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Abstract—Towards improving the performance in various
music information processing tasks, recent studies exploit dif-
ferent modalities able to capture diverse aspects of music. Such
modalities include audio recordings, symbolic music scores, mid-
level representations, motion and gestural data, video recordings,
editorial or cultural tags, lyrics and album cover arts. This paper
critically reviews the various approaches adopted in Music Infor-
mation Processing and Retrieval, and highlights how multimodal
algorithms can help Music Computing applications. First, we
categorize the related literature based on the application they
address. Subsequently, we analyze existing information fusion
approaches, and we conclude with the set of challenges that Music
Information Retrieval and Sound and Music Computing research
communities should focus in the next years.

Index Terms—Multimodal music processing, music informa-
tion retrieval, music description systems, information fusion

I. INTRODUCTION

Beginning with the oldest evidence of music notation,

music has been described in several different forms [1]. Such

descriptions have been used by computational systems for

facilitating music information computing tasks. Interestingly,

when observing the history of music, one can see how the

various descriptive forms have gradually emerged with a strict

dependence both on technology advancements and changes in

music practices.

Initially, no written description systems for music existed

besides text. Between the 6th-7th cen., Isidore of Seville,

Archbishop and theologian, wrote that no melody could be

written. Indeed, the first systems to memorize music were

based solely on lyrics and only later some signs over the words

appeared. Such notation, called neumatic, evolved in more

complex forms, which differed from region to region. Due

to the need of more powerful tools to express music features,

new notation systems, called pitch specific, took place, such

as the alphabetic and the staff -based notations. In particular,

the system introduced by Guido d’Arezzo (10th-11th cen.)

was particularly successful and similar conventions spread all

over Europe. Music notation was now able to represent text,

pitches and durations at the same time. During the following

centuries, other types of symbols were introduced addressing

directly the performer towards peculiar colors, or sentiment(s).

At the crossing of the 16th and 17th cen., Opera was born in

Italy, after a long tradition of plays, including Greek drama,

medieval entertainers and renaissance popular plays (both

liturgic and profane) [2]. The tremendous success of the Opera

in Italy and then in the rest of Europe, determined a funda-

mental way to connect music and visual arts for the future

centuries. A turning point in the history of music description

systems was the invention of the phonograph cylinder by

Thomas Edison in 1877 and the disc phonograph diffused by

Emile Berliner ten years later [3]. In the same years, Edison

and the Lumière brothers invented the first devices to record

video [4]. Since then, a number of technologies were born

paving the way for new music description systems. With the

invention of computers and the beginning of the digital era,

the elaboration of sound signals highlighted the need for more

abstract information characterizing audio recordings. Thus,

researchers started proposing mid-level representations [5],

with reference to symbolic and physical levels [6]. Nowadays,

the availability of vast, easily accessible quantities of data,

along with appropriate modern computational technologies,

encourages the collection of various types of meta-data, which

can be either cultural or editorial [7].

From a cognitive point of view, the connecting, almost

evolutionary, element between the above-mentioned repre-

sentations is that each one relates to a different abstraction

level. Psychology, indeed, is almost unanimous in identifying

an abstraction process in our music cognition [8]: we can

recognize music played on different instruments, with differ-

ent timings, intensity changes, various metronome markings,

tonalities, tunings, background noises and so on. The different

descriptions of music developed in different era or contexts,

can be seen as an answer to the necessity of representing

new modalities – such as the visual one – or new unrevealed

abstraction levels – such as the audio recordings and the mid-

symbolic levels, or the pitch specific notation compared to the

neumatic one.

Aside from these historical and cognitive considerations, it

is a fact that in the last two decades researchers have obtained

better results through multimodal approaches in respect to

single-modalities approaches [9], [10]. As Minsky said [11]:

To solve really hard problems, we’ll have to use
several different representations.

We argue that music processing tasks can benefit profoundly

from multimodal approaches, and that a greater focus is

needed by the research community in creating such a syn-
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ergistic framework. A fundamental step would be the study

and design of suitable algorithms through which different

modalities can collaborate. Then, a particular effort should be

devoted in developing the needed technologies. In fact, given

the course of history summarized above, we could expect that

in the future, new disparate music representations will be born.

In this paper, we review the existing literature about Mu-

sic Information Retrieval techniques which exploit multiple

descriptions of music to the end of multimodal fusion [12].

The paper is organized as follows: in section II, we give

some basic definition and discuss previous reviews on similar

topics to explain the categorization and the taxonomy we

used. Sections III to VII describe the different tasks faced

with multimodal approaches, the various features extracted,

the preprocessing steps and the fusion approaches adopted in

literature; in section VIII we express our idea about how the

multimodal paradigm can be enhanced.

II. DEFINITIONS, TAXONOMY AND PREVIOUS REVIEWS

We have found no univocal definition of modality. In the

music computing literature, authors use the word multimodal
in two main contexts:

• in computational psychology, where modality refers to a

human sensory channel;

• in music information retrieval, where modality usually

refers a source of music information;

Since we are focusing on music information retrieval methods,

to the purpose of the present paper, with modality we mean a

specific way to digitize music information. Different modal-

ities are obtained through different transducers, in different

places or times, and/or belong to different media. Examples

of modalities that may be associated to a single piece of music

include audio, lyrics, symbolic scores, album covers, and so

on.

Having defined what we mean by modality, we define multi-
modal music information processing as an MIR [13] approach

which takes as input multiple modalities of the same piece

of music. All the papers which we are going to discuss show

methods which take as input various music representations.

Conversely, we are not considering those approaches which

exploit features derived through different methods from the

same modality: an example is pitch, rhythmic and timbral

features, when they are all derived from the audio [14].

Similarly we are not considering approaches which process

multiple representations of the same modality: an example

is spectrograms (treated as 2D images) and traditional time-

domain acoustic features [15], which are both derived from

the audio. Moreover, we do not focus on general multimodal

sound processing: the idea which moves our effort is that

music is characterized by the organization of sounds in time;

thus, we are interested in exploiting this organization, which

is not available in general sound processing.

One previous review on multimodal music processing was

written in 2012 [12]. However, that work was more focused

on a few case studies rather than on an extensive survey. The

authors recognized a distinction between “the effort of char-

acterizing the relationships between the different modalities”,

which they name cross-modal processing, and “the problem

of efficiently combining the information conveyed by the dif-

ferent modalities”, named multimodal fusion. To our analysis,

this distinction is useful if with cross-modal processing we

mean the end-user systems which offer an augmented listening

experience by providing the user with additional information.

If this is the case, we are primarily interested in multimodal fu-
sion; nevertheless, some synchronization algorithms, which are

classified as cross-modal processing by the previous authors

[12], are used as pre-processing steps in other works. Because

of this ambiguous distinction, we base our classification on

the performed task rather than on the processing stage – see

section III.

Almost all authors dealing with multimodal information

fusion talk about two approaches: early fusion and late fu-
sion. Figure 1 shows the main difference between the two

approaches: in early fusion, data is used “as is” in one single

processing algorithm which fuse the data representation, while

in late fusion data from each modality is first processed with

specific algorithms and then all the output are merged, so

that it is the output to be fused and not the data. Because

of this, early fusion is also called feature-level fusion, and

late fusion is also called decision-level fusion, even if features

extraction and decision algorithms are not the only approaches

for multimodal processing. Some reviews [9] also talk about

hybrid fusion for multimedia analysis, but we have found no

example in the music domain.

Finally, we have found useful to introduce a new diagram

to represent the data flow in retrieval systems (see fig. 2).

Indeed, in most of these systems, one modality is used to

query a database for retrieving another modality; in such cases,

no fusion exists, but just a data conversion and a similarity

computation.

An exhaustive and continuously updated table, which sum-

marizes all the works reviewed in this paper, is available

online.1

III. MULTIMODAL MUSIC PROCESSING TASKS

To date, several tasks have been experimented in multimodal

approaches. We found two possible categorizations for the

application level:

• less vs more studied tasks: some tasks have been exten-

sively studied with a multimodal approach, such as audio-
to-score alignment, score-informed source separation,

music segmentation, emotion or mood recognition; other

tasks, instead, have been little explored and are worth of

more attention.

• macro-task based categorization: we identified 4 differ-

ent macro-tasks, that are a partial re-elaboration of a

previous effort [13]: classification of music, synchroniza-
tion of different representations, similarity computation

1Link: https://frama.link/multimodal-MIR
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Figure 1. Diagram showing the flow of information in early-fusion and late-
fusion. Early fusion process takes as input the output of the pre-processing
of the various modalities, while the late fusion takes as input the output of
specific processing for each modality. Hybrid fusion, instead, uses the output
of both early and late fusion.

between two or more modalities, and time-dependent
representation.

Figure 3 outlines all the tasks that we found in the literature.

Here, instead, we are going to briefly describe each task and

how it has been fulfilled by exploiting a multimodal approach.

A. Synchronization

Synchronization algorithms aim at aligning in time or

space different modalities of music, i.e. creating associations

between points in different modalities. They can be performed

both in real-time and offline. In the real-time case, the

challenge is to predict if a new event discovered in a real-

time modality – e.g. an onset in the audio – corresponds to

an already known event in another off-line modality – e.g.

a new note in the score. Off-line synchronization, instead,

is usually referred to as alignment and involves the fusion

of multiple modalities by definition. Well-studied alignment

algorithms include audio-to-score alignment [17], audio-to-
audio alignment [17] and lyrics-to-audio alignment [18]. An

interesting task is to align the audio recording to the images,

without using any symbolic data [19]. Very often, alignment

algorithms are a fundamental pre-processing step for other

algorithms – see section IV.

B. Similarity

With similarity, we mean the task of computing the amount

of similarity between the information content of different

modalities. Often, this task has the purpose of retrieving

documents from a collection through a query, which can be

explicitly expressed by the user or implicitly deduced by the

system. The multimodal approach, here, can exist either in

the different modalities between the query and the retrieved

documents or in the query itself. A very common example

of explicit queries for retrieving another modality is query-
by-humming or query-by example, in which the query is

represented by an audio recording and the system retrieves

the correct song; this task is usually performed with two

main approaches: by using a collection of recordings in a

single-modality fashion, or by exploiting multimodality with a

collection of symbolic data [20], [21]. An example of implicit
query systems, instead, are recommender systems and playlist

generators, where the user is usually not aware of which

specific parameters are used for the recommendations; most

of the recent research in this field tries to exploit multimodal

approaches – also called hybrid – involving metadata, user

context, audio features [22], [23]. An emerging field in the

retrieval context is the so-called multimodal queries, where the

user can explicitly create a query by using different parameters

for different modalities [16], [24]. Following this line of

thought, some researchers devised and studied novel tasks in

the context of multimodal music retrieval. Some example are: a

system for retrieving music score images through audio queries

[19]; an algorithm to retrieve the cover of a given song [25];

systems to retrieve audio recordings through symbolic queries

[26], [27]; an approach to query a music video database with

audio queries [28].

C. Classification

The classification process consists in taking as input a

music document and returning one or more labels. A pop-

ular multimodal classification task is the mood or emotion
recognition [29], while an emerging one is genre classification

[30]–[37]. Both these two tasks can take advantage of audio

recordings, lyrics, cover arts and meta-tags. Additionally,

emotion recognition can exploit EEG data, while for genre

classification one can use music video and generic text such

as critic reviews. Usually, just one modality is considered

in addition to audio recordings, but an interesting work [37]

tries to exploit more than two modalities. Other multimodal

classification tasks found in the literature are:

• artist identification, through lyrics and audio fusion [38];

• derivative works classification of youtube video through

audio, video, titles and authors [39];

• instrument classification by exploiting audio recordings

and performance video [40], [41];

• tonic identification, that is: given an audio recording and

the note level, find the tonic [42];

• expressive musical description, which consists in asso-

ciating a musical annotation to an audio recording by

extracting features with the help of symbolic level [43].

D. Time-dependent representation

With time-dependent representation, we mean the creation

of a time-dependent description of the music data, created

by merging and processing multiple modalities. Possibly the

most studied task within this family is score-informed source
separation [17], in which symbolic music data and audio

recordings of a musical ensemble are used to create different
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Figure 2. Multimodal retrieval: usually, the query and the collection contain different modalities, so that the diagram should be collapsed to the highlighted
elements; however a more general case is possible [16], in which both the query and the collection contain multiple modalities.

Figure 3. The tasks identified in literature, divided in 4 macro-tasks and plotted along a less - more studied axis. Tasks for which only one paper has been
found appear at the left-side (less studied); at the rightmost side are tasks for which extensive surveys are already available; the other tasks are placed in the
remaining space proportionally to the number of corresponding papers found in literature. All references to these tasks can be found in the discussion and in
the online spreadsheet – see footnote 1. Note that labels refer to the multimodal approach at hand and not to generic MIR tasks – e.g. genre classification task
is intended to be performed with a multimodal approach and thus it has been less studied than emotion or mood classification in the context of multimodal
approaches.

audio recordings for each different instrument. A number of

researchers have also tried to use audio and video recordings

of a music performance or of a dancer to extract beat tracking
information [44]–[48]. An emerging task is piano tutoring,

which consists in the tracking of errors in a piano performance:

to this end, the audio recording, the knowledge about the

instrument timbre and the symbolic score can be exploited

[49]–[55]. Less studied tasks are:

• music segmentation, in which audio and video, lyrics or

note level can be exploited to identify the music piece

structure [56]–[58];

• spatial transcription, that is the inference, starting from

audio and video, of the note level of songs for fretted

instruments, so that the resulting score includes the an-

notation of fingering [59], [60];

• onset detection through audio and performer video [61]

or rhythmic structure knowledge;

• chords labeling, by comparing multiple audio recordings

of the same work [62];

• source association, that is the detection of which player is

active time by time by exploiting audio, video and music

scores [63], [64];

• multi-pitch estimation, that is the transcription of parts

being played simultaneously, with the help of perfor-

mance video to detect play-nonplay activity of the various

instruments [65].

IV. DATA PRE-PROCESSING

Data pre-processing is the elaboration of data to the end of

transforming their representation to a more suitable format for

the subsequent steps. We have identified a number of possible

non-exclusive types of pre-processing :

• Synchronization: the synchronization process described in

section III-A is sometime used as pre-processing step
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to align multiple modalities; thus, the pre-processing

itself can be multimodal. For example, in piano tutoring
and score-informed source separation, an audio-to-score
alignment is performed; audio-to-audio synchronization

is a fundamental pre-processing step in tasks requiring

comparison of multiple recordings of the same piece

[62]; audio-to-score alignment is also used in several

previously cited works [26], [27], [43], [58];

• Feature extraction: usually, music representations are not

used as they are, but a number of features are extracted

– see section V.

• Other pre-processing steps include:

– conversion from one modality to the other, such as

in query-by-humming – which includes a conversion

from audio to the symbolic level – or in audio-
to-score alignment where symbolic scores can be

converted to audio through a synthesis process.

– feature selection through Linear Discriminant Anal-
ysis (LDA) [28] or ReliefF [43]

– normalization of the extracted features [48]

– source-separation in lyrics-to-audio alignment and

source association [63], [64]

– chord labeling on audio only [62]

– multi-pitch estimation on audio only [65]

– video-based hand tracking [59]

– tf-idf -based statistics – see section V-C – adapted for

audio [38]

Finally, we think that a step worthy of a particular attention

is the conversion to a common space of the extracted features,

to make them comparable. We will talk about this step in

section VI. The accompanying online table (see footnote 1)

contains a short description of the pre-processing pipeline

adopted in each cited paper.

V. FEATURE EXTRACTION IN MULTIMODAL APPROACHES

Various types of features can be extracted from each modal-

ity. In this section, we provide a general description for audio,

video, textual and symbolic score features.

A. Audio features

This section is mainly written with reference to a previous

review [66]. Audio features can be broadly subdivided in

physical and perceptual.
1) Physical features: these can be computed in various

domains, such as time, frequency or wavelet. Time-domain

features can be computed directly on the digitally recorded

audio signal and include zero-crossing rate, amplitude, rhythm
and power-based features, such as the volume, the MPEG-7
temporal centroid or the beat histogram. Frequency-domain

features are the richest category; they are usually computed

through a Short-Time Fourier Transform (STFT) or an autore-

gression analysis and can be subdivided in: autoregression-
based, STFT-based and brightness, tonality, chroma or spec-
trum shape related. Features in the Wavelet-domain are com-

puted after a Wavelet transform, which has the advantage of

being able to represent discontinuous, finite, non-periodic or

non-stationary functions. Image-domain features are computed

through a graphic elaboration of the spectrogram, that is

a matrix that can be represented as a one-channel image

computed with the STFT; often, spectrogram is used as

input for a convolutional neural network (CNN), which is

trained to compute ad-hoc features, which lack straightforward

interpretation.

2) Perceptual features: these try to integrate human sound

perception processing in the feature extraction stage or in

the elaboration of physical audio features. Most of them

aim at mapping certain measurements to a perceptual-based

scale anr/or metrics. For example, Mel Frequency Cepstral
Coefficients (MFCC) are derived by mapping the Fourier

transform to a Mel-scale, thus improving the coherence with

human perception. Perceptual wavelet packets [67] employ a

perceptually motivated critical-band based analysis to charac-

terize each component of the spectrum using wavelet packets.

Loudness is computed from the Fourier transform with the

aim of providing a psychophysically motivated measure of the

intensity of a sound.

B. Video and image features

This section is mainly written with reference to a previous

work [48]. Video features used in the music domain are very

similar to visual features used in general purpose video anal-

ysis. Image features can be based on the color space (RGB or

HSV), on edges detection, on the texture – such as the LBP –,

or on the moment of a region. In video, motion detection is also

possible and can be performed with background detection and

subtraction, frame difference and optical flow. Object tracking
has been also used to detect hand movements, for example

in piano-tutoring applications. Object tracking can happen by

exploiting the difference between frames of the detected object

contours, by using deviations frame-to-frame of whole regions

or generic features. In video, one can also detect shots, for

example by analyzing the variation of the color histograms in

the video frames, using the Kullbach-Leibler distance [68] or

other metrics.

In genre and mood related analysis, other features can also

be exploited [69]. The use of tempo is essential to express

emotions in video clips, and can be analyzed through features

related to motion and length of video shots. Another relevant

factor is lighting, that can be measured through brightness-

based features. Colors have an affective meaning too, and

color features are consequently useful for genre or emotion

recognition.

Finally, images can also be used as they are as input of

CNNs.

C. Text features

This section is written with reference to a previous review

[70]. The most common text representations are based on

tf-idf. In this context, tf(d, t) is the term frequency and is

computed as the number of occurrences of a term t in a

document d. Instead, idf(d, t) is a short for inverse document
frequency and is needed to integrate the discrimination power
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of the term t for the document d, considering the whole

collection; it is related to the inverse ratio between the number

of documents containing t at least once and the total number

of documents in the considered collection:

idf =
docs in collection

docs containing t
(1)

Usually, tf-idf takes the following form:

tf-idf(d, t) = tf(d, t)× log[idf(d, t)] (2)

Features based on tf-idf are often used in Bag-of-Words

(BoW) models, where each document is represented as a

list of words, without taking care of the cardinality and

order of words. In order to make BoW and tf-idf models

effective, a few preliminary steps are usually performed, such

as punctuation and stop-words removal and stemming. More

sophisticated methods are also available, allowing for topic- or

semantics-based analysis, such as Latent Dirichlet Allocation
(LDA), Latent Semantic Analysis (LSA), Explicit Semantic
Analysis (ESA) [71] and CNN feature extraction.

For lyrics analysis, other types of features can be extracted,

like rhymes or positional features. Finally, when the available

text is limited, one can extend it with a semantic approach

consisting in knowledge boosting [37].

D. Symbolic score features

Symbolic music scores have been rarely used in feature

extraction approaches. Most of the papers which deal with

symbolic scores use MIDI-derived representations, such as the

pianoroll [17] or inter-onset intervals (IOI) [58]. To the end of

audio-symbolic comparison, one can compute chromograms,

that are also computable from the audio modality alone.

However a number of representation exist and have been

tested in Music Information Retrieval applications, such as

pitch histograms, Generalized Pitch Interval Representation
(GPIR), Spiral Array, Rizo-Iñesta trees, Pinto graphs, Orio-
Rodà graphs and others. A brief review of the music symbolic

level representations is provided in a previous work [72].

VI. CONVERSION TO COMMON SPACE

The conversion of the extracted features to a common
space is often a mandatory step in early fusion approaches.

Nevertheless, almost no authors emphasize this aspect. Thus,

we think that greater attention should be posed on this step of

the pre-processing pipeline.

The conversion to a common space consists in the mapping

of the features coming from different modalities to a new

space where they are comparable. This can be needed in

single-modality approaches too, when the features refer to very

different characteristics of the signal. Indeed, many papers

describe techniques which include a mapping of the features

to a common space, both in the pre-processing and in the

processing stages, but no particular attention to the conversion

itself. Common methods include:

• normalization, that is the most basic approach;

• conversion from one modality to another, so that features

can be computed in the same units;

• machine learning algorithms such as CNNs or SVMs:

SVMs compute the best parameters for a kernel function

that is used to transform the data into a space where they

are more easily separable; CNNs, instead, can be trained

to represent each input modality in a space such that the

last network layers can use as input the concatenation of

these representations;

• dimensionality reduction algorithms, which usually

search for a new space where data samples are rep-

resentable with a fewer number of dimensions without

losing the ability to separate them; examples are Principal
Component Analysis (PCA) and Linear Discriminant
Analysis (LDA).

It must be said that some types of features are suitable for

multimodal fusion without any conversion step. For example,

chroma features can be computed from both the audio record-

ings and the symbolic scores and thus can be compared with

no additional processing.

A possible categorization of the conversion to common

space methods is between coordinated and joint: in the former

type, the mapping function takes as input a unimodal represen-

tation, while in the latter type it takes as input a multimodal

representation [10]. In other words, coordinated conversion

learns to map each modality to a new space trying to minimize

the distance between the various descriptions of the same

object, while joint conversion learns the best mapping function

which uses all the modalities and optimizes the subsequent

steps – e.g. SVM.

VII. INFORMATION FUSION APPROACHES

Two major information fusion approaches exist: early fusion
and late fusion – see fig. 1. Some authors also report a hybrid
approach [9], which consists in fusing information both in a

early and late fashion and in adding a further step to fuse

the output of the two approaches. Nevertheless, we did not

find any existing application to the music domain. Before dis-

cussing in detail the two approaches, we recall that no fusion is

usually needed in similarity tasks, but just a comparison of the

various modalities and, thus, a conversion to a common space.

The accompanying online table (see footnote 1) contains a

short description of the fusion approach used in all the cited

papers. To our understanding the main difference between

early and late fusion is about their efficiency and ease of

development; however authors disagree about which one is

the more effective.

A. Early fusion

Early fusion consists in the fusion of the features of all

the modalities, using them as input in one single processing

algorithm. Although the development of such techniques is

more straightforward, they need a more careful treatment

because the features extracted from various modalities are not

always directly comparable.

To the end of synchronization, the most used approach

exploits Dynamic Time Warping algorithms (DTW) [73].

DTW is a well-known technique based on a similarity matrix
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Figure 4. Exemplification of Non-negative Matrix Factorization for music
transcription.

between two sorted sets of points, for example two time-

sequences. By using a dynamic programming algorithm, one

can exploit the similarity matrix to find the best path which

connects the first point in one modality to the last point in

the same modality and which satisfies certain conditions. This

path will indicate the corresponding points between the two

modalities. Other common methods for synchronization pur-

poses are Hidden Markov Models (HMMs) [18], [58] where

hidden states represent points in one modality and observations

represent points in a second modality; this is particularly

effective for real-time alignment or generic sequence fusion

such as in time-dependent descriptions.

Aside HMMs, many additional machine learning [74] ap-

proaches are used to perform early fusion: Support Vector

Machines (SVMs), Gaussian Mixture Models (GMMs), Con-

volutional Neural Networks (CNNs) and Particle Filters are

the most used techniques.

Another interesting method is Non-negative Matrix Factor-

ization (NMF), through which audio and symbolic scores can

be exploited to the end of precise performance transcription,

as in score-informed source separation and piano tutoring
applications [17]. In NMF, a matrix A is decomposed in

two components C and B, so that A = B × C. If A is a

spectrogram and B is a template matrix dependent on the

instrumentation, then we can think to C as a pianoroll matrix –

see fig. 4. Consequently, one can use an optimization algorithm

to minimize the function f(B,C) = A−B×C, by initializing

C with a symbolic score; at the end of the optimization, C
will be a precise transcription of the performance contained

in A.

Finally, feature fusion can also happen at the feature selec-

tion stage [38], [43].

B. Late fusion

Unlike early fusion, late fusion is the fusion of the output

of various ad-hoc algorithms, one for each modality. It is also

called decision-level fusion, even if a decision process is not

mandatory. The main advantage of late fusion is that it allows

for a more adjustable processing of each modality. However,

it is usually more demanding in terms of development costs.

In classification and time-dependent description tasks, the

most used types of late fusion are rule-based. Rules can

include voting procedures [62], [64], linear and weighted com-

binations [41], [75], maximum and minimum operations [41],

[75]. Many authors have developed sophisticated algorithms

to execute this step, such as in beat tracking, piano tutoring

and structural segmentation [57], multi-pitch estimation [65]

and tonic identification [42].

In synchronization tasks, instead, no late-fusion approach

is possible, since the task consists in creating associations

between points in different modalities and, thus, the process

must take as input all the modalities, eventually in some

common representation.

VIII. FUTURE DIRECTIONS

In this paper, we have analyzed the literature on multimodal

music information processing and retrieval. Based on our

study, we propose the following concluding remarks.

First of all, we note the unavailability of datasets of suitable

size. This issue is usually addressed with various methods

such as co-learning approaches [10], which has the side-effect

of impoverishing the goodness of the developed algorithms.

Although a few datasets have been recently created [37], [76]–

[78], a great effort should still be carried out in this direc-

tion. Indeed, existing multimodal music datasets are usually

characterized by limited sizes and only rarely include a wide

range of modalities. However an exhaustive list of the available

datasets is out of the scope of this paper. We argue that this

limit is due to two main reasons: first, the precise alignment of

various modalities is a hard computational task and should be

controlled by human supervision; second, no largely adopted

standard exists for multimodal music representation. About the

first point, more effort should be devoted to the development

of algorithms for the alignment of various sequences. The

representation of the intrinsic music multimodality, instead, is

faced by the IEEE 15992 standard and the Music Encoding
Initiative3; moreover, the W3C group is currently working

on a new standard with the purpose of enriching MusicXML
with multimodal information4. The course of history described

insection I and the rapid technology advancements of our times

suggest that new representation modalities could be needed in

the future and that multimodal representation standards should

also focus on this challenge.

Another challenge that multimodal music researchers should

face in the next years is the exploration of various techniques

already used in multimodal processing of multimedia data, that

have not been tested in the musical domain. According to pre-

vious surveys [9], [10], multimodal methods never applied to

the music domain include: the hybrid approach, the Dempster-

Shafer theory, Kalman filters, the maximum entropy model,

Multiple Kernel Learning and Graphical Models. Moreover,

we have found only one paper in which the information

fusion happens during the feature extraction itself [58] and not

afterwards. This approach should be explored more deeply.

Finally, we suggest that the conversion to common space

should be more rigorously addressed. To this end, transfer

learning technologies could be explored towards forming a

2IEEE 1599 website: http://ieee1599.lim.di.unimi.it/
3MEI website: https://music-encoding.org/
4W3C music notation group website: https://www.w3.org/community/

music-notation/
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synergistic feature space able to meaningfully represent multi-

ple modalities [79], [80]. Such a direction may include the use

of an existing feature space characterizing a specific modality,

or the creation of a new one where multiple modalities

are represented. Such a space could satisfy several desired

properties, such as sparseness, reduced dimensionality, and so

on.

REFERENCES

[1] I. D. Bent, D. W. Hughes, R. C. Provine, R. Rastall, A. Kilmer, D. Hiley,
J. Szendrei, T. B. Payne, M. Bent, and G. Chew, “Notation,” in Grove
Music Online. Oxford University Press, 2001.

[2] H. M. Brown, E. Rosand, R. Strohm, M. Noiray, R. Parker, A. Whittall,
R. Savage, and B. Millington, “Opera (i),” in Grove Music Online.
Oxford University Press, 2001.

[3] G. Mumma, H. Rye, B. Kernfeld, and C. Sheridan, “Recording,” in
Grove Music Online. Oxford University Press, 2003.

[4] D. A. Cook and R. Sklar, “History of the motion picture,” in Britannica
Academic. Encyclopædia Britannica, 2018.

[5] T. Kitahara, “Mid-level representations of musical audio signals for mu-
sic information retrieval,” in Advances in Music Information Retrieval.
Springer Berlin Heidelberg, 2010, pp. 65–91.

[6] H. Vinet, “The Representation Levels of Music Information,” in Com-
puter Music Modeling and Retrieval, U. K. Wiil, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2004, pp. 193–209.

[7] F. Pachet, “Musical metadata and knowledge management,” in Encyclo-
pedia of Knowledge Management, Second Edition, D. G. Schwartz and
D. Te’eni, Eds. IGI Global, 2005, pp. 1192–1199.

[8] D. Deutsch, The Psychology of Music (third Edition), third edition ed.,
D. Deutsch, Ed. Academic Press, 2013.

[9] P. K. Atrey, M. A. Hossain, A. E. Saddik, and M. S. Kankanhalli,
“Multimodal fusion for multimedia analysis: A survey,” Multimedia
Systems, vol. 16, no. 6, pp. 345–379, Apr. 2010.

[10] T. Baltrusaitis, C. Ahuja, and L.-P. Morency, “Multimodal machine
learning: A survey and taxonomy,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, pp. 1–1, 2018.

[11] M. Minsky, “Logical versus analogical or symbolic versus connectionist
or neat versus scruffy,” AI Magazine, vol. 12, no. 2, pp. 34–51, 1991.

[12] S. Essid and G. Richard, “Fusion of multimodal information in music
content analysis,” in Multimodal Music Processing. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik GmbH, Wadern/Saarbruecken, Ger-
many, 2012.
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