.
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Table 8.2: Comparison between brain-wave classification approaches.

Method Accuracy (%)

Beverina NN approach:

with healthy cases 66.8

with pathological cases 56.7

Beverina SVM approach 71.1

Neuro-genetic approach 80

(with balanced datasets)

Neuro-genetic approach 87.5

(with non-balanced datasets)

The first observation is that the two shapes depicted in Figures 8.5 and 8.3, respectively,

show how the setting of the classification threshold does not represent a critical aspect in

this problem, both with and without balanced datasets. Moreover, the first experiment does

not obtain better results as the second one, which considers unbalanced datasets, probably

due to the reduced dimensions of the considered datasets. However, further experiments on

larger datasets could improve the global performances.
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Figure 8.3: Sensitivity (dashed line) and specificity (solid line) shapes of the best model on

balanced validation set.

The percentage of the accuracy obtained with the neuro-genetic approach also com-

pares well with respect to another recent evolutionary approach implemented in the field of

BCI selection and classification problems, carried out on a different dataset of P300 signals.

The work is developed by Poli and colleagues [29] by using genetic algorithms. The results

obtained in their approach have a percentage of accuracy equal to 86.94% by considering

3-linear terms and equal to 87.62%, by considering 4-linear terms. These results are similar

to those obtained in the neuro-genetic approach by considering non-balanced datasets.
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Figure 8.4: ROC Shape of the best solution on balanced validation set.
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Figure 8.5: Sensitivity (dashed line) and specificity (solid line) shapes of the best model on

unbalanced validation set.
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Figure 8.6: ROC Shape of the best solution on unbalanced validation set.
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Chapter 9

Financial Applications

9.1 Introduction

The last application of the neural evolutionary approach, described in this P.h.D. disserta-

tion, has been presented in [4] and in [3], and regards two different financial problems. The

first application is aimed at constructing factor models of financial instruments; a sample

statistical arbitrage is also present in this financial modeling, providing satisfactory results

and significant profits.

In the second real-world financial application considered, the forecasting financial time-

series using the neuro-genetic approach is tested. The approach uses different financial

instruments to forecast the next-day closing price of the Dow Jones Industrial Average

(DJIA).

9.2 Context of the Application

Market microstructure examines organized trading in instruments. Harris explains in [52]

that instruments include common stocks, preferred stocks, bonds, convertible bonds, war-

rants, foreign exchange contracts, commodities, options, etc. A market is the place where

traders gather to trade instruments.

Trading is a search problem. Buyers must find sellers, and sellers must find buyers.

Every trader wants to trade at a good price. Sellers seek buyers willing to pay high prices.

Buyers seek sellers willing to sell at low prices. Traders also must find traders who are

willing to trade the quantities, or sizes, they desire.

Traders open two mainly kinds of positions respect to the market trading. Indeed, they

have long positions when they own something. Traders with long positions profit when

prices rise, and they try to buy low and sell high. Traders have short positions when they

have sold something that they do not own. Traders with short positions hope that prices

will fall so they can repurchase at a lower price. When they repurchase, they cover their

positions, and short sellers profit when they sell high and buy at low price.

9.3 Financial Modeling

Factor models are statistical models, in this case implemented using artificial neural net-

works, that represent the returns of a financial instrument as a function of the returns of

111



112 CHAPTER 9. FINANCIAL APPLICATIONS

Table 9.1: Input Market Indices.

Class Ticker Description

Foreign Exchange Rates EURGBP 1EUR = xGBP
GBPEUR 1GBP = xEUR
EURJPY 1EUR = xJPY
JPYEUR 1JPY = xEUR
GBPJPY 1GBP = xJPY
JPYGBP 1JPY = xGBP
USDEUR 1USD = xEUR
EURUSD 1EUR = xUSD
USDGBP 1USD = xGBP
GBPUSD 1GBP = xUSD
USDJPY 1USD = xJPY
JPYUSD 1JPY = xUSD

Industry Representatives* DNA Biotecnologies

TM Motors

DOW Chemicals

NOK Communications

JNJ Drug Manufactures

UN Food

BAB Airlines

XOM Oil & Gas

BHP Metal & Mineral

AIG Insurance

INTC Semiconductors

VZ Telecom

GE Conglomerates

Commodities OIL Crude Oil $/barrel

AU Gold, $/Troy ounce

AG Silver, $/Troy ounce

US Treasury Bonds TYX 30-year bond

TNX 10-year note

FVX 5-year note

IRX 13-week bill

*) Representatives are, as a rule, the companies with largest market capitalization for their sector.

other financial instruments [52]. Factor models are used primarily for statistical arbitrage.

A statistical arbitrageur builds a hedge portfolio consisting of one or more long positions

and one or more short positions in various correlated instruments. When the price of one

of the instruments diverges from the value predicted by the model, the arbitrageur puts on

the arbitrage, by going long that instrument and short the others, if the price is lower than

predicted, or short that instrument and long the others, if the price is higher. If the model is

correct, the price will tend to revert to the value predicted by the model, and the arbitrageur

will profit.

In order to study the capabilities of the neuro-genetic approach, a factor modeling prob-

lem is considered, whereby the Dow Jones Industrial Average (DJIA) is modeled against a

number of other market indices, including foreign exchange rates, stock of individual com-

panies taken as representatives of entire market segments, and commodity prices as shown

in Table 9.1.

9.3.1 Experiments

In the factor modeling approach and in the following forecasting time series approach,

the datasets are defined with the same method. The training and test sets are created by

considering daily closing prices for the period since the 2nd of January, 2001 until the

30th of November, 2005. All data are divided in two different datasets, respectively with
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Table 9.2: Financial Modeling Experimental Results.

Setting Parameter Setting BP=1

p+
layer

p−
layer

p+
neuron avg stdev

1 0.05 0.05 0.05 0.2988 0.0464

2 0.05 0.05 0.1 0.2980 0.0362

3 0.05 0.05 0.2 0.3013 0.0330

4 0.05 0.1 0.05 0.2865 0.0368

5 0.05 0.1 0.1 0.2813 0.0435

6 0.05 0.1 0.2 0.3040 0.0232

7 0.05 0.2 0.05 0.2845 0.0321

8 0.05 0.2 0.1 0.2908 0.0252

9 0.05 0.2 0.2 0.3059 0.0208

10 0.1 0.05 0.05 0.2987 0.0290

11 0.1 0.05 0.1 0.3039 0.0341

12 0.1 0.05 0.2 0.3155 0.0396

13 0.1 0.1 0.05 0.3011 0.0395

14 0.1 0.1 0.1 0.2957 0.0201

15 0.1 0.1 0.2 0.3083 0.0354

16 0.1 0.2 0.05 0.2785 0.0325

17 0.1 0.2 0.1 0.2911 0.0340

18 0.1 0.2 0.2 0.2835 0.0219

19 0.2 0.05 0.05 0.2852 0.0292

20 0.2 0.05 0.1 0.2983 0.0309

21 0.2 0.05 0.2 0.2892 0.0374

22 0.2 0.1 0.05 0.3006 0.0322

23 0.2 0.1 0.1 0.2791 0.0261

24 0.2 0.1 0.2 0.2894 0.0260

25 0.2 0.2 0.05 0.2892 0.0230

26 0.2 0.2 0.1 0.2797 0.0360

27 0.2 0.2 0.2 0.2783 0.0369

1000 cases for the training set and 250 cases for the test set. The validation set consists

of the daily closing prices for the period since the 1st of December, 2005 until the 13th of

January, 2006. All time series of the three data sets for the two financial application are also

preprocessed by deleting the long term components. This step is carried out by subtracting

the 20 days moving average from those series.

In factor modeling all the parameters are set to the default values, defined at the ini-

tialization of the population in the neuro genetic approach. They are shown in Table 5.2

in Chapter 5. Several runs of this approach have been carried out in order to find out the

optimal settings of the genetic parameters p+
layer, p−layer, and p+

neuron. For each run of the

evolutionary algorithm, up to 100,000 network evaluations (i.e., simulations of the network

on the whole training set) have been allowed, including those performed by the backprop-

agation algorithm.

The experiments, carried out in order to identify the best setting of the mutation proba-

bility, are presented in Table 9.2: here are reported data about the average and the standard

deviation values of the fitness calculated on the test set of the best solutions found for each

parameter settings over 10 runs.

Few experiments are conducted without BP algorithm and the first observation is that

there is a striking superiority of the version of the algorithm which uses backpropagation.

This is probably due to the fact that, whereas evolutionary algorithms are known to be quite

effective in exploring the search space, they are in general quite poor at closing into a local

optimum; backpropagation, which is essentially a local optimization algorithm, appears to

complement well the neuro genetic approach.
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Table 9.3: Input weights in the best neural network (second and third column), compared

with the relevant coefficients of a linear model obtained by means of linear regression

(fourth column).

Input Weight Linear

1st Neuron 2nd Neuron Regression

USDEUR 0,4953 0,4202 -16773

EURUSD 0,4214 0,3745 26979

USDGBP 0,1879 0,2300 139950

GBPUSD -0,0095 0,1078 -56971

USDJPY 0,4642 0,4009 -630.66

JPYUSD 0,3441 0,3267 7131000

EURGBP 0,2991 0,2988 -239430

GBPEUR 0,2063 0,2414 112840

EURJPY 0,4246 0,3752 1120.3

JPYEUR 0,2048 0,2405 -17876000

GBPJPY -0,1838 -0,0001 -438.21

JPYGBP -0,1341 0,0307 12651000

AIG -0,1914 -0,0048 15963

BAB 0,2319 0,2572 14326

BHP 0,2848 0,2900 12095

C 0,3638 0,3388 22405

DNA 0,2079 0,2424 3.5997

GE 0,4324 0,3813 45.966

INTC 0,0195 0,1258 23.786

JNJ 0,2774 0,2854 3.4063

NOK 0,3907 0,3555 -13.171

TM 0,8933 0,6665 3.1901

UN 0,3734 0,3448 10.95

VZ 0,4558 0,3958 25.732

XOM 0,2932 0,2952 21.554

OIL 0,3634 0,3386 -5.4066

AU 0,4418 0,3871 1.0003

AG 0,0969 0,1737 -31.656

TNX 0,3375 0,3225 316.7

TYX 0,2596 0,2744 -243.85

FVX 0,1404 0,2006 41.866

IRX 0,2127 0,2453 -93.432

Another observation is that the approach is substantially robust with respect to the set-

ting of parameters other than bp.

The best solutions, on average, have been found with p+
layer = 0.2, p−layer = 0.2, and

p+
neuron = 0.2, although they do not differ significantly from other solutions found with

bp = 1.

9.3.2 Results

The best model over all runs performed has been found by the algorithm using backprop-

agation. The best model is a multi-layer perceptron with a phenotype of type [2, 1], which

obtained a mean square error of 0.39 on the test set. Figure 9.1 shows a satisfactory agree-

ment between the output of the best model (predicted values) with the actual closing values

of the DJIA on the validation set (desired values).

The weights of the inputs to the neurons of the hidden layer are shown in Table 9.3.

Those neurons have biases of −1.8462 and −2.1212, and their output is connected with

two weights of −1.8637 and 1.0041, respectively, to the output neuron, whose bias is

−2.0586.

In order to assess the quality of the model, a comparison with simple linear regression
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on the same data is performed. Even though the financial modeling is represented by a

non-linear function, a simple linear regression function is used in this chapter to make a

comparison with the neuro genetic approach, since also several famous financial modeling

problems presented in the literature have been validated by using linear regression models.

The linear regression yields the same linear model that has been used in the valida-

tion of the neuro-genetic approach, discussed in Chapter 6. The same equation has been

maintained:

y =
32

∑

i=1

wixi, (9.1)

where the wi are those reported in Table 9.3 in the linear regression column. The

prediction obtained by the linear regression model are compared with the best solution

found, as shown in Figure 9.2. The solution obtained using the approach described in this

P.d.D dissertation has a MSE of 1291.7, a better result compared to the MSE of 1320.5 of

the prediction based on linear regression on the same validation dataset.

9.3.3 An Application to Statistical Arbitrage

In order to evaluate the usefulness of such a financial modeling, a paper simulation of a

very simple statistic arbitrage strategy has been carried out starting on December 1, 2005

until Friday, January 13, 2006.

The strategy is as follows: on each day, the closing actual value of the DJIA index

is considered, as well as the closing values of the 32 instruments of Table 9.1. A model

estimate y of the ‘fair’ value (i.e., the value expected on the basis of the value of the other

32 instruments) of the DJIA index is obtained by applying the best neural network above

described to all closing values.

Three cases may occur:

• ln y
DJIA > ǫ

100 : this means the DJIA is ‘cheaper’ than expected, and the strategy buys

$320,000 worth of it, while at the same time (short)-selling $10,000 worth of each of

the 32 instruments;

• −ǫ
100 < ln y

DJIA < ǫ
100 : no action is taken;

• ln y
DJIA < −ǫ

100 : this means the DJIA is overvalued, and the strategy (short)-sells

$320,000 worth of it, while at the same time buying $10,000 worth of each of the 32

instruments.

Actually, buying (or selling) the same amount of the 12 exchange rates would have a zero

net effect, because all pairs of transactions like ‘buy USDEUR’, ‘buy EURUSD’ would

cancel. Therefore, no sensible trader would make those transactions. However, to simplify

the exposition, such detail is overlooked.

As a consequence of this strategy, a hedge portfolio is created and reallocated each day.

For the sake of simplicity, all transactions are carried out at the closing price and without

cost. Of course, a more realistic simulation should take transaction costs into account. On

the other hand, most brokers pay a short interest rebate, usually close to the federal funds

rate or the LIBOR, on the deposit they require to collateralize the short selling of securities,

and this factor should be taken into account as well.
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Table 9.4: Simulation of a statistical arbitrage strategy based on the best solution found in

the neuro genetic model. The operation in the Action column refers to the (short)-selling or

buying of the DJIA, counterbalanced by a buying or (short)selling of the other instruments,

as explained in the text. The NAV column shows the net asset value of the hedge portfolio

at the end of each day.

Date Action NAV

December 1st, 2005 Sell DJIA $0

December 2nd, 2005 Sell DJIA $1,3730

December 5th, 2005 Buy DJIA $5,0280

December 6th, 2005 Sell DJIA $3,8060

December 7th, 2005 Sell DJIA $6,1820

December 8th, 2005 Sell DJIA $10,598

December 9th, 2005 No Action $9,9760

December 12th, 2005 Sell DJIA $16,910

December 13th, 2005 Buy DJIA $7,6700

December 14th, 2005 Sell DJIA $(4,921)

December 15th, 2005 Sell DJIA $(7,339)

December 16th, 2005 Sell DJIA $(7,119)

December 19th, 2005 Buy DJIA $(5,446)

December 20th, 2005 Buy DJIA $1,3930

December 21th, 2005 No Action $4,2890

December 22th, 2005 Sell DJIA $(7,704)

December 23th, 2005 Sell DJIA $(6,613)

December 27th, 2005 Buy DJIA $3,5260

December 28th, 2005 Buy DJIA $8,6020

December 29th, 2005 No Action $12,256

December 30th, 2005 Sell DJIA $21,463

January 3rd, 2006 Buy DJIA $21,430

January 4th, 2006 Buy DJIA $22,490

January 5th, 2006 Buy DJIA $20,881

January 6th, 2006 No Action $17,637

January 9th, 2006 Sell DJIA $14,646

January 10th, 2006 Sell DJIA $13,535

January 11th, 2006 Sell DJIA $12,220

January 12th, 2006 Sell DJIA $17,160

January 13th, 2006 Sell DJIA $17,536

Results

The net asset value (i.e., the total theoretical amount remaining after selling all long posi-

tions and covering all short positions at market value) of the hedge portfolio constructed

by the above strategy during the validation market days of the simulation is shown in Table

9.4. The net asset value on Friday, January 13, 2006 can be taken as a (perhaps slightly

optimistic) estimate of the profits of the arbitrage.

An inspection of Table 9.4 reveals that a starting capital of at least $2,562,000 would

have been required to implement the strategy, and probably more, under the assumption

that the broker demanded a cash deposit (plus about 2% more) as collateral for the short

positions taken by the strategy, based on the peak exposure recorded on January 13. A

profit of $17,536 would represent almost a 0.67% return on that capital. That is more than

a 5.75% return on an annual basis, with a very moderate risk. This is not to suggest that the

reader should take the model and put all of his or her savings on arbitrage in Wall Street;

however, one can take such a result as an evidence that the model obtained actually contains

some significant insight on the relationships between the financial instruments considered.
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Figure 9.1: Comparison between the daily closing prices predicted by the best solution

found with the neuro genetic model (dashed line)and actual daily closing prices (solid line)

of the DJIA on the validation set.
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Figure 9.2: Comparison between the daily closing prices predicted by the best model

(dashed line), those predicted by the linear regression (dash-dotted line), and the actual

daily closing prices (solid line) of the DJIA on the validation set.
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9.4 Financial Time Series Prediction

The results obtained by the neuro-genetic application for financial modeling, described in

detail in the previous section and in [4], appear promising. For this reason, another financial

application has been considered, focusing on time series prediction. The aim is to test the

possibility of making a financial forecast of an instrument. In this second problem the same

dataset defined for the first problem is maintained, adding information about the actual

closing price of DJIA in the time series considered. Also the time series of this instrument

are preprocessed by deleting the 20-days moving average, as for the other instruments.

Time series forecasting is one of the most widely undertaken research areas in statistics.

There is a vast literature on the various linear time series models, among which the most

popular traditional time series method used for various forecasting tasks is the autoregres-

sive integrated moving average model (ARIMA) [120].

The traditional approach for time series modeling assumes that there is a underlying

linear relationship between the past and the future values of a time series. Linear models

are very easy to explain and implement, but their main drawback is that they may be totally

inappropriate if the underlying process is nonlinear. This is the major difference from

a non-linear ANN model for which there is no a priori assumptions on the relationship

between the variables and the model form is defined by the given data.

As already stated in Chapter 3, ANNs possess the ability to determine non-linear rela-

tionships, and are particularly adept at dealing with noisy datasets.

ANNs are applied to predicting different time series, concerning metereology, geo-

physics, economy, and industrial management.

One of the most interesting application areas, along with financial modeling previously

described, is financial trading, with particular attention to time-series predictions of finan-

cial instruments. Several approaches within the literature which deal with applying ANN

techniques to investment and trading consider forecasting future data points using historical

data sets. Research reviewed in this area generally attempts to predict the future values of

some time series like base-time series data, e.g. closing prices, or time series derived from

base data, (e.g., indicators - frequently used in technical analysis). Several works have been

considered in this direction as representative of these techniques, implementing different

kinds of neural networks. Radial Basis Function (RBF) networks have been implemented

in a stock exchange market prediction in [130]. A technical analysis of different ANNs

techniques is presented in [68], along with other related works presented in the literature.

Several experiments of financial forecasting with NN are also reported in that work.

The main problem using ANNs is a local minimum entrapment which often occurs

in a gradient descent algorithm, like backpropagation (BP) [103]. In order to overcome

this drawback, evolutionary solutions are applied to financial forecasting. Evolutionary

algorithms (EA) and genetic programming (GP) have been applied to financial time-series

prediction by various authors since their beginning. A new system that utilizes genetic

algorithms (GAs) to predict the future performances of individual stocks is presented in

[70]. The system extended GAs from their traditional domain of optimization to inductive

machine learning or classification; time-series forecasting is a special type of classification

on which this financial application is concentrated. The implemented genetic model is

compared with traditional solutions.

As indicated in [57], besides conducting an efficient exploration of the search space,

with a population of models that adapt to market conditions, GP discovers automatically
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dependencies among the factors affecting the market and thus selects the relevant variables

to be included in the model. This may be an advantage with respect to more traditional,

and popular, autoregressive statistical approaches such as ARCH, GARCH and the like

[47]. An application of GP to financial forecasting markets is described in [104], in which

the objective is to predict a given realization of the time series of the daily closing values

of the DJIA over a given period of time.

Interesting approaches consider the combination of ANNs and EA in order to com-

bine the main advantage of each solution for financial prediction aimed to reduce some

drawbacks. ANN has preeminent learning ability, but often exhibit inconsistent and unpre-

dictable performance on data. In addition, it may not be possible to train ANN or to carry

out the training task effectively without data reduction when the amount of data is so large.

A solution to this problem is proposed with a new hybrid model of ANN and genetic algo-

rithms (GAs) for instance selection in [64]. An evolutionary instance selection algorithm

reduce the dimensionality of data and may delete noisy and irrelevant instances.

9.4.1 Financial Forecasting

The area of time series predictions is normally focused on attempting to predict the future

values of a time series in one of two primary ways, either predicting future values of a series

from the past values of that same series (intra-market analysis), or predicting future values

of a series using data from different series (inter-market analysis). In many ways, these two

primary prediction methodologies relate quite closely to technical analysis strategies. For

example, the use (and projection) of a moving average over a series of stock prices could

be regarded as predicting future values of a series (the moving average) from past values

of the same series. In this financial forecasting problem, the second case is considered, and

different financial instruments are used in order to predict the future closing price of the

Dow Jones Industrial Average (DJIA).

Indicators in Technical Analysis are often composed by a number of data items, like

price, volume, open-interest, etc. These indicators are commonly used to give indications

of future direction of price. As previously defined, in this second financial application,

the closing price of the DJIA for the next day is predicted from the last closing price of

other market indices, by considering the time series of all instruments used in the financial

modeling, already described, and the time series for the DJIA. All inputs are listed in Table

9.5.

9.4.2 Experiments

Financial forecasting model defines the training and test sets by considering the same in-

dices as the previous financial modeling application, adding the daily DJIA closing price

for the same period as a further input value. Also in this case, all data are divided into

two different datasets, with 1000 cases for the training set and 249 cases for the test set,

respectively. The validation set consists of the daily closing prices for the period from the

1st of December, 2005 to the 13th of January, 2006. Again, all time series of the three data

sets are preprocessed to filter out the medium and long-term trends. This is accomplished

by subtracting from every term of the data series the corresponding value of the 20-day

moving average, thus yielding a zero-mean series of price residues.

In order to find out optimal settings for the genetic parameters, 10 runs of this approach
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Table 9.5: Input Market Indices.

Class Ticker Description

Foreign Exchange Rates EURGBP 1EUR = xGBP
GBPEUR 1GBP = xEUR
EURJPY 1EUR = xJPY
JPYEUR 1JPY = xEUR
GBPJPY 1GBP = xJPY
JPYGBP 1JPY = xGBP
USDEUR 1USD = xEUR
EURUSD 1EUR = xUSD
USDGBP 1USD = xGBP
GBPUSD 1GBP = xUSD
USDJPY 1USD = xJPY
JPYUSD 1JPY = xUSD

Industry Representatives* DNA Biotecnologies

TM Motors

DOW Chemicals

NOK Communications

JNJ Drug Manufactures

UN Food

BAB Airlines

XOM Oil & Gas

BHP Metal & Mineral

AIG Insurance

INTC Semiconductors

VZ Telecom

GE Conglomerates

Market DJIA Dow Jones Industrial Average

Commodities OIL Crude Oil $/barrel

AU Gold, $/Troy ounce

AG Silver, $/Troy ounce

US Treasury Bonds TYX 30-year bond

TNX 10-year note

FVX 5-year note

IRX 13-week bill

*) Representatives show, as for financial modeling, the companies with largest market capitalization for their sector.
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Table 9.6: Financial Forecasting Experimental Results.

Setting Parameter Setting BP=1

p+
layer

p−
layer

p+
neuron avg stdev

1 0.05 0.05 0.05 0.2829 0.0330

2 0.05 0.05 0.1 0.2653 0.0396

3 0.05 0.05 0.2 0.2600 0.0227

4 0.05 0.1 0.05 0.2395 0.0340

5 0.05 0.1 0.1 0.2659 0.0407

6 0.05 0.1 0.2 0.2644 0.0231

7 0.05 0.2 0.05 0.2560 0.0377

8 0.05 0.2 0.1 0.2543 0.0361

9 0.05 0.2 0.2 0.2492 0.0320

10 0.1 0.05 0.05 0.2640 0.0295

11 0.1 0.05 0.1 0.2524 0.0275

12 0.1 0.05 0.2 0.2740 0.0337

13 0.1 0.1 0.05 0.2421 0.0337

14 0.1 0.1 0.1 0.2612 0.0364

15 0.1 0.1 0.2 0.2592 0.0369

16 0.1 0.2 0.05 0.2433 0.0355

17 0.1 0.2 0.1 0.2516 0.0393

18 0.1 0.2 0.2 0.2601 0.0343

19 0.2 0.05 0.05 0.2609 0.0302

20 0.2 0.05 0.1 0.2808 0.0145

21 0.2 0.05 0.2 0.2673 0.0378

22 0.2 0.1 0.05 0.2568 0.0276

23 0.2 0.1 0.1 0.2797 0.0185

24 0.2 0.1 0.2 0.2695 0.0165

25 0.2 0.2 0.05 0.2498 0.0307

26 0.2 0.2 0.1 0.2538 0.0327

27 0.2 0.2 0.2 0.2578 0.0467

have been carried out for each p+
layer, p−layer, and p+

neuron setting. For each run of the evolu-

tionary algorithm, up to 100.000 network evaluation on the training set have been allowed,

including those performed by BP. The average and the standard deviation of the test fitness

of the best individual are reported in Table 9.6.

A few experiments conducted without backpropagation obtained, also for this real-

world application, poor results, confirming that BP complements well evolution in the

neuro-genetic approach. Moreover, also in this application, the evolutionary approach is

robust with respect to the other parameter settings.

The best solutions, on average, have been found with p+
layer = 0.05, p−layer = 0.1, and

p+
neuron = 0.05, although they are not so different from other solutions found with bp = 1.

9.4.3 Results

The best predictive model is a multi-layer perceptron with a phenotype of [2, 1], which

obtained a mean square error of 0.3607 on the test set. Table 9.7 shows the weights of the

inputs to the neurons of the hidden layer. Those neurons have bias values equal to−4.0166
and −2.4028 respectively, and their outputs are connected with a weight of 1.2706 and

−0.3339 to the output neuron, with a bias equal to 0.4474.

Also for time series prediction, the results obtained with neuro-genetic approach are

compared with simple linear regression on the same data, in order to confirm its effective-

ness. Also in this case the forecasting function is non-linear, but, as previously defined for

financial modeling, a comparison with a linear regression function is carried out in order to
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Table 9.7: Input weights in the best neural network (second and third column), compared

with the relevant coefficients of a linear model obtained by means of linear regression

(fourth column).

Input Weight Linear

1st Neuron 2nd Neuron Regression

USDEUR 0.0398 0.1958 -11208

EURUSD 0.1305 0.6417 3933.3

USDGBP 0.1200 0.5903 36063

GBPUSD 0.1315 0.6467 -9167.6

USDJPY 0.0227 0.1118 -19.804

JPYUSD 0.0622 0.3061 2304800

EURGBP -0.093 -0.457 -74007

GBPEUR 0.0761 0.3743 24797

EURJPY 0.0636 0.3126 362.71

JPYEUR 0.1078 0.5300 -3280300

GBPJPY -0.089 -0.439 -167.24

JPYGBP 0.0365 0.1796 3408900

AIG 0.1411 0.6941 1.6568

BAB 0.1488 0.7319 -1.4568

BHP 0.1184 0.5822 -13.853

C -0.116 -0.572 -6.8453

DNA 0.1533 0.7540 -0.22727

GE -0.014 -0.071 -1.9411

INTC -0.051 -0.255 1.1808

JNJ -0.023 -0.115 1.2725

NOK 0.1814 0.8924 1.9997

TM 0.0337 0.1657 0.33187

UN 0.0776 0.3815 1.4665

VZ 0.1837 0.9034 -4.0644

XOM 0.0492 0.2420 5.9805

OIL -0.0280 -0.1375 -0.024104

AU -0.018 -0.089 -0.068004

AG 0.0126 0.0620 -5.7084

TNX 0.0133 0.0654 540.27

TYX 0.0377 0.1855 -285.61

FVX 0.0301 0.1481 -306.06

IRX 0.0444 0.2182 25.871

DJIA P.D 0.1439 0.7079 0.92132
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maintain the same validation approach presented in the literature on the same problem.

The function is the one shown in 6.3, already used in the validation of the subject of this

P.h.D. dissertation, presented in Chapter 6, and used to validate the corresponding financial

model. In this case the wi are those reported in Table 9.7 in the linear regression column.

The prediction obtained by the linear regression model are compared with the best ANN

predictive model found, as shown in Figure 9.3. The comparison is performed by applying

both models to the validation data set.
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Figure 9.3: Comparison between the daily closing prices predicted by the best model (dot-

ted line), those predicted by the linear regression (dash-dotted line), and the actual daily

closing prices (solid line) of the DJIA on the validation set.

The predictive model obtained with the neuro-genetic approach has a MSE of 3353.8,

while that obtained by linear regression has a MSE of 3177.6. In other words, both the

ANN and the linear regression model have an equally poor performance when applied to

the validation set; the difference in MSE is not statistically significant, especially when

compared to the MSE of 0.3607 obtained by the ANN model on the test set.

9.4.4 Discussion

The results obtained by the neuro-genetic and linear models on the validation set in this

forecasting problem seem to provide a substantial confirmation, at least for the daily DJIA

time-series, of the efficient market hypothesis (EMH), which states that market prices in-

corporate at any moment all the relevant information available at that time.

If the EMH is true, any attempt to forecast future prices would be vain, as all price

variations would depend on new information, not available at the moment the forecast is

elaborated. A similar result has been obtained in a previous work focusing on the forecast

of the DJIA by means of GP [104]: although that work won a 10-day DJIA prediction

competition, it did so by substantially expecting that the next-day price would be the same

as the most recent price.

Such an interpretation of the results is based on two observations. First of all, the neuro-

genetic approach, previously validated and also applied, with excellent results, to a related

financial modeling problem not involving forecast, and obtains results that are indistin-

guishable from those obtained by linear regression. Furthermore, as shown in Figure 9.3,

it is possible to observe that the predictions obtained from both methods are essentially the

series of the actual DJIA closing prices lagged by one day; this explains that both methods
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use the most recent price they can ‘see’ as their best guess at the next-day price.



Chapter 10

Conclusion

The work described in this thesis lies in the area of soft computing, and consists of the

definition of a ‘neuro-genetic’ approach, based on evolutionary algorithms, to handle an

optimized design of classifiers based on artificial neural networks. The attention is focused

on the important contribution that this solution brings into the area of neural networks. Arti-

ficial neural networks offer the possibility of inferring unknown input-output relationships

by supervised and unsupervised learning from existing data. As such, they are excellent

at pattern recognition and function approximation. Artificial evolution helps in solving

problems that are too hard for standard deterministic methods.

The work described in this thesis has shown, once more, that evolutionary algorithms

represent a suitable technique to solve the problem of ANN design by yielding more than

satisfactory results on a set of real-world problems. A key advantage of the approach

proposed, which is computationally quite heavy, is the dramatical reduction of the effort

required from a human expert, the most expensive resource of all, to design and set up

an ANN for a given problem. This kind of evolutionary learning for ANNs has also been

introduced to reduce and, if possible, to avoid the main problem of traditional gradient

descent techniques, such as backpropagation (BP), that lies in the high chance of getting

trapped in local minima. Much research effort has been spent to improve the performance

of EAs and different selection schemes and genetic operators have been proposed in the

literature. A survey of the state of the art has also been made in this thesis.

The evolution of neural networks for different applications has been a key issue in the

ANN field. Neuro-genetic systems are coming of age, and consider different evolutionary

solutions, like input data selection, learning rule optimization, architecture optimization

of neural network models, connection weights optimizations. Each methodology has its

strong and weak points and each can be augmented and strengthened when it is suitably

combined with one or more of the others. In some cases, connection weights and archi-

tectures are difficult to design for neural networks. For this reason, in several approaches,

the conjunction of topology and weight optimization has also been considered, as in the

novel evolutionary approach presented in this thesis. This thesis, among other things, has

attempted to propose solutions to the well-known issue of recombination of ANNs, while

improving mutation operators with respect to the existing literature.
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10.1 Remarks on the Neuro-Genetic Approach

Several remarks on the neuro-genetic approach better explain the most important concepts

on which this thesis has been focused.

• Backpropagation algorithm The approach is designed to be able to take advantage

of the backpropagation algorithm, that can also be used as a specialized decoder.

Backpropagation becomes useful when the minimum of the error function currently

found is close to a solution but not close enough to solve the problem in a satisfactory

way. The results obtained in the real-world applications considered have pointed out

the improvements given by the BP algorithm in the fine search in local space. In

the neuro-genetic approach, BP learning produces also a Baldwin effect, allowing an

individual to modify its phenotype in response to its environment, providing solutions

that better adapt themselves to it.

• Evolution Programs The second remark underlines the fact that evolutionary opera-

tors implemented in this thesis are based on the well-defined idea of Evolution Pro-

grams (see Section 2.6), that allow each individual to represent, in a complete form,

all the information necessary to apply suitable genetic operators.

• Algorithm parameters have to be defined before running of the algorithm. Few con-

stant values related to the structure definition of each neural network have to be set

at initialization, and a few algorithm parameters are set, while the best setting of the

genetic parameters is obtained from the experiments, as shown in the applications

considered in the approach. Even so, further studies will be carried out in order

to reduce the number of the algorithm parameters, to improve the effectiveness of

the approach. Anyway, the experiments carried out on several real-world problems

strongly suggest that the performance of the approach is quite robust with respect

to the setting of most parameters. In other words, it is roughly likely that the same

parameter settings found by the experiments in this thesis will yield satisfactory per-

formance when applied to other unrelated problems.

• Individual setting In this approach all individuals do not have a pre-determined topol-

ogy, since the number of the hidden layers, and the maximum number of neurons in

each layer are not determined in advance, nor bounded, maintaining diversity be-

tween all individuals in the population, and increasing the size of the search space of

the global optimal solution. The problem of over-sized neural networks is avoided

by means of a fitness function which contains a parsimony term, but the crossover

operator represents again a critical issue when a recombination between networks

with different topologies is considered.

• Genetic Operators An important consideration in this thesis is that a behavioral link

is maintained between parents and offspring, in order to reduce behavioral disruption

effects that occur in the evolutionary cycle. Weight mutation, with evolution strate-

gies, and the topology mutation methods implemented allow to achieve higher cor-

relation between parents and offspring in the population. Crossover still represents

a critical aspect during evolution. Another aspect considers the fitness function used

in this approach. As defined in successful evolutionary approaches presented in the

literature, the difficulty in using a fitness function like that implemented in this thesis
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lies in the selection of suitable values for some coefficients of the function, which

often involves tedious trial-and-error experiments. Moreover, a fitness function like

that used in the neuro-genetic approach has theoretically to solve a multi-objective

problem, because it is defined by combining two aspects usually conflicting as the

cost and the accuracy of the network considered. A natural development of the neuro-

genetic approach would be to regard the ANN design problem for what it is, namely

a two-objective optimization problem. Accordingly, the approach should identify not

a single ‘optimal’ design, but a whole array of Pareto-optimal (i.e., non-dominated)

designs.

This neuro-genetic approach has been validated by comparing it first with a linear re-

gression model, and then with two previously published solutions to benchmark problems,

namely the Pima Indian Diabetes problem and the Breast Cancer Wisconsin problem.

Then the approach has been successfully applied to three different real-world applica-

tions. The first one predicts an incipient fault diagnosis in an electrical drives monitor-

ing. The results obtained in this application compare well against alternative approaches,

based on the conventional training of a predefined neuro-fuzzy network with BP. In partic-

ular, they are not significantly different from the results obtained in [32] for a handcrafted

neuro-fuzzy network. This is a positive outcome, given the expert time and effort spent in

a trial-and-error network design, as compared to the practically null effort required in the

neuro-genetic approach.

In the second application a brain-wave signal-processing problem has been consid-

ered, in which a classification algorithm in the analysis of P300 Evoked Potential has been

designed. The results obtained by the neuro-genetic approach appear promising after a

comparison with a mature approach based on support vector machines.

Finally, the approach has been successfully applied to two financial problems. The first

defines factor models of financial instruments. Furthermore, the results of a simulation of

an arbitrage strategy which depends on the accuracy of the model, shows that the informa-

tion given by the best solution found with the approach would have enabled an arbitrageur

to gain significant profits. In the second financial application considered, the possibility of

forecasting a financial time-series is tested. In the time series forecasting problem, the re-

sults obtained from the neuro-genetic approach appear statistically indistinguishable from

those obtained by linear regression. In particular, the two results represent essentially the

series of the actual DJIA closing prices lagged by one day. This confirms the efficient mar-

ket hypothesis, by providing strong evidence that the next-day closing price of the DJIA is

unpredictable, even by considering a variety of related financial indicators.

10.2 Discussion

All experiments carried out have not surprisingly demonstrated that the definition of classi-

fiers (artificial neural networks) by using a trial and error approach performs worse results

in classification problems than the ANNs identified by the neuro-genetic approach.

Another important result of this thesis is that all the experiments, carried out on val-

idation tasks and on real-world applications, demonstrate that, even though a number of

algorithm parameters have to be defined in the initialization step, the neuro-genetic ap-

proach is robust with respect to the setting of its parameters, allowing its performance to be

little sensitive of the fine tuning of the parameters.
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Of course, the approach proposed is computationally quite heavy. For example, the

interpreted Matlab code that currently implements the approach has to run for 72 hours to

solve the fault diagnosis problem (see Chapter 7). Nevertheless, computation time could

be further reduced by using different programming language, as C++ or Java.

However, nowadays, the dollar cost of machine time is rapidly decreasing and nothing

suggests a reversal of this trend is in view in the foreseeable future. The computational

effort required by the neuro-genetic approach can be easily supported by distributed ma-

chines, able to perform parallel processing, thus increasing the performance of the compu-

tational model that has to be implemented. An important consequence of this is the global

reduction of the work-load for human experts that can be obtained by using the neuro-

genetic approach. Some of the experiments carried out in order to validate the approach

(see Sections 7.3, 7.4) have made clear that expert-quality results can be replicated by the

approach without requiring any intervention by a human expert.

10.3 Future Research

To conclude, an attempt to establish a working model to guide future research, is presented.

• Efficiency and robustness Future work will consider the study of the efficiency and

the robustness of this approach even when input data are affected by uncertainty de-

pending on errors introduced by measurement instrumentations. A further improve-

ment could be given by removing algorithm parameters, even though this approach

has been demonstrated to be robust with respect to parameter tuning.

• Genetic operators Further studies on new crossover operators could improve the ge-

netic algorithm implementation, by making crossover as little disruptive as possible.

The new merge-crossover implemented in this work seems to be a promising step

in that direction, even though its use did not boost the performance of the algorithm

significantly in the present form. An in depth study could also be carried out by con-

sidering mutation operators applied to perturb network structure and weights, and the

corresponding evolution strategies implemented. Further studies of the neuro-genetic

approach should involve designing better fitness functions to solve its multi-objective

problem.

• Possible improvements of evolution could result from studying a novel coevolution-

ary approach, which relies on the cooperation between this neuro-genetic approach

and a second one, based on genetic programming, in order to optimize the neural net-

work design. In particular, both the genetic programming approach and the neuro-

genetic approach should be used to optimize the activation functions of the neural

networks defined in a population, using the resulting functions of GP.
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