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ABSTRACT

This paper considers the problem of 3-D sound rendering

in the near field through a low-order HRTF model. Here

we concentrate on diffraction effects caused by the human

head which we model as a rigid sphere. For relatively close

source distances there already exists an algorithm that gives

a good approximation to analytical spherical HRTF curves;

yet, due to excessive computational cost, it turns out to be

impractical in a real-time dynamic context. For this reason

the adoption of a further approximation based on principal

component analysis, which can significantly speed up spher-

ical HRTF computation, is proposed. The model resulting

from such an approach is suitable for future integration in

a structural HRTF model and parameterization over anthro-

pometrical measurements of a wide range of subjects.

1 INTRODUCTION

The history of binaural 3-D sound rendering dates back to

Lord Rayleigh’s well known diffraction formula which ap-

proximates the behaviour of a sound wave produced by an

infinite point source around the listener’s head, thus provid-

ing a first crude sketch of what we today call a head-related

transfer function (HRTF). On the other hand, most of the

relevant issues in this field appeared only recently.

HRTF-based spatial audio rendering can be achieved in

multiple ways. Approximations based on low-order rational

functions (see e.g. [4]) and series expansions of HRTFs [5,

9] were proposed, resulting in simple yet valuable tools for

diffraction modeling. Nevertheless, significant computation

is required from both techniques when real-time constraints

are introduced, due to the complexity of filter coefficients

and weights respectively. This is why structural modeling [2]

seems nowadays to be an attractive alternative approach.

Within this framework, the contribution of the listener’s head,

ears and torso to the HRTF can be isolated in several sub-

components, each accounting for some well defined physi-

cal phenomenon. Due to linearity of all these effects, they

can be later combined meaningfully and realistically in an

additive fashion to result in a global HRTF. Such a decom-
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position yields a model which is both economical and well

suited to real-time implementations.

In this paper we will conceptually isolate the earless head

of the listener and treat it as a rigid sphere, trying to find

a suitable way to represent its contribution to the HRTF.

Henceforward we will relate to its transfer function by call-

ing it a spherical HRTF. Furthermore, we will concentrate

on sources located in the so-called near field – namely within

a few meters from the center of the head – for which real-

time computation of HRTFs turns to be more troublesome.

Section 2 briefly introduces the theory lying behind the prob-

lem. Then, Section 3 presents a PCA-based approach for

spherical HRTF modeling. Section 4 deals with the prob-

lem of efficient filter modeling. Finally, Section 5 concludes

with a discussion on the further work to be done in this di-

rection.

2 THE SPHERICAL HRTF

2.1 Analytical background

Within the assumption of an infinitely distant source from

the center of the head, we can describe the response related

to a fixed observation point on the sphere’s surface by means

of the following transfer function, based on Lord Rayleigh’s

diffraction formula 1 :

H(µ, θ) =
1

µ2

∞∑

m=0

(−i)m−1(2m+ 1)Pm(cosθ)

h′m(µ)
, (1)

where θ is the incidence angle, the angle between the ray

from the center of the sphere to the source and the ray to

the observation point, and µ is the normalized frequency,

defined as 2

µ = f
2πa

c
, (2)

which is directly proportional to the sphere radius a. Fig-

ure 1 shows the magnitude of the transfer function on a dB

scale against normalized frequency for 19 different values

of incidence angle. When we remove the assumption of

an infinitely distant source and consider source positions in

1 Here Pm and hm represent, respectively, the Legendre polynomial of

degreem and themth-order spherical Hankel function. h′
m
is the derivative

of hm with respect to its argument.
2 Parameter c is the ambient speed of sound.

Proceedings of the SMC 2009 - 6th Sound and Music Computing Conference, 23-25 July 2009, Porto - Portugal

Page 201



10
−1

10
0

10
1

10
2

−20

−15

−10

−5

0

5

10

θ
0
80
90

100

110

120

130

140

150

160
170

180

µ (adim)

M
a
g
n
it
u
d
e
 (

d
B

)

Figure 1. Magnitude response for an infinitely distant

source.

the near field, the distance dependence can no longer be ig-

nored. Having defined the normalized distance to the source

ρ as the ratio between the absolute distance from the center

of the sphere and the sphere radius

ρ =
r

a
, (3)

the spherical HRTF can be evaluated by means of the fol-

lowing function [11]:

H(ρ, µ, θ) = −
ρ

µ
e−iµρ

∞∑

m=0

(2m+ 1)Pm(cosθ)
hm(µρ)

h′m(µ)
,

(4)

for each ρ > 1. From the analysis of this function we can

state a fundamental characteristic of spherical HRTFs: as

the source approaches the sphere (ρ tends to 1) the response

on the ipsilateral side increases, while the response on the

contralateral side decreases [3]. A description of the evalu-

ation algorithm, based on recursion relations, can be found

in [8].

2.2 Real-time computation

Let us consider a scenario where the listener is free to move

his head with respect to the virtual source to be rendered,

and vice versa. It is clear that real-time computation of

HRTFs is needed in order to track these movements with

enough reactivity, possibly avoiding any discontinuity in the

resulting sound. Furthermore, we have to take into account

the possibility of having to simulate a complex acoustic en-

vironment that includes several independent sound sources,

and/or reflections coming from the environment.

Relatively simple HRTF filter structures for sources in

the far field have been proposed to date (e.g., Duda’s first-

order filter in [2]). These turn out to be impracticable in the

near field, having no parameterization on source distance.

Point-to-point real-time evaluation of Eq. (4) using the al-

gorithm in [8] is computationally still too expensive. More-

over, even if a suitable parameterized filter model is found

each source has to be processed with a separate filter. Thus

we need to introduce a proper HRTF approximation to speed

up the computation. In the next section we discuss such an

approximation, which makes use of Principal Component

Analysis (PCA) to represent a collection of sample analyti-

cal HRTFs.

3 A PCA-BASED APPROACH

3.1 Principal Component Analysis

Principal Component Analysis is used in a number of prob-

lems to reduce the dimensionality of an input data set. Its

main goal is to provide an efficient representation of a set of

correlated measures - in this instance, a set of vectors.

Without delving into deep technicalities (which can be

found in [7]), suffice it to say that given a set of n real-

valued vectors x1, . . . , xn, each of dimension d, and defining

its covariance matrix S as

S =
1

n

n∑

k=1

xkx
t
k, (5)

it can be seen that the best p-dimensional representation

(with p ≤ d) of the data set is obtained by taking as ba-

sis vectors the p eigenvectors of S that correspond to the p

largest eigenvalues. 3 Each vector xk is then projected onto

the space defined by the basis vectors as follows:

ak = Ctxk, (6)

where C is a matrix, the columns of which are the basis

vectors. We call principal components the set of weights

{aki}, k = 1, . . . , n, associated to basis vector i. Now given

the set of p-dimensional vectors ak, k = 1, . . . , n, we can

reconstruct an estimate of each original data vector by the

inverse equation:

xk = Cak. (7)

Clearly, by increasing the dimension p of the representation

the approximation improves. Thus, when dealing with PCA,

the main design goal is to extrapolate the value p for which

the trade-off between accuracy and data dimensionality is

maximized.

PCA has already been used in previous works concern-

ing HRTF modeling [5, 9], with the vectors xk representing

3 An alternative formulation of PCA requires the mean of all vectors in

the data set to be subtracted from each one of them before constructing the

covariance matrix. However, as the data set we will take into considera-

tion is already well-centered, inclusion of the mean turns out to be quite

unnecessary.
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Figure 2. The first six basis vectors (solid lines) and the corresponding least-squares fit 8-th order IIR filters (dashed lines).

magnitude responses of a set of measured HRTFs. How-

ever, instead of applying the technique to experimental data,

we will exploit it to approximate a collection of spherical

HRTF magnitudes sampled from Eq. (4) on a discrete set

of frequencies. We will show that, thanks to the decoupling

of spatial variables from frequency created by PCA, this ap-

proach provides significant computational and storage ad-

vantages in the modeling of spherical HRTFs.

3.2 Design choices

We choose to collect a set of spherical HRTFs for sound sor-

ces located at different distances and incidence angles with

respect to the ear canal. Being Eq. (4) dependent on only

two spatial parameters, in our polar coordinate system we do

not consider elevation and restrict these locations to points

lying on the horizontal plane. We conventionally assume θ

to be the incidence angle at the right ear canal. Therefore

θ = 0◦, θ = 90
◦, and θ = 180

◦ corresponds to a sound

source facing the right ear, in front of the head, and facing

the left ear, respectively. The set of spherical HRTFs is sam-

pled by fixing the head radius to the standard value a = 8.75

cm and varying the following parameters:

• 19 linearly spaced θ values, from 0
◦ to 180

◦, with 10
◦

angle increments;

• 7 exponentially spaced distance values, ρ = 1.25, 1.5,

2, 4, 8, 16, 32 (with the last one approximating far field);

• 100 linearly spaced frequency points from 100Hz to

10 kHz, with 100 Hz increments.

We obtain a set of 19× 7 = 133 spherical HRTFs, of which

we consider only the dB magnitude responses. Indeed, the

HRTF for an ideal sphere appears to be minimum phase for

all ranges and incidence angles [8]. In addition, when con-

sidering interaural differences for binaural hearing, approx-

imated ITD models (e.g. the Woodworth’s formula) can be

used to simulate phase lag between right and left ear canal as

a simple delay line. Interaural Time Difference (ITD) effects

can therefore be cascaded to the HRTF synthesis process.

3.3 Application of PCA

At this point we apply PCA to the set of n = 133 real-

valued vectors x1,...,xn, each of dimension d = 100. The

first 6 basis vectors of the analysis are sketched in Figure

2. As we can see, after the first one which accounts for

the general slope of the majority of HRTFs (with a positive

weight for ipsilateral sources and a negative weight for con-

tralateral ones – see Figure 3), each successive basis vector

introduces more and more ripples in the frequency response,

starting from the most prominent at θ = 170
◦.

By investigating the trend of principal components 2 to 6

with the varying of distance and incidence angle we obtain

a deeper insight of the analysis. As expected from the ob-

servations reported in Section 2.1, weights’ moduli are am-
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Figure 3. The first six principal components.

plified by decreasing distance; furthermore, Figure 3 shows

that each component emphasises its corresponding basis vec-

tor only for a limited range of incidence angles, regardless

of the distance. This means that the first basis vector retains

most of the common variation, while those from the sec-

ond onwards provide particularized description of the rip-

pled high-frequency behaviour of spherical HRTFs, which

varies according to the incidence angle.

3.4 Theoretical optimality

The number of principal components (parameter p) to be in-

cluded in our model is crucial: as a matter of fact, it denotes

the number of filters required to approximate the spherical

HRTF by means of the new representation. We need then

a proper principle to theoretically quantify the maximum

tolerable error, so to extract the minimum p that meets its

constraints.

Mills [10] presents a psychoacoustical result which can

be used to this purpose. In particular the Interaural Level

Difference (ILD) jnd curve as a function of frequency in

Figure 4 represents a safe upper bound on the approxima-

tion error, owing to insensibility of human hearing appa-

ratus to small changes in ILD (which remarkably denotes

the main feature for discriminating source location together

with ITD). After having checked that the absolute error be-

tween all ILDs derived from a complementary pair of orig-

inal HRTFs (same distance parameter and sum of incidence

Figure 4. ILD jnd as a function of frequency (figure repro-

duced from [10]).

angles equal to 180 degrees, assuming diametrically oppo-

site ear canals) and those reconstructed after PCA approxi-

mation turns out to lie under the jnd function, we can state

there is no significant information loss in our approximation.

Note that the jnd function has not been defined for very low

frequencies; nevertheless, the dominant localization feature

in this frequency range being ITD, ILD information appears

to be relevant just for detecting very close distances.

As we can see from Figure 5 the minimum value p for

which the total error introduced by the PCA approximation
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Figure 5. ILD error functions with p = 7.

remains below the jnd curve is p = 7. In Section 4.2 we will

repeat this kind of analysis by including errors due to filter

approximation of basis vectors.

4 FILTER REALIZATION

4.1 Filter modeling and interpolation

Each basis vector provides the magnitude response of a filter

that has to be realized numerically. Using the least-squares

fit procedure provided by the Yule-Walker approach, we de-

sign for each basis vector an IIR filter of a desired order,

such that it approximates the corresponding magnitude re-

sponse. In order for the function to work properly we assign

a fictional value for zero frequency (we choose this to be the

same value as f = 100 Hz, as the low-frequency magni-

tude response is essentially flat) and assume a 20 kHz sam-

pling rate (so that the Nyquist frequency coincides with our

10 kHz limit). Filter coefficients may later be rescaled in

case of different sampling rates and different head radii.

It can be seen from Figure 2 that eighth-order filters pro-

vide accurate matching of the target magnitude responses.

It has to be noted that procedure does not take into account

phase requirements. However the resulting filter structures

have poles and zeros all inside the unit circle, and are there-

fore minimum-phase filters.

Having HRTF frequency dependence (now incorporated

inside filters characterization) been decoupled from spatial

variables dependence, interpolation of spherical HRTFs over

spatial points which are not included in the analysis process

involves only interpolation of principal components in the

form of scalars. To this end, the components plotted in Fig. 3

can be interpolated over distance and incidence angle using

simple techniques, e.g 2-dimensional spline interpolation.

In particular, in this way any distance value can be rendered

(with the upper distance bound in the analysis ρ = 32 cor-

responding to the far field).

Frequency decoupling from spatial variables gives an-

other fundamental advantage. Specifically, the simulation

of N independent sound sources located at different posi-

tions around the listener head does not require N different

filter sets. Instead the set of filters derived above is used

for all the sources, with only the components ai varying for

each source. This can be seen in the following equation:

Y (µ) =
N∑

k=1

p∑

i=1

Hki(ρk, µ, θk)Xk(µ)

=

N∑

k=1

p∑

i=1

Hi(µ)ai(θk, ρk)Xk(µ)

=

p∑

i=1

Hi(µ)

N∑

k=1

ai(θk, ρk)Xk(µ),

(8)

where the N input signals, each with frequency response

Xk, are linearly combined through spatial coefficients ai

and filtered by the Hi’s, resulting in the output signal with

frequency response Y . This result, together with the in-

clusion of distance dependence and near-field effects in the

spherical HRTF, represents the main advantage of the pro-

posed approach with respect to the model described in [2].

4.2 Optimality considerations

The filter realization described in the previous section intro-

duces further error between the real-time model and analyti-

cal spherical HRTF curves. Hence, in addition to parameter

p, choosing the adequate filter orders o1, . . . , op turns out

to be pivotal. To this end, we reapply the ILD jnd criterion

in order to determine minimum parameters p and o1, . . . , op

that satisfy the forementioned psychoacoustical constraint.

The analysis must be targeted at finding a satisfactory

trade-off between accuracy and efficiency. By keeping the

minimum value p = 7 determined in Section 3.4, it is ver-

ified that eighth-order filters (o1 = . . . = op = 8) provide

an error which is still below the jnd curve, while seventh-

order filters cause 1 dB low-frequency errors. If p is in-

creased by one or more units, using filters of lower order

(e.g., 7) still results in errors which are above the psychoa-

coustical threshold. Intuitively, this circumstance can be ex-

plained as follows. Considering that the very first princi-

pal components capture the largest part of variance in the

data set and have the corresponding basis functions being

multiplied by a relatively high coefficient, adding new prin-

cipal components does not affect the accuracy of the rep-

resentation as much as properly designing the filters rep-

resenting each basis vector. Further inspection shows that,

since the magnitude responses Hi become increasingly rip-

pled as i grows, the psychoacustical threshold is satisfied

even by choosing filter orders that increase accordingly, i.e.

oi = i+ 1 (i = 1 . . . 7).
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Figure 6. Analytical (top panel) and approximated (bottom

panel) spherical HRTF magnitude curves for p = 3, o1 =

o2 = o3 = 3, and ρ = 4.

4.3 A low-cost realization

The above discussion is based on purely theoretical assump-

tions which are very strict. Moreover, the realization pro-

posed in the previous section may have exceedingly high

computational costs for real-time applications. In light of

this, a more efficient approximation of the spherical HRTF

based on a lower number of components and lower-order

filters can still be usable even if it does not satisfy the psy-

choacustical criterion discussed above.

By choosing p = 3 and o1 = o2 = o3 = 3, the gross

magnitude characteristics of the spherical HRTF are still

matched, even though the ILD error can be as large as 3 dB

at low frequencies. This statement can be verified by look-

ing at Figure 6, which represents reconstructed spherical

HRTF magnitude responses for ρ = 4 and varying inci-

dence angle. Comparison of the top and bottom panels of

the figure confirms that three basis vectors represented with

third-order filters already provide a satisfactory approxima-

tion.

5 CONCLUSIONS AND FUTUREWORK

In this paper we have presented a PCA-based approach for

approximating spherical HRTFs in the near field. We proved

that a description in terms of seven eighth-order filters and

a set of coefficients turns out to be psychoacustically robust.

Much work is still needed in this direction. First, we shall

reproduce the analysis in Subsection 3.4 for spatial points

that were not included in the synthesis step. Second, the

low-cost realization described in Subsection 4.3, possibly

along with alternative descriptions, needs to be experimen-

tally evaluated. Third, we need a strong criterion for the

personalization of HRTFs based on anthropometrical mea-

surements, analogously to the approach presented in [1]. Fi-

nally, we should take into consideration alternative and more

realistic head models, like the elliptical one [6].
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