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Do We Need Individual Head-Related Transfer
Functions for Vertical Localization? The Case

Study of a Spectral Notch Distance Metric
Michele Geronazzo , Member, IEEE, Simone Spagnol , and Federico Avanzini

Abstract—This paper deals with the issue of individualizing the
head-related transfer function (HRTF) rendering process for audi-
tory elevation perception. Is it possible to find a nonindividual, per-
sonalized HRTF set that allows a listener to have an equally accu-
rate localization performance than with his/her individual HRTFs?
We propose a psychoacoustically motivated, anthropometry based
mismatch function between HRTF pairs that exploits the close re-
lation between the listener’s pinna geometry and localization cues.
This is evaluated using an auditory model that computes a mapping
between HRTF spectra and perceived spatial locations. Results on a
large number of subjects in the center for image processing and in-
tegrated computing (CIPIC) and acoustics research institute (ARI)
HRTF databases suggest that there exists a nonindividual HRTF
set, which allows a listener to have an equally accurate vertical
localization than with individual HRTFs. Furthermore, we find
the optimal parameterization of the proposed mismatch function,
i.e., the one that best reflects the information given by the audi-
tory model. Our findings show that the selection procedure yields
statistically significant improvements with respect to dummy-head
HRTFs or random HRTF selection, with potentially high impact
from an applicative point of view.

Index Terms—Spatial audio, head-related transfer functions
(HRTFs), auditory models, individualized HRTFs, HRTF selec-
tion, vertical localization, spectral notch metric.

I. INTRODUCTION

ONE of the main limitations of binaural audio through
headphones, that limits its integration into commercial

applications of virtual and augmented reality, lies in the lack
of individualization of the rendering process. Rendering spatial
sound through headphones usually involves the use of binau-
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ral room impulse responses (BRIRs), which are the combina-
tion of two components: the room impulse response (RIR), and
the head-related impulse response (HRIR), which accounts for
the acoustic transformations produced by the listener’s head,
pinna, torso and shoulders [1]. Having a set of HRIRs (or Head-
Related Transfer Functions – HRTFs, their Fourier transforms),
measured over a discrete set of spatial locations for a specific
listener, allows to spatially render a dry sound by convolving it
with the desired HRIR pair.

Recording individual HRTFs of a single listener implies a
trade-off between resources and time, that takes into account
several issues such as static/dynamic measurements [2], num-
ber of loudspeakers, availability of (semi-) anechoic spaces, ro-
bust placement of binaural microphones, monitoring of subject
movements during acquisition [3], and repeatability in mea-
surement [4], to name but a few. This makes HRTF record-
ings impractical for a real-world application, therefore different
and more convenient ways to provide a listener with a set of
HRTFs are highly desirable. A common practice amounts to us-
ing generic HRTFs, such as those that can be recorded using a
dummy head (e.g., the Knowles Electronic Manikin for Acous-
tic Research – KEMAR [5]): in this case, the same set is used
for any possible listener.

However, generic HRTFs generally result in a degradation of
sound perception and localization, and in an overall poor listen-
ing experience. For this reason, recent literature is increasingly
investigating the use of personalized HRTFs, i.e. approaches
that allow to provide a listener with a HRTF set that matches as
closely as possible the perceptual characteristics of his/her own
individual HRTFs.

Personalized HRTFs can be derived from computational mod-
els, which generate synthetic responses from a physical [6] or
structural interpretation of the acoustic contribution of head,
pinna, shoulders and torso [7]. In alternative to computational
models, personalization can be also achieved through HRTF
selection. In this case, personalized HRTFs are chosen among
the HRTF sets available in a database, by finding the “best”
match between the listener and one of the subjects in the
database. In this work, we follow this approach, and we de-
fine a psychoacoustically motivated, anthropometry based dis-
tance criterion to find, for a given subject, the best matching
HRTF among those available. The criterion is based on a map-
ping between pinna geometry and localization cues, especially
those for localization in the vertical dimension. The envisaged
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application of this approach is a low-cost and non-invasive pro-
cedure for HRTF personalization, where a user can provide
individual anthropometric data in the form of pictures [8], [9]
or acoustic data [10], receiving back the best-matching HRTF
set automatically selected from a database.

The similarity between selected HRTFs and the individual
subject’s HRTFs must be validated on the basis of psychoacous-
tic criteria, in order to ensure that the personalization procedure
preserves as closely as possible perceptual features and localiza-
tion abilities. Such validation is typically performed with human
subjects through time-consuming psychophysical tests that re-
quire a meaningful statistical population, with issues related to
number of participants, quality of the responses, homogeneity
of the subject pool, and so on. The majority of these studies rely
on a tradeoff between the above-mentioned factors in order to
limit participant effort and learning, while keeping the experi-
mental plan practical. Typically, available experimental data are
collected on a limited pool of participants (e.g. 10–20 listeners)
and/or with limited accuracy in localization performances [11]
and/or using limited sets (≤3) of non-individual HRTFs [12].
Accordingly, the validity and statistical power of such results re-
main highly questionable without an extensive study on a wider
population and a larger set of HRTFs.

To our knowledge, no published study faces the issue of over-
coming practical limitations of massive participation of human
subjects to HRTF measurements and listening tests. In this di-
rection, we follow an alternative approach in which pairs of
HRTF sets are evaluated by means of computational auditory
models that simulate the human auditory system with respect
to localization abilities [13], [14]. Previous studies [14] have
already shown that these models are able to reproduce experi-
mental data accurately. Therefore in this work we use one such
model to define a perceptual metric that allows to automatically
assess the performance of the HRTF selection procedure. This is
an attractive approach in that it allows to use quantitative predic-
tions (from auditory models) rather than qualitative responses
from listening tests, overcoming the practical limitations of the
latter. In sake of comparability, our approach is also evaluated
keeping a connection with real-world data from listening tests,
leading to individually calibrated simulations according to prior
subjective evaluations [15].

The paper is organized as follows. Section II discusses rele-
vant literature about individual sound localization, HRTF fea-
tures and personalization, with a focus on vertical localization
and HRTF selection approaches. Section III presents a proce-
dure based on an auditory model for vertical localization that,
given an individual HRTF, rates its perceptual similarity to all
the HRTFs in a database. Section IV introduces the pinna reflec-
tion model and presents a notch-frequency mismatch function
that can be used for HRTF selection. This is further analyzed in
Section V, by correlating its selection results to those previously
obtained using the auditory model. A general discussion of the
results is provided in Section VI.

II. HRTF PERSONALIZATION AND SELECTION

A. Listening With Nonindividual HRTFs

As mentioned in the introduction, the most common approach
for binaural sound rendering amounts to employing generic

HRTFs measured on dummy heads. Dummy heads allow robust
and easy-to-manage measurement sessions and often provide a
reasonable trade-off between representativeness of a wide hu-
man population and average efficacy (see the historical review
by Paul [16]), although outcomes vary considerably [4].

However, it is indisputable that our representation of audi-
tory information is based on everyday life listening with our
individual HRTFs, electing them naturally as the ground truth
condition. Listening through generic dummy ears causes no-
ticeable distortion in the listening experience, including in-
creased front-back confusion, lack of externalization, and lo-
calization errors [17], [18]. Romigh and Simpson [19] recently
identified the intraconic spectral component as the main cause
of inter-individual differences where pinna acoustics become
dominant.1 Dummy-head HRTFs can thus be considered as av-
erage HRTF templates, exhibiting high variability in localization
performance.

Localization in the vertical dimension is especially affected
by the individual shape of the pinnae [21]. Scattering of acoustic
waves in the proximity of the pinna creates listener-dependent
peaks and notches that characterize the high-frequency spectrum
(above 4-5 kHz) [22]. These depend strongly on the elevation
angle of the incoming sound [23], [24], and to a remarkably mi-
nor extent on azimuth [6] and distance [25], [26]. The relative
importance of these peaks and notches has been disputed over
the past years. A recent study [27] showed that a parametric
HRTF recomposed using only the first, omnidirectional peak in
the HRTF spectrum (corresponding to Shaw’s mode 1 [23]) cou-
pled with the first two notches yields almost the same localiza-
tion accuracy as the corresponding measured HRTF. Additional
evidence in support of the relevance of the lowest-frequency
notch is provided by Moore [28], who states that the threshold
for perceiving a shift in the central frequency of a spectral notch
is consistent with the localization blur on the median plane.

Several studies attempted to manipulate a HRTF template in
order to shape individual contributions. Middlebrooks defined
a frequency scale factor with the aim of reducing inter-subject
spectral differences and computing scaled HRTFs for an arbi-
trary listener from anthropometric differences [29]. Brungart
and Romigh proposed a HRTF enhancement procedure that in-
creases the salience of direction-dependent spectral cues for
elevation in both generic and individual HRTFs [30] through
the use of an enhancement factor applied to the magnitude of
the intraconic spectral component. HRTFs from a dummy head
template can be also considered for ITD individualization with
scaling procedures [31] or with linear regression analysis on
anthropometry [32]. Tan and Gan allowed listeners to manipu-
late HRTF spectra with a series of bandpass filters to boost or
attenuate 5 frequency bands [33]; similarly, a systematic ma-
nipulation of the directional bands was tested by So et al. [34].
Moreover, listeners can increase their localization performances
through adaptation procedures [35], [36] which provide tools for
remapping localization cues to spatial direction.

On the other hand, some studies have shown that listeners
do not necessarily exhibit significant degradation in localization
performance when using non-individual HRTFs; see for exam-

1The intraconic spectral component is derived by subtracting the average of
equilateral directional transfer functions (DTFs) [20] from each DTF.
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Fig. 1. General work-flow for HRTF selection.

ple the work of Iwaya [37] where non-individual HRTFs did
not statistically differ from individual ones in localization per-
formance, and were statistically better in reducing front-back
confusion. Moreover, HRTFs resulting from a subjective tuning
of PCA weights [38] led to better discrimination in elevation
with respect to individual HRTFs.

B. Selection Approaches

The above discussion provides motivations for the develop-
ment of HRTF personalization approaches. One of the most
popular approaches in recent literature, including this work,
is HRTF selection, in which personalized HRTFs are chosen
by selecting the best match among the HRTF sets available in
a database. In this section, we provide a formalization of the
main elements involved in the problem of HRTF personaliza-
tion, with particular focus on the selection of existing HRTF
data. The scheme in Fig. 1 depicts a general work flow.

Finding models and metrics for the problem requires the defi-
nition of (i) domains of action, (ii) spatial ranges of interest, and
(iii) a methodology for the techniques and processing stages
within the identified domains and ranges. Domains of action
belong to the following three areas: acoustics, anthropometry,
and psychoacoustics. Accordingly, datasets must also include–
beside HRTFs – anthropometric information and subjective rat-
ings. The latter group includes results from localization tests
(e.g. azimuth and elevation judgments, externalization ratings,
front-back differentiation, etc.) with non-individual HRTFs, as
well as listener preferences [11], [37]. The anthropometry of
the listener can be collected in the form of direct measurements,
pictures, and 3D scans [8], [39], [40]. Investigation can be lim-
ited to a specific spatial range of interest, i.e. a subspace around
the listener.

Proposed methodologies are typically composed of a pre-
processing phase, a direct selection, and a post-processing
phase. Pre-processing include data unification, to manage

heterogeneity in different HRTF databases, techniques to re-
duce the size of the dataset, and dimensionality reduction of
the HRTFs. The direct selection phase includes several tech-
niques, depending on the chosen domain of action: anthropo-
metric database matching [41], linear regression models be-
tween acoustical and physical features [42], subjective selection
on a reduced set of HRTFs [11], [37], [43], and optimization of
errors and distances in the acoustic domain [42]. Finally, the
post-selection phase usually requires the listener’s involvement
for self-tuning actions, such as subjective spectral manipulations
and enhancement [33], choice of a preferred scale factor [42],
and adjustment of weights [38], towards a training for adaptation
to non-individual HRTFs [35].

III. DO WE NEED INDIVIDUAL HRTFS FOR

VERTICAL LOCALIZATION?

We can identify a crucial research question: is it possible to
find personalization procedures for non-individual HRTF sets
allowing a listener to have an equally accurate vertical localiza-
tion than with his/her individual HRTFs?

In this section, we present a procedure that provides a quan-
titative measure of the perceptual similarity of a pair of HRTF
sets with regard to vertical localization. As such, it can be used
to rank all the HRTFs in a database in order of similarity with
that of a specific listener. The one ranking first can be regarded
as the best non-individual HRTF for the listener.

The proposed procedure exploits an auditory model for verti-
cal localization and makes use of psychoacoustically motivated
performance metrics. Therefore it may be regarded as a virtual
experiment in which a virtual listener performs a vertical local-
ization test using different HRTFs, which are ranked in order
of performance. The procedure was applied to HRTF datasets
from the Center for Image Processing and Integrated Computing
(CIPIC) Interface Laboratory of the University of California -
Davis [44], Acoustics Research Institute (ARI) of the Austrian
Academy of Sciences [45], and a subset of ARI subjects. Mo-
tivations behind this choice can be summarized as follow; the
CIPIC is in line with our earlier studies and findings [8], [39],
[46]; on the other hand, the ARI is a larger HRTF database which
supports the evaluation of the auditory model adopted in this
study [14]; for 17 ARI subjects, Majdak et al. [15] provided indi-
vidual calibration parameters thus allowing the identification of
a subgroup that can represent a faithful reproduction of real sub-
jects in both acoustic and non-acoustic factors for localization.

The results serve as a benchmark for the definition of the
anthropometry-based HRTF mismatch function discussed in
Sections IV and V.

A. Auditory Models for Vertical Localization

Several computational auditory models predict accuracy of
human localization (and particularly vertical localization) from
acoustical spectral cues. Two main categories of models exist:
(i) statistical and machine learning approaches and (ii) func-
tional models. The first group collects several studies conducted
also in the field of robot audition [47], [48], and use such ap-
proaches as gaussian process regression models [49] and time-
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delay neural networks [50]. The latter group adopts physio-
logically and psychophysically-inspired parameters following
a “template-based” paradigm [13]: a comparison between the
internal representation of an incoming sound at the eardrum and
a reference template (usually an individual representation of
listener HRTFs) is performed in terms of comparisons through
first/second order derivatives [51] or spectral correlation [52].

In this paper, we adopt the Langendijk model [13], extended
by Baumgartner et al. [14], where spectral features of sound
events filtered with different HRTFs (target) correlate with the
direction of arrival of the HRTF template, leading to a spectro-to-
spatial mapping. This approach is further supported by a recent
study of Van Opstal et al. [53] where the authors estimated the
listeners’ spectral-shape cues for elevation perception from the
distribution of localization responses.

The model is based on two different processing phases prior to
the prediction of absolute elevation. During peripheral process-
ing, an internal representation of the incoming sound is created.
The target sound is converted into a DTF and filtered with a
gammatone filterbank simulating the auditory processing of the
inner ear. In the second phase, for each target/template angle
and frequency band based on equivalent rectangular bandwidth
(ERB), the algorithm computes the gain at the central frequency
of each band and the target/template internal representations.
The inter-spectral difference (ISD) for each band is extracted
from the differences in dB between each target angle and all
template angles; for each target angle, the spectral standard
deviation (SSD) of the ISD is computed across all template an-
gles. The probability that a virtual listener points to a specific
response angle defines the similarity index (SI) which receives as
input the template-dependent SSD for the argument of a Gaus-
sian distribution with zero mean and standard deviation called
uncertainty, U . The lower the U , the higher the sensitivity of the
listener in discriminating different spectral profiles resulting in
a measure of probability. Simulation data are stored in probabil-
ity mass vectors, where each response angle has the probability
that the virtual listener points at it.

B. Model Tuning and Performance Metrics

In this work, simulations were run on the median plane only,
where acoustic properties of the external ear provide vertical
localization cues [24] with minimum interference from other
localization cues; simulations accounted for three datasets:

� CIPIC - 45 virtual subjects for whom individual HRTF
measurements are available in the CIPIC database [44]:
2500 HRIRs each, given by the combination of 25 azimuths
× 50 elevations × 2 ears, measured at sampling rate fs =
44.1 kHz (200 samples). Elevation φ is uniformly sampled
on the range −45◦ to +230.625◦ in 5.625◦ steps. For each
virtual subject, we set an uncertainty value U = 2, which
reasonably approximates the uncertainty of a real listener
in localization tasks [15].

� ARI - 97 virtual subjects for whom individual HRTF mea-
surements are available in the ARI database: 1550 HRIRs
each, given by the combination of 90 azimuths × 22 ele-
vations × 2 ears, measured at sampling rate fs = 48 kHz

(256 samples). 2 Elevation φ is uniformly sampled on the
range −30◦ to +80◦ in 5◦ steps. For each virtual subject,
we set an uncertainty value U = 2.

� ARIrU - 17 virtual subjects for whom individual HRTF
measurements from the ARI database and individual un-
certainty values from [15] are available.

It is worthwhile to notice that these three datasets were con-
sidered separately; their combination could lead to biased results
and misinterpretations due to the heterogeneity between HRTF
databases that is a well-known issue in the literature [4], [54].
Normalization and data correction of such differences require
an ad-hoc merging procedure which is beyond the scope of the
paper.

DTF data were extrapolated from free-field compensated
HRIRs and subsequently pre-processed by windowing with a
1-ms Hanning window centered on the maximum temporal
peak in order to remove the acoustic contribution of torso reflec-
tions [46]. On the other hand, low frequency torso cues were still
included; however, individual torso differences were minimized
once considering simulation data related to target elevation an-
gles in the frontal range [−45◦,+45◦] where high frequency
spectral peaks and notches are more prominent, reflecting the
higher inter-subject variability of the pinna [23], [55]. It has
to be noted that for sound source directions above the listen-
ers (elevation > 45◦), spectral details are poorly marked due
to a dominance of concha resonance [22] and HRTFs can be
considered indistinguishable with a JND of 24◦, thus reflect-
ing a very poor localization performance also in real listening
conditions [56].

All median plane template angles were considered in the com-
putation of the following psychoacoustic performance metrics
for vertical localization, accordingly with Middlebrooks [29]
and Baumgartner et al. [57]:

� local polar RMS error, PE: quantifies the average “local”
localization error, i.e. when the absolute polar error is be-
low ±90◦. More precisely, we first define PEj , the RMS
angular error accounting for the precision of every j-th
elevation response close to the target position:

PEj =

√∑
i∈L (φi − φj )2pj [φi ]∑

i∈L pj [φi ]
, (1)

with

L = {i ∈ N : 1 ≤ i ≤ Nφ, |φi − φj |mod 180◦ <90◦} ,

defining local polar-angle responses within ±90◦ of the
local response φi and the target position φj ; pj [φi ] denotes
the probability mass vector. Then, the PE for a single au-
ditory model simulation is computed as the average of the
PEj ’s across target elevations.

� quadrant error rate, QE: quantifies the localization confu-
sion related to the rate of “non-local” responses, i.e. where
the absolute polar error exceeds ±90◦. We first define QEj

2HRTFs (not b version) available at http://sofacoustics.org/data/database/ari/
(last access 18/12/2017)
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Fig. 2. Localization predictions resulting from auditory model simulations on 45 CIPIC subjects in the median plane. “All-against-all” matrices for (a) polar
error (PE) [deg], (b) quadrant error rate (QE) [%], (c) global polar error (GPE) [deg], and (d) front-back confusion rate (FB) [%].

Fig. 3. Listening with individual HRTFs (IND) vs. “best available” non-
individual HRTFs (MIN errors in metrics): global statistics for (a) angular
error [P E , GP E] and (b) rate of confusion [QE , F B], for each the analyzed
databases (CIPIC, ARI, and ARIrU). Asterisks and bars indicate, where present,
a significant difference (*: p < 0.05, **: p < 0.01 , ***: p < 0.001 according
to paired t-test).

for the j-th elevation response:

QEj =
∑
i∈NL

pj [φi ], (2)

with

NL = {i ∈ N : 1 ≤ i ≤ Nφ, |φi − φj |mod 180◦ ≥ 90◦} .

Then, the QE for a single auditory model simulation
is computed as the average of the QEj ’s across target
elevations.

Moreover, we defined two additional metrics which are com-
monly used in the literature on sound localization [8], [58]:

� global polar error, GPE: quantifies the absolute angular
localization error, with front-back confusions “resolved”.
For the j-th elevation response:

GPEj =

∑
f∈F |φf − φj | (pj [φf ] + pj̄ [φf ])
+

∑
b∈B |φb − φj | (pj [φb ] + pj̄ [φb ])∑
f∈F pj [φf ] + pj̄ [φf ]
+

∑
b∈B pj [φb ] + pj̄ [φb ]

, (3)

with

F = {i ∈ N : 1 ≤ i ≤ Nφ, φi ≤ 90◦} ,

B = {i ∈ N : 1 ≤ i ≤ Nφ, φi > 90◦} ,

and where the angle j̄ is the front-back angle associated
to j (i.e., the mirror angle of j with respect to the coronal
plane). Then the GPE for a given auditory model simu-
lation is computed as the average of the GPEj ’s across
target elevations.

� front-back confusion rate, FB: quantifies the localization
confusion by measuring the rate of frontal responses where
the target position φj is on the back region and vice versa,
excluding elevation angles above the listener. A ±30◦

area is considered in this definition. For the j-th elevation
response:

FBj =
∑
i∈C

pj [φi ], (4)

with

C = i ∈ N : 1 ≤ i ≤ Nφ, φi > 120◦ if φj ≤ 60◦

∧ φi ≤ 60◦ if φj > 120◦,

Then the FB for a single auditory model simulation
is computed as the average of the FBj ’s across target
elevations.

C. Results

Using all the available subjects for each database, a total of
more than 104 simulations (45 × 45 = 2025, 97 × 97 = 9409,
and 17 × 17 = 289) were run following an all-against-all prin-
ciple: for each virtual subject, his/her individual HRTF set were
used as the template of the auditory model, and predictions on
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TABLE I
STATISTICAL ANALYSIS ON METRICS FOR LOCALIZATION PERFORMANCE

BETWEEN INDIVIDUAL (IND) AND “best available”
(MIN) LISTENING CONDITIONS

Asterisks indicate, where present, a significant difference (*: p < 0.05, **: p < 0.01,
***: p < 0.001 according to paired t-test or Wilcoxon matched-pairs signed rank test).

vertical localization performances were computed considering
all the available HRTF sets as targets. Fig. 2 summarizes simu-
lation results for the CIPIC database into four matrices for each
of the above-defined metrics, where row-wise reading allows vi-
sual inspection of prediction results of all HRTF sets for a given
listener, i.e. 44 non-individual HRTF sets plus the individual
one (the element in the diagonal). It is worthwhile to notice that
errors appeared also in the diagonal due to the U parameter able
to model localization flaws that are typical of real static listening
conditions.

We subsequently analyzed all the simulations by compar-
ing predictions with two listening methods: individual HRTFs
(IND) and the “best available” non-individual HRTFs (MIN).
For every i-th row of the simulation matrix, i.e. for the i-th
subject, the best available non-individual HRTF was chosen to
be the one providing the minimum error value (excluding the
diagonal).

Preliminary analysis of gaussianity was performed on the data
by means of a Shapiro-Wilk test, which revealed violations in
the distributions of GPEIND and FBIND. Accordingly, a paired
t-test was computed for PE and QE and a Wilcoxon matched-
pairs signed rank test for GPE and FB in order to assess
statistical differences between individual and “best available”
non-individual HRTFs. Results of this analysis are reported in
Fig. 3 and in Table I, which groups the proposed metrics in
(a) angular error [PE, GPE] and (b) rate of confusion [QE,
FB] for each HRTF database. This grouping was guided by
computing nonparametric Spearman correlation between data
distributions, which yielded high statistical significant correla-
tion coefficients for [PE, GPE] and for [QE, FB] in each
database.

The non-significant difference in angular error between in-
dividual and best available (Fig. 3(a) and 3rd–4th rows of Ta-
ble I) supports the idea that there exists a non-individual HRTF
set allowing vertical localization as accurate as with individual
HRTFs. Whereas the statistically significance in PE for ARI
exaggerates this trend, further investigations can be found in
Section IV-B. Interestingly, significant statistical differences in
rate of confusion (Fig. 3(b) and 5th–6th rows of Table I) suggest

Fig. 4. Average elevation-dependent P E and QE for individual (blue lines)
and “best available” non-individual (red lines) listening conditions in the CIPIC
(first row), ARI (second row) and ARIrU (last row) datasets. Standard deviations
for each angle can be determined from colored areas on the bottom of each
subplot.

that it is possible to find a non-individual HRTF set which allows
better front-back discrimination than the individual one. Even
if this latter result seems counter-intuitive, Asano et al. [24] al-
ready reported this phenomenon with two expert listeners (e.g.,
see performances of subject 2 in their experiment 1), conclud-
ing that macroscopic patterns, directional bands [1] and level of
expertise [59] in the high-frequency regions are necessary for
front-back discrimination in static conditions.

In the remainder of the paper we focus on PE and QE for
the sake of consistency with previous literature which uses the
same auditory model [14]. These two metrics are highly cor-
related to GPE and FB, respectively, suggesting interchange-
ability among them. Moreover, PE and QE exhibit Gaussian
distributions when applied to the CIPIC database, making them
more convenient metrics for statistical analysis.

Even though results of global localization metrics were sim-
ilar between IND and MIN, elevation angle dependency has to
be investigated in order to guarantee the actual matching be-
tween individual and “best available” non-individual HRTFs
for each target angle. Fig. 4 depicts PE and QE as a func-
tion of the elevation angle for CIPIC, ARI, and ARIrU datasets,
respectively. From this analysis, we can notice a close trend
for both conditions in all datasets, thus not interfering with re-
sults obtained from global metrics. Moreover, the absence of
φ ∈ [−45◦,−30◦) in the ARI database explains the average
lower values for ARI and ARIrU compared to CIPIC for all the
metrics; low error rates were particularly marked for QE and
FB [see Fig. 3(b)] due to the absence of data for computing
error rates in extreme lower elevation angles.
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Fig. 5. Side-face picture of CIPIC subject 048. Following the pinna reflec-
tion model, a schematic representation provides the identification of ear canal
entrance, main contours, and reflection points for a given elevation φ.

IV. AN ANTHROPOMETRY-BASED HRTF MISMATCH FUNCTION

Having established in the previous section a robust metric
for HRTF similarity in the domain of psychoacoustics (predic-
tive model), in this section we propose a second metric in the
domain of acoustics, and we show that it can be derived from
individual anthropometric features of the pinna. In Section V,
this new metric will be validated and tuned using the first one
as benchmark.

Being based on anthropometry, the new metric has the ad-
vantage that it can be used for direct HRTF selection once an-
thropometric data are available (e.g., from 2D pictures of the
pinna). With reference to the general work-flow discussed in
Section II-B, the spatial range of interest of this selection
procedure is the vertical plane.

A. Notch Frequency Mismatch

According to a revised pinna reflection model [39], frequen-
cies of the three main pinna notches (i.e. corresponding to re-
flection points N1...3 in Fig. 5) in a median-plane HRTF can be
estimated with reasonable accuracy by calculating the distance
between the ear canal entrance and points on the three pinna
contours thought to be responsible for pinna reflections, i.e. the
helix border (C1), the antihelix and concha inner wall (C2), and
the concha outer border (C3) in the schematic view of Fig. 5.
More in particular, given the i-th contour Ci and an elevation
φ, and assuming each reflection to be negative and responsible
for a single notch, we estimate the frequency value where de-
structive interference between the direct sound and the sound
reflected by the pinna contour occurs as

fi(φ) =
c

2di(φ)
, i = 1, 2, 3 , (5)

where c is the speed of the sound and di(φ) the distance between
the pinna reflection point and the reference point. Therefore, the
notch frequencies fi(φ) can be computed from the distances

di(φ), which in turn can be estimated from a 2D image of the
pinna.

In our previous study, the notch frequencies estimated with (5)
were found to accurately approximate those actually appearing
in the corresponding measured HRTFs for several subjects [39].
Thus, given a subject whose personal HRTFs are not available,
it is possible to select from a database the HRTF set that has the
minimum mismatch between the fi frequencies extracted from
his/her own pinna contours and the Fi notch frequencies of
the available median-plane HRTFs. Similarly, given two HRTF
sets Sj (template set) and Sk (target set), the notch frequency
mismatch between them can be defined as

mj,k =
1
3

3∑
i=1

wi

|φ|
∑

φ

|Fi(Sj , φ) − Fi(Sk , φ)|
Fi(Sj , φ)

, (6)

where wi are a convex combination of weights (
∑3

i=1 wi = 1)
and φ spans all the elevation angles for which the i-th notch
is present in the corresponding HRTF. From this definition,
it can be noticed that the mismatch function is actually non-
commutative, just like the previously defined auditory model
metrics.

In a preliminary study [8], we found that using the mis-
match function of (6) for HRTF selection increased the aver-
age elevation performances of 17% compared to the use of a
generic HRTF with average anthropometric data, significantly
enhancing both the externalization and the up/down confusion
rates. Furthermore, the convex combination assigning the whole
weight to the first notch (w1 = 1, w2 = w3 = 0, termed “all-
first” weight combination hereafter) gave better average results
but not statistically significant differences compared to the con-
vex combination assigning equal weights to the three notches
(w1 = w2 = w3 = 1/3, termed “equalized” weight combina-
tion hereafter). This suggests that notches may have different
relevance in elevation perception and therefore shall have dif-
ferent weights in the mismatch function. However, a systematic
evaluation of individual weight combination for each subject
was not practical in our former study which followed a typical
research methodology with listening tests. Accordingly, find-
ing the optimal convex combination of weights allows to study
the connection between the characterization of individual notch
patterns and localization performances. In the remainder of this
paper, this main research question is addressed.

B. Extraction of Spectral Notches

In a previous study [46], we developed an algorithm that al-
lows simultaneous estimation of notch frequencies, depths, and
bandwidths from median plane HRTFs. However, since in this
work we are only interested in feature extraction of notch fre-
quencies, we apply the ad-hoc signal processing algorithm by
Raykar et al. [60]. Briefly, the algorithm computes the autocor-
relation function of the linear prediction residual and extracts
notch frequencies as the local minima of its group-delay func-
tion falling beyond a fixed threshold.

Then, for each available elevation φ, the extracted notches are
grouped in frequency tracks along adjacent elevations through
the McAulay-Quatieri partial tracking algorithm [61], which is
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Fig. 6. Extracted notch frequency tracks of four representative CIPIC subjects
(F1 :+, F2 :◦, F3 :×).

adapted in order to perform the tracking in space rather than in
time, as in the original formulation. The very same procedure
for notch extraction and grouping has been used in previous
works [26], [62].

Only tracks with at least 3 points are preserved. If more than
three tracks satisfying such a requirement are available, only the
three longest tracks are considered and labeled F1 , F2 , and F3
in increasing order of average frequency. Fig. 6 reports tracks
of four representative subjects.

We found a significant number of cases where a subject ex-
hibits only two tracks (12 for CIPIC, 47 for ARI, and 8 for
ARIrU). This finding is due either to the actual absence of a third
notch in the related HRTFs or to an insufficient notch depth, or to
occasional tracking errors. To assess this, we compared individ-
ual elevation performances as predicted by the auditory model
[predictions on the diagonal in Fig. 2(a) and (b)], between the
group of subjects with 2 tracks (PE(2) , QE(2)) and all other
subjects (PE(3) , QE(3)). Preliminary analysis of gaussianity
was performed for each group by means of a Shapiro-Wilk
test, which revealed violations in the distributions of PE(3) and
QE(3) . Accordingly, a Mann-Whitney U test was computed
for both PE and QE metrics in order to assess statistical dif-
ferences between subjects with 2 and 3 tracks. Results of this
analysis are reported in Fig. 7. Significant statistical effects were
found for PE(3) − PE(2) (U = 111, p = 0.026, CIPIC; U = 7,
p = 0.026, ARIrU) with the sole exception of ARI (U = 838,
p = 0.296). No differences were found for QE(3) − QE(2) in
all datasets (U = 187, p = 0.787, CIPIC; U = 761, p = 0.090,
ARI; U = 12, p = 0.127, ARIrU).

This result suggests that the lack of a third notch in this group
of subjects is not due to tracking errors but rather reflects an
actual degradation of vertical localization performances. In or-
der to support this hypothesis, we investigated real listening
performances of the 17 subjects of [15] in order to identify
the connection between HRTF spectral features, i.e. notches

Fig. 7. Individual predicted localization performances in local polar RMS
error (PE) and quadrant error rate (QE) for subjects with 3 extracted notch tracks
(P E(3) , QE(3) ) and subjects with 2 extracted notch tracks (P E(2) , QE(2) ),
for each of the three analysed databased (CIPIC, ARI, and ARIrU). Asterisks
and bars indicate, where present, a significant difference (*: p < 0.05, **:
p < 0.01 , ***: p < 0.001 according to Mann-Whitney U test).

in our study, and uncertainty values. Within the limited num-
ber of participants, 87% (7/8) subjects with 2 tracks exhib-
ited uncertainty above the mean (U > 2), while 87% (7/8) with
3 tracks were below-equal the mean U (U ≤ 2). Accordingly,
the 3-track group might be the most perceptually stable group
due the fine ability of its subjects in localizing; on the other
hand, an analysis conducted with the 2-track group might be bi-
ased by a high uncertainty value. Practically speaking, subjects
with high uncertainty typically might face an easier HRTF selec-
tion process due to a leveling of target-template correlation. We
can not guarantee that those subjects belong to a homogeneous
population together with the 3-track group, which requires a
separate ad-hoc analysis on this aspect.

The suggested connection between number of notches and
uncertainty value could also be able to explain the missing statis-
tical significance in PE of ARI’s 3- vs. 2-track HRTFs (Fig. 7),
and the statistical significant improvement of PEMIN compared
to PEIND: since the ARI analysis assigned a fixed U = 2, per-
formances of the 2-track group (≈50% of ARI) could have
been overestimated in precision, leading to a wrong balancing
in auditory model predictions. This effect was minimized by

� a small number of 2-track subjects in the CIPIC (12);
� counterbalancing 2-track subjects with high U in the

ARIrU.
Finally, since the notch frequency mismatch function cannot

be computed for subjects with missing tracks, we safely chose
to reduce the dataset for the analysis not considering subjects
with 2 tracks only. Among the remaining subjects, we discarded
dummy heads (if present) and subjects with less then 2 tracks
(9 ARI sets which were probably corrupted by measurements
errors), leaving 31 (CIPIC), 41 (ARI) and 8 (ARIrU) subjects
and their extracted notch tracks as the dataset for tuning the
weights of the mismatch function.3

3We preferred to analyse acoustic data measured on human subjects only in
order to have an homogenous dataset with real skin response and comparable
measurement conditions.
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Fig. 8. Notch frequency mismatch calculated for 31 CIPIC subjects in the
median plane. All-against-all matrices for (a) “all-first” weight combination
(w1 = 1, w2 = w3 = 0, and (b) “equalized” weight combination (w1 = w2 =
w3 = 1/3.

In the remaining of the paper, we chose not to describe all
databases in parallel, focusing on our methodology applied to
CIPIC database and thus opting for a synthetic and schematic
section for a replicated analysis on ARI database (see Section
V-C). Finally, we do not consider ARIrU in the following anal-
ysis due to the small number of subjects in the 3-track dataset
(only 8).

V. WEIGHT TUNING

The mismatch function described in (6) is parametrized by
the three weights wi (i = 1, 2, 3). In order to use it in prac-
tice, it is necessary to estimate the best convex combination of
weights.

The mismatch function was first evaluated on the complete set
of spectral notch tracks for every pair of 31 test subjects and for
every possible convex combination of weights wi , in a uniform
grid with step Δw = 0.02. This led to a total of 1326 convex
combinations by 312 − 31 = 930 subject pairs (excluding the
same-subject combinations, that always give a mismatch equal
to zero). Fig. 8 reports as an example the mismatch for all subject
pairs in the “all-first” and the “equalized” weight combinations,
used in our preliminary study [8]. Note that the matrices are
not symmetric, following the non-commutative structure of the
mismatch function.

A. Correlation Analysis

In order to select the optimal convex combination of weights
which best reflects the information given by the auditory model,
we first analyzed which of the available performance metrics
(PE, QE), is the most suited for this goal.

To this aim, we initially computed the 2D correlation coeffi-
cient between either the PE or the QE auditory model matrix
(obtained by subsetting the matrices reported in Fig. 2 for the 31
examined subjects) and each notch frequency mismatch matrix
given by a different convex combination of weights. Formally,
if A is the auditory model matrix and B is the notch frequency

Fig. 9. Correlation between auditory model matrix and notch frequency mis-
match matrices as a function of w1 and w2 : (a) P E , (b) QE .

mismatch matrix, the correlation coefficient is defined as

rA,B =
∑

m

∑
n (Amn − Ā)(Bmn − B̄)√

(
∑

m

∑
n (Amn − Ā)2)(

∑
m

∑
n (Bmn − B̄)2)

,

(7)
where Ā and B̄ are the mean values of A and B, respectively.

Fig. 9 shows the calculated 2D correlation coefficient as a
function of w1 and w2 (w3 = 1 − w1 − w2), for each of the two
auditory model metrics. Note that the QE metric does not show a
significant correlation with the notch frequency mismatch metric
for any of the considered weight combinations (r < .17, p >
.36). However, the PE metric correlates significantly (p < .01)
with the mismatch metric when the all-first weight combination
is used (r > .5).

By virtue of this preliminary result, we chose PE as the
performance metric for subsequent analysis of the individual
correlation between the PE and mismatch function for each
subject. Correlation coefficients were calculated separately for
every template HRTF set (matrix rows), and the convex combi-
nation of weights with maximum correlation was individually
computed. We refer to this combination as best subjective com-
bination. The respective correlation coefficients mostly range
between .4 and .8 (p < .05), with five non-statistically signif-
icant cases where r < .4, of which only one case exhibited a
negative mild correlation coefficient (r = −.23).
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Fig. 10. (a) Best subjective weight combinations (◦) and their center of mass (×). The all-first weight combination results as best for four different subjects.
(b) Mean and standard deviation of predicted P Es with KEMAR HRTFs (KEMAR), mean of all predicted P Es (mean), predicted P Es with the non-individual
HRTF set selected according to notch frequency mismatch of the first track (selected), and best HRTF set according to the auditory model (best). Asterisks and
bars indicate, where present, a significant difference (*: p < 0.05, **: p < 0.01 , ***: p < 0.001 according to paired t-test). (c) Notch frequency mismatch with
all-first combination against P E , for all subject pairs.

Fig. 10(a) shows all the best subjective combinations along
with their center of mass, calculated after individually weight-
ing every best subjective combination by its corresponding cor-
relation coefficient r. The center of mass corresponds to the
following convex combination:

w1 = 0.66, w2 = 0.24, w3 = 0.1, (8)

termed “centroid” weight combination hereafter.
Then, for each subject we compared predictions in elevation

localization performances (PE) between HRTF sets selected
according to the best subjective weight combination, and HRTF
sets selected according to the centroid combination of (8). Gaus-
sianity was verified through a Shapiro-Wilk test. Accordingly,
a paired t-test was performed, revealing no statistically signifi-
cant differences on PE (t(30) = 0.82, p = 0.416). This finding
allows to consider the centroid combination as the globally op-
timal combination, confirming the salience of the first notch
(w1 = 0.66) for vertical localization accuracy and the relatively
small relevance of the third notch (w3 = 0.1).

It has to be highlighted that the above results are robust with
respect to the uncertainty value fixed for the auditory model
simulations (U = 2). The very same analysis was performed
with U = .5, yielding a globally optimal combination equal to
w1 = .68, w2 = .22, w3 = .1 almost identical to the case U = 2
reported in (8).

B. Comparisons Between Selection Methods

The centroid weight combination derived in the previous sec-
tion can be directly used to select the HRTF set (other than the
individual one) that minimizes the notch frequency mismatch
function based on the extracted notch frequencies, which can
in turn be estimated from individual anthropometry. However,
this requires extraction of three notch tracks, whereas the all-
first weight combination only requires the extraction of the first
notch and is therefore very appealing for practical applications.

We compared the predicted vertical localization performances
(PE) between the HRTF set (other than the individual one)
selected with the centroid combination and the one selected
with the all-first combination. Gaussianity was verified through
a Shapiro-Wilk test for all data sets. Accordingly, a paired t-

test was performed, revealing no statistically significant differ-
ences on PE (t(30) = 0.65, p = 0.522). On the other hand, the
comparison between the centroid combination and a combina-
tion giving weight to second notch track alone (w1 = w3 = 0,
w2 = 1) revealed a significantly higher PE (t(30) = 2.71,
p < 0.05) for the latter. This finding further reinforces the rele-
vance of the first notch track and the results from our preliminary
study using the all-first combination [8].

In light of this result, we further investigated the perfor-
mance of the all-first combination. Specifically, we compared
the predicted vertical localization performances (PE) between
the HRTF set selected with the all-first combination and

� the performance of a generic HRTF set (i.e., the KEMAR,
CIPIC subject 165);

� the mean of the PEs for all target HRTF sets;4
� the performance of the best HRTF set according to the

auditory model (i.e., that with the minimum subjective
PE).

Fig. 10(a) reports a graphical comparison between the PEs.
Gaussianity was verified through a Shapiro-Wilk test for all
data sets. Accordingly, paired t-tests were performed with the se-
lected HRTF condition as reference, revealing highly significant
statistical differences between generic (KEMAR) and selected
HRTFs (t(30) = 6.56, p � 0.001), between mean PE and se-
lected HRTFs (t(30) = 3.77, p < 0.001), and between best and
selected HRTFs (t(30) = 9.6, p � 0.001). This means that el-
evation localization performances with the selected HRTF set
are significantly more accurate than with non-individual HRTFs
(generic or randomly chosen). However, the HRTF selected by
the mismatch function performs worse on average than the best
HRTF of the auditory model.

Nonetheless, the mismatch function is able to detect poorly
performing HRTF sets. Fig. 10(c) reports a scatterplot of the
mismatch metric samples (with all-first combination) against
the PE metric samples for all pairs of 31 subjects. Points on
the y-axis refer to individual HRTFs, whose mismatch always
scores zero. The figure clearly shows that, although low mis-
match values may correspond to high PEs, high mismatch val-

4We assume the mean PE of all target HRTFs set as the result of convergence
among infinite random selections.
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Fig. 11. Main results of the weight tuning procedure outlined in Section V
applied to the ARI HRTF database: (a) correlation between P E matrix and notch
frequency mismatch matrix as a function of w1 and w2 ; (b) notch frequency
mismatch with all-first combination against P E ; (c) best subjective weight
combinations (◦) and their center of mass (×); (d) mean and standard deviation of
predicted P Es with mannequin HRTFs (Neumann), mean of all predicted P Es
(mean), predicted P Es with the non-individual HRTF set selected according
to notch frequency mismatch of the first track (selected), and best HRTF set
according to the auditory model (best).

ues never correspond to low PEs. Linear regressions on these
data were performed separately for every template HRTF set,
revealing positive slopes for all subjects except one. This means
that a low mismatch is a necessary yet not sufficient condition
for good localization performance, suggesting the possibility of
discarding target HRTF sets whose mismatch is large. Interest-
ingly, among 30 subjects with positive slopes, 83% (25) exhib-
ited significant correlation coefficients r > .036 with p < .05,
while the remaining 17% (5) did not. This result can occur due
to irregularities of HRTF measurements, erroneous track assign-
ments, or high influence of all mismatch weights (see Fig. 10(a)
where weight combinations are far from the center of mass).

C. Weight Tuning on ARI Database

The results reported previously in this Section are based on
the analysis of the CIPIC HRTF database. In order to ver-
ify whether our results are database-independent, we ran the
same analysis on the ARI HRTF database (41 3-track subjects).
The main results are reported in Fig. 11 as four plots with the
same format as Figs. 9(a), 10(c), (a), and (b) respectively, for
the sake of comparison with CIPIC results.

Despite a lower maximum correlation between PE and
mismatch matrices [r = .42, see Fig. 11(a)] and a more
scattered behavior of all-first mismatch values for low PE val-
ues [Fig. 11(b)], the similarity with CIPIC results is evident in
all plots. The centroid combination [Fig. 11(c)] corresponds to

w1 = 0.7, w2 = 0.28, w3 = 0.02, (9)

and all comparisons between selection methods applied to the
ARI database show the same significances found for the CIPIC
database. Specifically, paired t-tests revealed no statistically
significant differences on PE (t(40) = 0.85, p = 0.399) be-
tween the HRTF set selected with the centroid combination
and the one selected with the all-first combination, while the
comparison between the centroid combination and a combina-
tion giving weight to second notch track alone (w1 = w3 = 0,
w2 = 1) revealed a significantly higher PE (t(40) = 2.46,
p < 0.05) for the latter. Furthermore, when comparing HRTF
selection according to the all-first combination against generic
(Neumann KU 100 mannequin) HRTFs, mean PE for all tar-
get HRTF sets, and best HRTF set according to the auditory
model [see Fig. 11(d)], paired t-tests revealed highly signifi-
cant statistical differences between generic and selected HRTFs
(t(40) = 10.61, p � 0.001), between mean PE and selected
HRTFs (t(40) = 2.81, p < 0.01), and between best and selected
HRTFs (t(40) = 9.53, p � 0.001).

VI. GENERAL DISCUSSION

With the increasing number of HRTF datasets publicly avail-
able worldwide, subjective HRTF selection becomes practically
impossible (due to time constraints, subject uncertainty, and so
on) without objective metrics and criteria which allow subset
extraction and/or direct selection. Models of auditory percep-
tion are crucial in automating the selection process, however
they usually require highly detailed characterization of listen-
ers, making them difficult to be employed directly. As an ex-
ample, the Langendijk model and its extension [14] requires
an estimate of uncertainty by performing localization experi-
ments [15] and individual DTFs which are unknown variables
in the inferential problem of HRTF selection for vertical local-
ization. In light of such issue, one might search for criteria which
are less restrictive in terms of required individual information,
at the same time providing performance predictions which are
comparable to those of an auditory model that should take into
account relevant attributes for describing the perceptual dimen-
sions affected by HRTF set variations [63], e.g. tonal quality
discrepancy, externalization, immersion, to name but a few.

Results with this auditory model suggest that if the amount
of available data is large enough, it is possible to select HRTF
sets that ensure comparable performances to individual ones;
in our study, the available subjects are already enough to pro-
vide equal-localization performances between individual and
selected HRTFs [see Fig. 3(a)]. In particular, some target HRTFs
have fine spectral cues that could be easily exploited by all tem-
plate HRTFs. On the other hand, template HRTFs with rich
spectral differences in elevation angles have so many features
that could ease adaptation to any target HRTF.

Moreover, there is a clear correlation between number
of notch tracks and U : template HRTF sets with 3 tracks
naturally performed with high precision and low uncertainty.
Accordingly, systematic small errors for certain template HRTFs
could easily occur and could be reduced even further by setting
U < 2. A separate analysis on HRTF sets with 2 tracks will be
conducted in a future study, where the focus will be on the in-
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terdependent evaluation between weight tuning and individual
calibration of non-acoustic factors. Relevant practical aspects
will be the definition of a more detailed model for localization
uncertainty and effective listening tests able to parametrize it.
All this new information could be related to a 2- or 3-track user
profile; for identified 2-track subjects, the development of ad-
hoc training procedures with non-individual target HRTFs (e.g.
those with fine spectral cues) could also reduce individual U .

Further studies are thus mandatory in order to find guidelines
in HRTF database design, defining requirements such as number
of HRTFs related to gender differences or specific signal patterns
(e.g. connected to anthropometry and ethnicity [40]); in this
research direction, the main goal could be the definition of a
corpus in order to perform statistical analysis and data mining
for HRTF selection purposes.

Our case study of a spectral notch metric provides a simple
HRTF selection method with potentially high impact from an
applicative point of view: using the all-first weight combination
(i.e. using only 17 numbers for a single listener, the frequen-
cies of the first notch at 17 elevations in the median plane),
one can choose a HRTF set which has significantly better pre-
dicted performance than (i) a generic set (i.e. the KEMAR HRTF
set), and (ii) random selection. Moreover, the correlation anal-
ysis between mismatch and PE [see Fig. 10(c)] suggests that
the mismatch function with all-first weight combination can
quickly aid to compute a personalized short list of N candidate
HRTFs, that include with high probability the best available
HRTF set according to the auditory model. These N candidates
may be further analyzed by a subsequent selection step, em-
ploying subjective selection procedures or different data anal-
ysis. Given 31 CIPIC / 41 ARI subjects and the Langendijk
model, we estimated that a short-list of N = 10 ± 7 (CIPIC) /
N = 20 ± 11 (ARI) would be sufficient. These numbers results
from the average position (± standard deviation) of the best pos-
sible HRTF set according to the auditory model on the ordered
notch frequency mismatch ranking for each subject. Moreover,
one can consider the 95% confidence interval identifying the
upper limit of N = 22 (CIPIC) and N = 37 (ARI) for whom
the best possible HRTF set is in the subject-dependent rank-
ing with high-probability, thus allowing a statistically reliable
data-set reduction. Differences in N among databases reflect the
correlation between PE and mismatch matrices (see Fig. 9(a)
for CIPIC, and Fig. 11(a) for ARI).

The practical validity of our approach relies on robust proce-
dures able to compute individual notch frequencies from acous-
tic and non-acoustic data which should be easily obtainable and
handled by users. In this direction, a recent study proposed an
easy-to-use tool that guides users in performing an image-guided
HRTF selection without previous knowledge on binaural audio
technologies [9]; moreover, we have shown that direct acoustic
estimation of the first pinna notch could be provided through
a self-adjustable procedure which roughly acquires individual
HRTFs making use of a smartphone loudspeaker as sound source
and binaural microphones as receivers [10]. On the other hand,
further investigations are required in order to assess the potential
of learning and adaptation effects towards a localization equiv-
alent performance with non-individual HRTFs with particular

attention to multimodal virtual reality. This issue is even more
crucial for immersive augmented reality technologies that re-
quire a high level of personalization in order to guarantee the
best match between real and virtual acoustic scenes.

It is worthwhile to note that final results are dependent on the
choice of a specific auditory model which serves as a ground
truth in our research framework. From a methodological point of
view, nothing prevents to replicate our study employing differ-
ent auditory models [51], [52], [57] or other similarity metrics
based on HRTF subjective ratings which might be able to char-
acterize human spatial hearing. A strong connection between
real listening evaluation and auditory model calibration is the
key element for obtaining reliable and meaningful results. Sim-
ilarly, our research methodology can be adapted to many other
mismatch metrics such as those employing CIPIC anthropomet-
ric data [64], [65], or multiple regression analysis on both CIPIC
anthropometric data and pinna pictures [62]. In principle, it will
be possible to quantitatively compare performances of our notch
frequency mismatch with other HRTF selection approaches. Fi-
nally, we would like to stress that our approach can be extended
to HRTF sets for which listeners are no longer available (e.g. no
interest in the study anymore, age-related hearing degeneration,
death of the subject, etc.), thus building ever-growing and valid
databases for research in this field.

VII. CONCLUSION

Our main goal is to provide reliable and replicable results
without performing listening tests or impractical massive sub-
jective evaluations. In the context of this work, we avoided 1089
and 9409 full-sphere localization experiments within CIPIC and
ARI subject pools, respectively. The main contributions of this
paper can be summarized as follows:

1) using the Langendijk model and its extension [14] with
CIPIC and ARI databases, there exists a non-individual
HRTF set which allows a listener to have an equally ac-
curate vertical localization than with his/her individual
HRTF set; moreover, once detected, this non-individual
HRTF might also reduce front-back confusion rate;

2) given the extended Langendijk model and Raykar’s notch
extraction algorithm [60], we were able to exclude 12
CIPIC and 47 ARI subjects with poor spectral cues (i.e.
only 2 notch tracks) and predicted localization perfor-
mances (U > 2) in order to perform data reduction and
strengthen data pool for HRTF selection purposes;

3) we investigated in detail the mismatch function of (6),
computing the globally optimal combination of weights
as the centroid combination reported in (8) for 31 CIPIC
subjects and (9) for 41 ARI subjects; from an ap-
plicative point of view, we also demonstrated the rel-
evance of the all-first weight combination (considering
the first notch only), and showed that it does not cause
statistically significant degradation of localization perfor-
mance compared to the optimal combination, while it still
provides a statistically significant improvement with re-
spect to generic HRTFs (i.e., the KEMAR and Neumann
KU 100 dummy heads) or random selection;
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4) the all-first weight combination correlates significantly
with the predicted performance of the auditory model; this
allows to define a subject-dependent criterion for dataset
reduction.

Our results suggest that the use of auditory models can effec-
tively simulate a virtual localization experiment, thus providing
an alternative means to listening tests for assessing the per-
formance of our HRTF selection procedure. Nonetheless, this
research might benefit from future listening tests with a large
amount of subjects (e.g., through online tests) as well as large
HRTF datasets.
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