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Abstract—In the field of 3D audio, the use of Head-Related
Transfer Functions (HRTFs) compliant to the subject anatomical
traits is crucial to guarantee a proper individual experience.
This work proposes an HRTF individualization method based on
anthropometric features automatically extracted from 3D head
meshes. The method aims at a fully automated process able
to estimate individual median plane HRTF starting from a 3D
mesh of the subject’s pinna. The method relies on the HUTUBS
dataset including 3D meshes, anthropometry and HRTFs. In
the first phase, a set of pinna anthropometric parameters is
extracted from the 3D meshes converted to range images. A
set of landmarks is fitted on the pinna through the Active
Shape Model algorithm to outline its shape. Then, the set
of pinna anthropometric parameters defined in HUTUBS is
automatically extracted exploiting the landmarks. In the second
phase, the relationship between pinna anthropometry and HRTFs
is modelled. For each elevation angle considered in HUTUBS,
a Generalized Regression Neural Network is trained to predict
the corresponding HRTF, given the anthropometry. The method
is evaluated in both objective and perceptual metrics showing
performances comparable to the state of the art.

I. INTRODUCTION

A. Problem overview

The human ability to localize a sound source in the sur-

rounding space highly depends on individual anatomical traits.

In their propagation, the sound waves collide with the listener’s

body which causes several delay and filtering effects. As

result, the listener’s brain analyses the influence of these

effects on the sound to infer the source position. While every

anatomical component shapes the incoming sound waves, this

work is focused on the most individual one, the pinna. The

transformation applied by the human body to the sound waves

can be simulated through a pair of Head-Related Transfer
Function (HRTF) sets [1], one for each ear. The HRTFs model

the effects of human body on sound waves as a Linear and

Time-Invariant (LTI) system. A HRTF set for a specific subject

(a human or a dummy head) is a collection of multiple transfer

functions, one for each spatial position of interest. A HRTF

is represented by the Head-Related Impulse Response (HRIR)

in time domain. The use of HRTFs along with headphones

allows the listener to experience the sensation of a sound

source positioned in a 3D virtual auditory space.

HRTFs find applications in several domains (e.g. music,

gaming, virtual reality and teleconferencing). In user applica-

tions, the employed HRTFs are often a generic set identical for

each subject, usually recorded from a dummy head. However,

a generic HRTF is not suitable for each subject which has

distinctive anatomical traits. As consequence of listening with

generic HRTF sets, several inadequacies could arise. Some of

the most studied ones are front-back confusion [2], lack of

externalization [3], localization accuracy degradation (mainly

in elevation perception [4] and to a lesser extent in horizontal

perception [5]). Nevertheless, the direct measurement of lis-

tener’s HRTF, known as individual HRTF, is impractical for

user applications (high cost equipment, time-consuming). For

these reasons, the literature includes several works proposed

to approximate individual HRTFs without direct measurement

[6], [7]. This task is known as HRTF individualization.

B. Method overview

An HRTF individualization method based on anthropomet-

ric features automatically extracted from 3D head meshes is

proposed in this paper. The method aims at a fully automated

process able to estimate the individual median plane HRTF

starting from a 3D mesh of the subject’s head. Such a process

is articulated in two different phases: (a) pinna anthropometry

extraction and (b) HRTF individualization.

In the pinna anthropometry extraction phase, a set of

anthropometric parameters related to pinna is measured. First,

the 3D head mesh is converted to a range image and cropped

to include only the pinna. Then, a set of landmarks is fitted on

the pinna with the Active Shape Model algorithm to outline

its shape. From the range image and the outlined shape, a pre-

defined set of anthropometric parameters describing the pinna

is automatically extracted. These parameters aim to describe

the pinna shape and its influence on the incoming sound waves.

In the HRTF individualization phase, the obtained anthropo-

metric measurements are employed to train a regression model

able to estimate the median plane HRTF. The HRTF is decom-

posed in the directional and common components represented

by the Directional Transfer Function (DTF) and the Common
Transfer Function (CTF). The anthropometric parameters are

employed as input to Generalized Regression Neural Network
(GRNN) models. A model for each elevation angle in the

median plane is trained to predict the corresponding DTF,

while a single model is trained to predict the CTF. Finally,
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Fig. 1. Block diagram of the proposed HRTF individualization method.

the predicted DTFs and CTF are combined to reconstruct the

HRTF. A block diagram of the overall HRTF individualization

method is shown in Fig. 1.

C. Paper organization

The remainder of the paper is organized as follows. Sec-

tion II reviews the HRTF individualization works proposed in

literature. In Section III the HUTUBS datasets employed to

develop the proposed method is presented. The discussion of

the method itself is splitted in two sections: the parts related to

pinna anthropometry extraction and to HRTF individualization

are described in Section IV and Section V, respectively.

Section VI shows the evaluation and the results of the proposed

method. Finally, Section VII provides a brief recap of the

proposed innovations with respect to the state of the art along

with the possible future investigations.

II. PREVIOUS WORKS

Due to the inadequacy of generic HRTF sets and the

impracticability of HRTF direct measurements for end-user ap-

plications, several HRTF individualization methods have been

proposed in the literature. These methods can be organized

into three main categories [6], [7]: numerical simulations,

subjective selection, and anthropometry-based approaches.

In numerical simulation methods, such as [8]–[10], the prop-

agation of sound waves around the subject is simulated through

the numerical resolution of the wave equation, having the body

parts as boundary conditions. Despite their potential, these

methods are computationally expensive. Subjective selection

methods, such as [11]–[13], evaluate the subject perceptual

feedback (e.g., localization accuracy) using various HRTFs.

Their major drawback is the time-consuming session in which

the subject evaluates all the plausible HRTFs.

The anthropometry-based category includes the method

proposed in this paper; thus, a deeper analysis of the related

literature is presented. Since HRTF describes the way the

sound waves interact with the body, several approaches are

based on anthropometric parameters extracted from pinnae,

head and torso. Although researchers agree on the relationship

between HRTF and human anatomical shape and size [14],

[15], there are still significant uncertainties on the exact influ-

ence of anthropometry on HRTF. Defining a set of parameters

that sufficiently describes the HRTF behaviour is a currently

open issue. In the literature, several measurement definitions

have been suggested. In 2001, Algazi et al. proposed the

CIPIC specification [16], which includes 27 anthropometric

parameters and is still the most used one.

The anthropometry-based category can be divided in three

main approaches: anthropometry matching, adaptation and

regression. In anthropometry matching approach [17], [18]

a best-match HRTF is selected from a dataset. The best-

match HRTF is found by minimizing the distance between

the anthropometry of the test subject and the dataset subjects.

This method is quite simple but limited in effectiveness since it

requires a sufficiently representative database. The adaptation

approach [19], [20], instead, takes a non-individual HRTF and

adjusts its behaviour processing it according to the subject

anthropometry (e.g., frequency scaling proportional to anatom-

ical size). In the regression approach, a regression model is

trained to describe the relationship between the anthropometry

(input) and the corresponding HRTF (output).

Several methods based on multiple linear regression have

been proposed [21]–[23], however non-linear methods seem to

be more suitable. Among non-linear methods, the use of deep

learning has significantly risen in recent times [24]. Examples

of this are the use of PCA [25], HOSVD [26] and Isomap

[27] to reduce the HRTF dimensionality and the training of

an artificial neural network to estimate the low-dimensional

HRTF from anthropometry. However, no perceptual evaluation

is reported for these three cited works. In 2018, Lee and

Kim [28] proposed a method consisting in three Deep Neural

Networks (DNNs) to estimate the individual HRTF. The first

one is a feedforward DNN trained using anthropometry, while

the second one is a Convolutional Neural Network (CNN)

trained with edge-detected pinna images. Finally, a third DNN

is trained using the outputs of the previous two networks. The

authors showed an improvement in both objective and percep-

tual metrics compared to other methods. In 2019, Chen et al.

[29] employed an autoencoder to reduce the HRTF dimension-

ality plus a DNN trained to predict the autoencoder’s hidden

neurons values from anthropometry. The authors showed a

decrease of spectral distortion with respect to a pure DNN

method, nevertheless no perceptual metric is reported.

Very few works in the literature aim to automatically extract
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Fig. 2. Definition of HUTUBS pinna anthropometric measurements. Image
reproduced from HUTUBS documentation [31].

the anthropometry from subject images. The method proposed

in this paper makes use of Active Shape Models (ASM)

[30] in order to perform this task. Another method based on

pinna anthropometry extraction through ASM is [18]. The

authors focused on standard color images, instead of the

range images considered in this work. They used pictures of

11 subjects in front view, side view, and pinna alone, and

they trained 3 independent ASMs by manually annotating the

images with landmarks according to the anatomical shapes.

After the fitting phase, they selected fixed landmarks to extract

the anthropometry following the specifications proposed in the

CIPIC database. Finally, they performed HRTF individualiza-

tion through a best anthropometry match approach.

III. DATASET

The dataset employed to develop and evaluate the proposed

HRTF individualization method is the HUTUBS dataset [31],

[32], released in 2019. The dataset contains the HRIRs in

SOFA format [33] measured for 96 subjects. Each impulse

response (IR) is recorded at 44.1 kHz and it is 256 samples

long. Each subject HRIR set is composed by the IRs measured

at both ears in 440 positions around the subject with the sound

source positioned 1.47 meters away. Using interaural polar

coordinates, the elevation angles are equally spaced from −90°

to 270° by 10° intervals. Azimuth angles are spaced from −90°

to 90° by variable, elevation-dependent intervals.

In addition to the HRIRs, HUTUBS provides a set of

anthropometric measurements concerning body, head and pin-

nae for 93 subjects. In Fig. 2, the definitions of the pinna

measurements included in HUTUBS database is shown. This

set of measurements is similar to the one reported in CIPIC

dataset [16], but it has some changes and additions.

Furthermore, in HUTUBS dataset the 3D head meshes

for 58 subjects are reported. All of these three types of

data stored in HUTUBS database (HRIR sets, anthropometric

measurements and 3D head meshes) are employed in the

proposed method of HRTF individualization.

The HUTUBS dataset leads to several improvements with

respect to older datasets, such as CIPIC that is the most used

in literature. The 3D head meshes included in HUTUBS allow

to virtually extract any kind of anthropometric measurement
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Fig. 3. Example of a 3D head mesh from HUTUBS. The color represents
the y coordinate value.

even the ones requiring depth information. Furthermore, the

HUTUBS dataset collects the HRTFs of a higher number of

subjects with respect to many other HRTF datasets.

IV. PINNA ANTHROPOMETRY EXTRACTION

In the 3D head meshes, the head shape is described by a set

of points in the 3 spatial coordinates x, y and z. All the head

meshes are aligned with their centre placed in the axes origin

defined as in [32, Sec. 1.1]. In Fig. 3, an example of a 3D head

mesh is shown. From the figure, it can be noticed that the ear

canals lies on the y axis. Therefore, a fixed area around the

ear canal can be easily outlined in order to keep only the mesh

points representing the pinna and discard the remaining ones.

This operation is applied to both left and right pinnae. Then,

the two set of points representing the pinnae are independently

converted into two range images Ωl
s and Ωr

s, where s is the

subject. The selected image resolution is 140×160 pixels.

The pinna anthropometry extraction phase follows. This

phase carries out two tasks. In the first one, the pinna shape is

outlined through the Active Shape Model (ASM) algorithm. In

the second task, the obtained shape and the range image are

employed to extract the pinna anthropometric measurements.

A. Pinna shape fitting through ASM

ASMs are statistical models that build an initial shape

model accordingly to a set of training examples and iteratively

transforms the model to fit a new object. The object shape

is represented by a set of landmark points defined by their

x and y coordinates in the image. The first algorithm step

is the annotation phase, where a human operator places the

landmarks around the boundaries of the considered shape (the

pinna in this case), for each subject in the training set T .

In Fig. 4, the scheme of the pinna shape model followed
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Fig. 4. Example of the schema followed during the pinna shape manual an-
notation. The landmarks used for anthropometry measurement are highlighted
in red. The white arrows show how the parameters are measured exploiting
these landmarks.

during the annotation is shown. This is composed by P = 100
points that describe the pinna shape and its components. The

key guidelines followed in the annotation are the exhaustive

description of the pinna shape and the placing of each point in

a fixed position corresponding to a specific pinna’s part. In this

work, all the subject’s left pinnae were manually annotated on

the pinna range images to form the labelled set. The result of

the annotation task is a vector vt including the x, y coordinates

of the P annotated points for each subject t ∈ T :

vt = {x1
t , y

1
t , . . . , x

P
t , y

P
t }.

In the ASM fitting phase, these training vectors vt are

aligned to each other through scale, rotation and translation

operations and averaged to obtain the initial model v̄. Then, a

statistical distribution in a 2P -dimensional space is assumed

over the aligned vectors vt. PCA is applied to the vt’s in

order to reduce their high dimensional space. Each principal

component describes a particular way of how landmarks move

together changing the shape. The first γ principal components

are selected to approximate the vectors vt.

The fitting phase of the ASM algorithm follows. The pinna

shape vector vs for a test subject s is initialized to the initial

model v̄. Then, vs is iteratively fitted by tuning the weights

of the first γ principal components. The weights tuning is per-

formed with the goal of matching the surrounding region for

each landmark with the corresponding regions of the training

set landmarks. The matching task is achieved by employing

grey profiles. In the training phase, for each example t ∈ T
and for each of its landmarks (xp

t , y
p
t ), p ∈ {1, . . . , P}, the

grey profile gp
t is a segment centred in the landmark and

perpendicular to the shape line. A Gaussian distribution is

assumed over the training set grey profiles derivative, then

the mean ḡp and the covariance matrix Σp are estimated.

In the fitting phase the grey profiles gp
s of the new shape

vs are sampled too. At each iteration of the fitting process,

the grey profile gp
s for each candidate landmark position is

compared through Mahalanobis distance with the correspond-

ing statistical model of the training set with mean ḡp and

the covariance Σp. Then, vs is updated with the landmark

position minimizing that distance. The algorithm iterates and

keeps updating vs so that the described shape approaches the

new object shape. The algorithm stops when the changes in vs

between subsequent iterations falls below a given threshold,

or when the maximum number of iterations has been reached.

B. Anthropometric measurement

In the pinna anthropometric measurement task, 11 pinna

parameters among the ones reported in Fig. 2 are extracted

(d10 has been ignored in this work due to a lack of a rigorous

definition in the documentation):

• d1: cavum concha height

• d2: cymba concha height

• d3: cavum concha width

• d4: fossa height

• d5: pinna height

• d6: pinna width

• d7: intertragal incisure width

• d8: cavum concha depth (down)

• d9: cavum concha depth (back)

• θ1: pinna rotation angle

• θ2: pinna flare angle

An automated procedure to measure each of these parame-

ters is proposed. The general approach consists in computing

the Euclidean distance between the x and y coordinates

of specific landmarks chosen to match the corresponding

segments defined in HUTUBS specification. In Fig. 4, the

landmarks selected to perform this task are highlighted as red

points. This measurement approach is used to obtain values

for d1, d2, d3, d4 and d7.

For what concern d5, the pinna’s height, a different mea-

surement approach is adopted since defining fixed landmarks

would not be a robust method. Therefore, the parameter d5
for subject s is set to the range of landmarks vs along the

y coordinate. For parameter d6, the pinna width, a similar

procedure is performed, considering the x coordinate instead

of the y one. Further, the landmarks to be considered for the

maximum x value (the landmark closest to the face) are only

the ones belonging to the internal helix outline.

In order to measure θ1, the PCA of the vector vs is

computed to rotate the landmarks according to their variance.

The rotation angle applied by PCA corresponds to the com-

plementary angle of θ1. Thus, by applying the inverse tangent

to the PCA coefficients, the pinna rotation angle θ1, expressed

in radians, can be measured. Then, the angle is converted in

degrees to match HUTUBS units.
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Fig. 5. Pinna horizontal section showing the measurement approaches adopted
for d9 and θ2.

The θ2, d8 and d9 parameters are measured using the range

image, too. Fig. 5 shows θ2 and d9 measurement approaches.

First, the tragus position T is found as the peak closest to the

ear canal position P along the x coordinate. Then, a segment

in the horizontal plane with one extremity in T and tangent to

the helix is outlined. The θ2 parameter value is assigned to the

angle between the segment and the x axis. The d9 parameter

is set to the maximum distance between the segment joining

the tragus and the helix, and the pinna surface.

Finally, in order to automatically measure d8, a rectangular

area R is drawn on the range image. The area R is defined

by the vertices T , i.e. the tragus position, and Z . The position

Z corresponds to the position of the landmark used as bottom

extremity of d1 parameter, i.e. the intertragal notch (see Fig. 4).

Then, the d8 parameter is defined as the distance in the 3

dimensions (x, y, z) between T and the most prominent local

minimum of the concha depth found in the area R.

All the measured anthropometric parameters are expressed

in pixels, except for θ1 and θ2 which are expressed in degrees.

Thus, a conversion to some metric unit is required. Since no

conversion factors are explicitly provided in HUTUBS, we

estimated the centimeters scale ζ, i.e. the value in cm spanned

by each pixel. This is set to the value that, when multiplied

by the anthropometric measurements in pixels, minimizes the

difference with the actual values from HUTUBS.

V. HRTF INDIVIDUALIZATION

In the HRTF individualization phase, a regression model

is trained between the anthropometric parameters and the

HRTFs. Since this paper is focused on the pinna influence,

only median plane HRTFs are considered. This choice was

made according to previous evidence showing that the pinna

helps the localization task mainly in elevation [4]. HUTUBS

reports the HRTFs for Φ = 34 elevation angles in the median

plane from −90° to 260°.

Before training the model, a pre-processing step is under-

taken both for anthropometry and HRTFs.

A. Pinna anthropometry pre-processing

The pinna anthropometry pre-processing operation consists

in the z-score normalization for each parameter. This brings

the mean and the standard deviation of each anthropometric

parameter to be 0 and 1, respectively.

Let A = {d1, . . . d9, θ1, θ2} be the set of the 11 considered

anthropometric parameters, and let a ∈ A be any of those

parameters. Then, a is normalized as follows:

a ← a− μa

σa
, (1)

where μa and σa are the mean and standard deviation of a,

respectively.

B. HRTF pre-processing

Instead of training the regression model on the HRTF as is,

the HRTF is first decomposed in Directional Transfer Function
(DTF) and Common Transfer Function (CTF) [34]. Given an

HRTF set Hφ
s for a subject s at elevation index φ ∈ 1, . . . ,Φ,

Hφ
s can be represented as follows:

Hφ
s (f) = Cs(f)D

φ
s (f), (2)

where C and D are the CTF and DTF, respectively, and f
is the frequency. The CTF represents the HRTF components

that are common for all source directions. Therefore the CTF

includes the ear canal resonance, the transfer functions of the

devices used in the HRTF recording (e.g., microphone and

speakers) and all the components that remain unchanged as the

angle varies. In the DTF, the directional components remain,

i.e. the ones specific to the source direction and thus needed

for the localization perception.

The CTF and DTF are computed with the method reported

in [35], [36]. The CTF magnitude |Cs| is computed as the

average of the HRTF magnitude |Hs| for all directions:

|Cs| (f) = exp

⎛
⎝ 1

Φ

Φ∑
φ=1

log
∣∣Hφ

s (f)
∣∣
⎞
⎠ . (3)

The CTF phase ∠Cs is reconstructed via minimum-phase

approximation of the CTF amplitude spectrum. Then, the

complex DTF Dφ
s is computed dividing the complex HRTF

Hφ
s and CTF Cs for each elevation φ:

Dφ
s (f) =

Hφ
s (f)

Cs(f)
. (4)

C. Regression

Two different regression models were tested, namely a

Multiple Linear Regression (MLR) model and a Generalized
Regression Neural Network (GRNN) [37]. Due to better per-

formances of the latter, only the evaluation with GRNN is

reported here (see [38] for details). GRNN is a variation of

radial basis neural networks. These kind of neural networks

use a Radial Basis Function (RBF) as activation function, such

as the Gaussian kernel here employed. GRNNs are single-

pass neural networks, that is they are not based on training
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algorithms such as back-propagation, but their parameters are

directly determined from training data. This feature allows

GRNNs to be trained quickly and to be able to yield good

performances even with limited training data. The only hyper-

parameter of GRNN is the spread parameter σ. In this work,

σ has been set to 1.3 for all the trained models.

The regression focuses on the magnitude of DTF |D| and

CTF |C|. Since the DTF varies over Φ elevations, a different

GRNN model Rφ
D is trained for each elevation φ in order to

predict each DTF
∣∣Dφ

∣∣. The model Rφ
D takes as input the 11

anthropometric parameters in the set A and maps them into the

F = 128 frequency bins of the DTF at elevation φ. In order to

reconstruct the HRTFs from the predicted DTFs, the CTF is

needed, too. Therefore, an independent regression model RC

is trained between the anthropometry and the CTF magnitude

|C|. Once both DTF and CTF have been modelled, they can

be combined to obtain the predicted HRTF. While the HRTF

magnitude is predicted with the described method, the HRTF

phase is reconstructed via minimum-phase approximation.

This choice follows the common practice of approximating a

HRTF by means of a minimum-phase function cascaded with

a linear phase or a pure delay, with the latter approximating

the interaural time delay [1, Secs. 3.1.3, 5.2.3]. Moreover, in

this work we consider median plane HRTFs only, for which

interaural time delays are negligible.

VI. EVALUATION AND DISCUSSION

The method evaluation is performed on the 58 subjects of

HUTUBS for which all the required data are available: 3D

head meshes, anthropometric measurements, and HRTFs.

A. Pinna anthropometry extraction evaluation

All the left pinnae of the 58 subjects were manually anno-

tated with landmarks. In order to evaluate the ASM, a Leave-
One-Out Cross-Validation (LOOCV) was employed. Since the

manual landmarks are available only for the left pinnae, the

LOOCV is performed only on these images.

The performance of the pinna anthropometry extraction

approach is evaluated by means of two errors: the landmark

fitting error LE, and the anthropometry measurement error

AE. The former is the error made by the ASM in placing the

landmarks, and is defined as the Euclidean distance between

the positions of the annotated and predicted landmarks, for

each landmark p and subject s:

LEp
s = ζd(vp

s , v̂
p
s), (5)

where ζ is the centimeter scale, d is the Euclidean distance,

vp
s is the manually annotated position of landmark p for

subject s, and v̂p
s is the corresponding position estimated with

ASM. The LOOCV results in a mean landmark fitting error

LE, averaged for all subjects and for all landmarks, of 0.24 cm

with a standard deviation of 0.14 cm.

Then, the pinna anthropometry estimation error AE is

evaluated. This is defined as the difference between the actual

anthropometric parameters values reported in HUTUBS and

those estimated with the automated procedure proposed here:

AEa
s = as − âs, (6)

where as is the actual value of the anthropometric parameter

a for the subject s, while âs is the corresponding estimated

value. Moreover, we also consider the absolute error |AE|,
defined similarly to (6) but computing the absolute difference.

Table I reports the performances of the proposed measure-

ment procedure. For each parameter a, in addition to AEa

and |AEa| the table reports the anthropometric mean absolute

error |AEMa| between the actual anthropometric parameters

in the dataset and those estimated using the manually placed

landmarks. Along with each error column, the standard de-

viation and the relative percentage error are reported. The

relative percentage error is the percentage value of the error

with respect to the parameter mean.

The mean absolute errors |AE| estimated with the auto-

mated measurement procedure range from 0.09 cm for d2 to

0.5 cm for d5. However, considering the relative percentage

absolute errors, d5 is one of the parameters with the lowest

percentage error along with d6, while θ1 has the worst mea-

surement performances with an absolute percentage error of

25.9%. Relative percentage absolute errors range from 6.9%
to 25.9%, with a mean of 15.9%.

These errors can be considered acceptable if compared

with the ones available in the literature for similar tasks.

The relative percentage errors for pinna parameters reported

by Torres-Gallegos et al. [18], range from 1.1% to 23.8%
with a mean of 10.6%. Dinakaran et al. [39], employing a

different measurement approach, report a mean percentage

absolute error ranging from 4.15% to 16.17% with a mean

of 11.1%. Although the performances of the method here

proposed appear to be slightly worse than the ones reported

in [18], [39], some additional considerations are in order. The

cited studies are based on the CIPIC measurements and they

consider only a subset of the pinna parameters: from d1 to

d7 in [18] and from d1 to d6 in [39]. The proposed method

has the advantage to estimate all the pinna parameters defined

in HUTUBS (except for d10), including the angles (θ1 and

θ2) and depth (d8 and d9) parameters which are usually not

measured. Considering only the parameters from d1 to d7 the

proposed method has a mean percentage absolute error of

13.2%, that is comparable to the state-of-the-art results. Fur-

thermore, the above studies rely on self-created datasets where

the anthropometry ground truth was measured by the authors

themselves. Instead, in this work the ground truth is extracted

by a third-part. As consequence, the error of the automatic

measurement procedure includes the interpretation error of the

HUTUBS anthropometric measurements definition.

A possible indicator of this interpretation error is repre-

sented by the last column of Table I, i.e. the mean absolute

error |AEM | between the anthropometric parameters reported

in HUTUBS and the ones estimated with the manually anno-

tated pinna landmarks. The |AEM | values are comparable to

the |AE| values: for the parameters d1, d3, d4, d7, d8 and θ1,

|AEM | is only slightly lower than |AE|; on the other hand,

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on January 14,2022 at 16:25:04 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I
RESULTS OF THE LOOCV FOR THE ANTHROPOMETRIC MEASUREMENT PROCEDURE.

Parameter name Parameter a AE |AE| |AEM |
a [unit] μa ± σa μa ± σa (%) μa ± σa (%) μa ± σa (%)

d1 [cm] 1.80 ± 0.16 0.16 ± 0.16 (9.0) 0.18 ± 0.13 (10.0) 0.16 ± 0.11 (9.0)

d2 [cm] 0.99 ± 0.12 0.01 ± 0.12 (1.0) 0.09 ± 0.07 (9.4) 0.14 ± 0.09 (13.9)

d3 [cm] 1.75 ± 0.20 0.37 ± 0.18 (21.0) 0.37 ± 0.18 (21.0) 0.35 ± 0.17 (20.1)

d4 [cm] 2.07 ± 0.24 0.31 ± 0.20 (14.8) 0.32 ± 0.18 (15.4) 0.29 ± 0.25 (14.0)

d5 [cm] 6.09 ± 0.38 -0.48 ± 0.24 (-7.8) 0.50 ± 0.19 (8.2) 0.57 ± 0.22 (9.3)

d6 [cm] 2.95 ± 0.25 -0.06 ± 0.24 (-2.2) 0.20 ± 0.14 (6.9) 0.24 ± 0.17 (8.0)

d7 [cm] 0.62 ± 0.14 0.10 ± 0.14 (16.3) 0.13 ± 0.11 (21.3) 0.12 ± 0.10 (19.8)

d8 [cm] 1.15 ± 0.14 -0.16 ± 0.22 (14.0) 0.24 ± 0.12 (20.8) 0.23 ± 0.13 (20.2)

d9 [cm] 1.19 ± 0.12 -0.16 ± 0.15 (-13.4) 0.18 ± 0.12 (15.3) 0.18 ± 0.12 (15.3)

θ1 [°] 11.49 ± 5.18 -2.79 ± 2.64 (-25.3) 2.97 ± 2.42 (25.9) 2.82 ± 2.26 (24.5)

θ2 [°] 25.25 ± 7.83 -5.15 ± 4.21 (-20.4) 5.19 ± 4.15 (20.6) 5.19 ± 4.15 (20.6)

for the parameters d2, d5 and d6 the error |AEM | is even

higher than |AE|. The remaining parameters d9 and θ2 are

not based on the pinna landmarks, hence |AE| and |AEM |
are equivalent. The comparison between |AE| and |AEM |
suggests that further improvements should be done in the

manual annotation phase and in the automated measurement

procedure, in order to match the HUTUBS measurement

definitions as closely as possible.

In Fig. 6 the distributions of the relative percentages an-

thropometric errors AEa for each parameter a are shown

using a violin plot. This plot, along with the AE column

in Table I, helps to figure out how the measurement proce-

dure performs across the subjects for each parameter. Fig. 6

confirms that the best performances are achieved for the

height parameter d5 where the error is distributed close to

0% (AEd5 = −7.8%) and with short tails. This consideration

may be extended to the d1, d2 and d6 parameters, where

AEd1 = 9%, AEd2 = 1% and AEd6 = −2.2%. Then,

there are some parameters with short tails but with a mean

error significantly different from 0%, such as d3, d4 and d9
where AEd3 = 21%, AEd4 = 14.8% and AEd9 = −13.4%.

For the remaining parameters the tails are longer, especially

for θ1 where the error distribution reaches values close to

−100%. In conclusion, the AE distributions show that some

parameters are underestimated, such as d3, d4 and d7, while

other parameters are overestimated, such as d8, θ1 and θ2.

In case of a distribution with an offset and a limited tail,

the measurement may be still considered acceptable if the

offset can be shifted closer to 0% (e.g., by improving the

manual annotation phase). Instead, when the tail is long, even

with small offsets, the error is more likely to be attributed to

inherent limitations of the proposed approach.

B. HRTF individualization evaluation

In the evaluation of HRTF individualization both left and

right pinnae are considered, and each pinna is treated as a

single instance. Thus 2S = 116 examples are available. All the

regression models were evaluated via k-fold cross-validation
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Fig. 6. Violin plot of the relative percentage anthropometric error AE
distributions for each parameter. The white points represent the medians. The
horizontal lines colored with the same hue as the violin plot area but darker
represent the means. The vertical bold grey lines represent the interquartile
range.

with k = 4. For the evaluation, the anthropometry pre-

processing described in Sec. V-A was performed separately for

each training set before applying the regression model. The

HRTFs were estimated from the predicted DTFs and CTFs.

The error between the actual HRTF and the estimated one is

measured in decibels (dB) with Spectral Distortion (SD). The

SD between the HRTFs H1 and H2 is defined as follows:

SDφ(H1, H2) =

√√√√√√ 1

fh − fl

fh∑
f=fl

⎛
⎝20 log

∣∣∣Hφ
1 (f)

∣∣∣∣∣∣Hφ
2 (f)

∣∣∣
⎞
⎠

2

, (7)

where φ is the elevation angle, while fl and fh are the lower

and higher frequency bounds, respectively.

The SD is a widely used metric in the HRTF individu-

alization field and it provides a measure of how much the

magnitude spectrum of H2 differs from the one of H1 in dB.
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The proposed HRTF individualization method is evaluated

by computing the SD between the actual HRTFs available

in HUTUBS and two different HRTF estimations: the first

one is the HRTFs predicted from the actual anthropometric

parameters reported in HUTUBS; the second estimation is

based on the anthropometry extracted with the automated

procedure described in Section IV. The corresponding spectral

deviations are denoted as SDact and SDest, respectively.

The SD is averaged across subjects and elevation angles to

obtain a mean SD value. The mean value of SDact is 5.36 dB

while the mean value of SDest is 5.61 dB. Figure 7 shows

instead the values SDφ
act and SDφ

est averaged across subjects

only for each elevation angle φ, in a polar plot. The figure

shows that the performances reach their best in the top area

of the median plane, while as we move down in the median

plane the SDs increase. This behaviour is shared by SDφ
act

and SDφ
est but, it can be noticed that in the bottom area of the

median plane SDφ
est have higher values than SDφ

act. However,

a t-test, conducted on SDφ
act and SDφ

est distributions, showed

that their difference is not statistically significant (p = 0.14).

Additional insights can be gained by looking at how SD

varies in frequency. Fig. 8 shows the box plots of the distribu-

tions across the subjects of SDb
act and SDb

est for each frequency

band b. The selected frequency bands are 0–1, 1–2, 2–4,

4–7, 7–10, 10–15 and 15–22.05 kHz. A positive correlation

between the SDs and the frequency band can be noticed. This

confirms that the estimation of HRTFs in the high-frequency

region is a harder task than for lower frequencies. In Table II,

the mean values of these distributions are shown.

These results are comparable with those reported in previous

literature. In [18], using a best anthropometry match approach,

the authors reported SD values of 3.3, 4.6, 6.0 and 6.2 dB for

the frequency bands starting at 0 Hz and with upper limits of
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Fig. 8. Box plots of spectral distortion in dB for each frequency band b
compared for the HRTFs predicted from the actual HUTUBS anthropometry
in blue (SDact) and the ones predicted from estimated anthropometry in red
(SDest).

TABLE II
SPECTRAL DISTORTION IN DB FOR EACH FREQUENCY BAND COMPARED

FOR THE HRTFS PREDICTED FROM THE ACTUAL HUTUBS
ANTHROPOMETRY (SDACT ) AND THE ONES PREDICTED FROM ESTIMATED

ANTHROPOMETRY (SDEST ).

Frequency band [kHz]

0–1 1–2 2–4 4–7 7–10 10–15 15–22.05

SDact [dB] 0.44 1.19 1.92 2.85 4.74 6.21 6.29

SDest [dB] 0.52 1.33 2.11 3.14 5.23 6.47 6.47

3.4, 8, 17 and 22-0.5 kHz, respectively; this method is based

on a subset of CIPIC anthropometric parameters describing

pinna as well as head and torso. The method proposed in [27]

reports the SD values of 1.3, 1.8, 2.2, 3.5 and 5.8 dB for the

frequency bands 0.2–1, 1–2, 2–4, 4–8 and 8–15 kHz.

Finally, Fig. 9 shows an example of the HRTFs predicted

with actual and estimated anthropometry compared with the

individual HRTFs for a subject in four selected angles.

C. Auditory model evaluation

Although SD is one of the most employed metrics in HRTF

individualization studies, it remains a poor indicator of the

subject perceptual performances. Therefore, a virtual local-

ization experiment through an auditory model is performed.

The selected auditory model was developed by Baumgartner

et al. in 2013 [40]; it is a template-based paradigm where the

internal representation of the incoming sound (e.g., the indi-

vidualized HRTF) is compared with a reference template (the

individual HRTF). The auditory model works in two stages.

The first stage models the effect of human physiology (from

the body to the inner ear) while focusing on directional cues
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Fig. 9. Individual and estimated HRTFs for HUTUBS subject 5.

in order to create an internal representation of the incoming

sound. Then, the comparison stage computes the Internal-
Spectral Differences (ISDs), i.e. the differences between the

internal representations of the sound and the template, for each

template angle and for each frequency. The ISDs are mapped

to polar-response probabilities, denoted as Similarity Indices
(SIs). SIs represent the probability that the virtual subject

points to a specific target angle.

One of the metrics on the localization performance returned

by the auditory model is the local polar RMS error PEj

defined for each elevation response j as [41]:

PEj =

√∑
i∈L(φi − ϕj)2pj [φi]∑

i∈L pj [φi]
, (8)

where L = {i ∈ N : 1 ≤ i ≤ Nφ, |φi − ϕj | mod 180° <
90°} defines the local elevation responses with respect to the

local response φi and the target position ϕj . The probability

mass vector pj [φi] is the subject probability to respond with

angle φi. The PE averaged for each j represents an estimation

of the subject error in degrees in the localization task.

A virtual localization experiment on the median plane

between −40° and 220° was conducted. In the experiment, the

PE was measured for each subject using three types of HRTF:

PEind is the polar error for the individual HRTFs, while PEact

and PEest are the errors for the HRTFs individualized using

actual and estimated anthropometry, respectively. In Fig. 10,

the box plots of the PE distributions for each type of HRTF

are shown. As expected, the errors for the individual HRTFs

have the lowest mean, that is 32.95°. The distributions of

PEact and PEest have means that are 7.46° and 7.49° higher

than the one of PEind. However, the distributions of PEact

and PEest are very similar, and a t-test confirmed that their

difference is not statistically significant (p = 0.33).
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Fig. 10. Box plots of PE for each type of HRTF.

VII. CONCLUSION

A method for HRTF individualization based on pinna an-

thropometry has been proposed. Rather than starting from

available anthropometry, a widely used approach but inade-

quate for end-user applications, the method provides an auto-

mated procedure to extract a set of relevant pinna measures

from a 3D mesh. Specifically, all the pinna parameters defined

in HUTUBS (except from d10) are estimated, while only a

subset of parameters based on length is usually considered in

the literature. The estimated anthropometry is used to train

a regression model that predicts the HRTF. Although the

measurement procedure introduces some errors, the evaluation

showed that the errors of the HRTFs predicted from actual and

estimated anthropometry do not have a statistically significant

difference. The proposed method achieves performances com-

parable with the state of the art, both for pinna anthropometry

estimation and HRTF individualization.

The analysis on landmark fitting performed by the ASM

algorithm may be expanded, particularly to assess whether

the estimation is worse for some measurement landmarks than

others (see Fig. 4). Additionally, future work should include

anthropometric parameters related to head and torso for the

estimation of HRTFs even outside the median plane. Moreover,

a key future investigation will be the evaluation of the pro-

posed method through listening tests comparing localization

accuracy of human subjects using their individual HRTFs

compared with the HRTF predicted by the proposed method

and, possibly, with an HRTF recorded from a dummy head.

Results from such tests will complement objective metrics,

such as the SD and the auditory model employed here.
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