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ABSTRACT

In cognitive sciences, Bayesian inference has been effec-
tively applied to describe various aspects of perceptual
decision making. In the field of spatial hearing, while
most of the sound localization models rely on determin-
istic methods to predict the perceived directional estimates,
few attempts have been made to represent the human sound
localization mechanism as a probabilistic process. Here,
a Bayesian modeling approach for localization of static
sound sources in the acoustic free field sticks out [Reijniers
et al. (2014), Biol Cybern 108(2):169-81], offering a fully
spherical localization estimate for a given binaural stimulus.
The present work evaluated the quality of that model by
quantitatively comparing its predictions to the actual results
obtained in psychoacoustic sound localization studies with
static sources. For white noise stimuli, the model showed
a similar performance to that obtained in localization ex-
periments. We found, however, a mismatch between the
predictions and the actual psychoacoustic results for sound
sources with band-limited or rippled spectra or for mod-
ified head-related transfer functions. The reasons for the
deviations will be discussed and suggestions for potential
improvements will be outlined.

1. INTRODUCTION

Auditory models are an interesting approach to formally
describe the human hearing system from the periphery up to
the central nervous system. Such models deepen the knowl-
edge on how the hearing system processes and elaborates
the acoustic information. While the peripheral processing is
relatively well understood, much more research is required
to understand how the nervous system is elaborating and
analyzing the acoustic information. This work focuses on
the human ability to estimate the direction-of-arrival (DoA)
of a static sound source which comprises both the azimuth
and the elevation angle. In order to estimate the DoA from
the acoustic features many models in the literature rely on
a deterministic decision stage which cannot resemble the
stochasticity of the nervous system (i.e. including also sub-
cortical neural structures). Furthermore, few attempts have
been made to represent this randomness as a probabilistic
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process. A promising tool is the Bayesian inference which
can easily integrate the psychoacoustic literature’s findings
into a probability model. Hence, the aim of this work is
twofold: (i) reproduce the auditory model proposed in [1]
and then (ii) evaluate outcomes against previous psycho-
acoustic results [2—-5] to see how well the model resembles
the real data. Several simulations have been performed and
the results were compared based on the original percep-
tual metrics. Furthermore, we added the predictions of the
Baumgartner model [2] to compare the polar-angle judg-
ments. This functional model has been developed with the
aim to reproduce the listener spectral auditory processing
by accounting for his acoustic and non-acoustic specificity.
The second model has been tested to match actual subject’s
performance [6] demonstrating how auditory modelling can
help to uncover the processes behind the human hearing.
While the predictions of model in [2] are restricted to the
polar dimension, this comparison is important to understand
which model’s assumptions can contribute to mimic the real
predictions.

This work is organized as follow: Sect. 2 explains the
model formulation, Sect. 3 reports the psychoacoustic ex-
periments with their results and finally, Sect 4 discusses the
main outcomes and limitations of the adopted model.

2. THE MODEL

The implementation of the model proposed in [1] is avail-
able in the Auditory Modeling Toolbox (AMT) ! . The orig-
inal manuscript reports every detail of the mathematical
formulation but our implementation adopted slightly dif-
ferent assumptions to relate the original formulation with
physiological and psychoacoustic grounds. The model aims
to extract the azimuth and elevation angle 8 = (a, €) from
the acoustic information by following a template matching
procedure, as assumed being implemented in the human
brain [3]. Internal templates are computed for each of the
available directions. Then a distance between the templates
and the internal realization of the sound source is calcu-
lated. Finally, the decision stage enables the estimation of
the source direction.

"https://amtoolbox.sourceforge.net
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The processing pipeline is composed of four elements: (i)
the feature space; (ii) the internal noise; (iii) the internal
templates; and (iv) the decision stage.

2.1 Feature space

The feature space approximates the neural representation
of the acoustic source’s spatial cues. The feature space
(see Egs. 2) is constructed by computing: the interaural
time difference (ITD, Eq. 2a) and the combination of the
log-spectra of both the head-related impulse responses
(HRIRs), Hy, g, and the source, S, (Eqs. 2b and 2c).
The Tﬁd, values were computed based on a threshold
method [7] and then converted into the just noticeable
difference (JND). The log-spectral magnitudes were
derived by filtering the binaural source with an all-pole
implementation of the Gammatone filterbank [8], with
30 frequency channels each separated by 1 equivalent
rectangular bandwidth (ERB) [9] within [0.3, 15] kHz. The
computed magnitudes are then limited to a minimal value,
resembling the absolute hearing threshold at the respective
frequency.

T, = [T%,, T?, Tf] @

Ty = itd() (2a)

T? =H.(p) — Hr(p) (2b)

TY =S+ [Hi(p) + Hr(p)]/2 20)

2.2 Internal Realization

Eq. 3 defines the representation of the binaural stimulus
with direction 6. Uncertainties that are due to the limited
precision of our hearing system [6] are assumed to be Gaus-
sian distributed with zero mean. The quantification of each
variance was derived from the psychoacoustic literature, if
available, or set manually.

Xo[8] = To+6 with &= [6140,0_.0.] (3

2.3 Internal Templates

The model determines the internal belief through the a-
posteriori probability P(Xg [d] |&¢) by relying on Bayes’
formula. The computation of the likelihood (Eq. 4) is done
for every template or direction, ¢, given the internal real-
ization Xg[d]. The covariance matrix is a diagonal matrix
whose elements correspond to the variances of the internal
noise in (Eq. 3). The denominator of Eq. 5 can be assumed
constant while the prior probability, P(¢), is uniformly dis-
tributed, meaning that every direction is equally probable.
Further details are reported in [10] while a visual example
is reported in Fig. 1.

P(Xol3]lp) o
exp { - (Xold] - T) "5 (Xolo] - T,)
“

1920

Figure 1. Internal belief obtained for the target direction
6 = (—14°,171°). The symbol x shows the target direc-
tion and the color-coded areas the computed a-posteriori
probability.

&)

2.4 Decision Stage

The model relies on the maximum a-posteriori (MAP) esti-
mator (Eq. 6) to estimate the azimuth and elevation angles,

@ = (&, €), from the internal belief.

@ = arg max P(p|Xg[d]) (6)
73

3. THE EXPERIMENTS

The outcome of the simulation of the evaluated model, also
named Reijniers’ model, is compared against the results
of three different actual experiments. 2 Furthermore, this
step was possible thanks to the AMToolbox which contains
the implementation of both models and it made available
the 23 Head-Related Transfer Function (HRTF) datasets of
different subjects which were used for all the simulations.
From now on, we are going to refer to the Reijniers’
model with spherical angle (SA) localization model and
to the Baumgartner’s one as saggital-plane (SP) localization
model.

3.1 Non-individual spatial filtering

This simulation replicated the work from Middlebrooks [3].
Both models were tested to predict the effect of localizing
sound sources filtered by non-individual HRTF datasets.
The original experiment tested eleven listeners localizing
Gaussian noise bursts with a duration of 250 ms. The
subjects were tested with their own set of HRTFs and also
by up to 4 sets of HRTFs from other subjects (21 cases in
total). Since these combinations and the actual directions
were not stated in the original work, for our simulations,

2 The original data were digitized from the original papers by relying
on the software Engauge Digitizer [11].
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Figure 2. Performances over the polar and lateral dimensions for the direction estimation with the individual, Own, and
non-individual, Other, HRTFs. The actual data are re-plotted from [3]. Lateral estimations for the Baumgartner’s model are

not available.

we evaluated both models on all directions available and all
HRTF combinations were considered. Actual and predicted
performances were measured with the same metrics: RMS
Lateral Error, Lateral Bias, Quadrant Error (QE), Local
Polar RMS Error and Elevation Bias. While the lateral
metric covered the entire horizontal plane, the polar analysis
was restricted in the [—30°,30°] interval. The original
study clearly demonstrated that the performances degrade
when a subject is not listening with his own HRTF. Under
this condition also the models increased their uncertainties
in the estimations. The results are reported in Fig. 3.1.
The SA model showed the best performance across all the
conditions while SP reported comparable errors with the
actual results.

3.2 Band-limited sound sources

Here we evaluated the effect of time-variant and band-
limited sound sources. The original experiment [4] which
work relied on a speech corpus composed of 260 mono-
syllabic words, with a band width of [0.3, 16] kHz and an
average duration of 710 ms. The samples were filtered with
a low-pass filter, fc = 8 kHz, with different attenuation
in the stop band: 0, 20, 40, 60, 80 dB. The performances of
five trained subjects were recorded and a Gaussian broad
band noise provided the baseline condition. Furthermore,
the estimated directions were analyzed by means of the
absolute lateral and polar errors and QE. As the main out-
come, the study reported a degraded performances for the
polar and quadrant errors when moving towards the extreme
stop-band attenuation while the lateral error did not show
significant effects (see Fig. 3). While for the SA model only
the median plane was accounted, the simulations performed
with SP accounted for all available directions. The model
from Baumgartner et al. represented the actual data by de-
creasing the performances when the attenuation increased.
Instead, the simulations for SA resulted in a constant accu-
racy disregarding of the specific condition.

10.48465/fa.2020.0704
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3.3 Sound source with rippled spectrum

In this experiment we reproduced the work done by
Macpherson and Middlebrooks [5] probing the localiza-
tion performance for spectrally rippled noises. The aim was
to investigate how a non-flat source spectrum can disrupt
the subject’s performances considering that the psychoa-
coutic literature reports that human subjects rely on spectral
features to estimate the polar-angle dimension [12]. The
spectral ripples were generated in the frequency band [1, 16]
kHz with a sinusoidal spectral shape in the log-magnitude
domain. The conditions considered different ripple depths,
defined as the peak-to-peak difference, and ripple densities,
defined as the period of the sinusoidal shape along the loga-
rithmic frequency scale. The actual experiment tested six
trained subjects in a dark, anechoic chamber listening to
the stimuli via loudspeakers. The sounds were 250 ms long
and they were positioned across the whole lateral dimen-
sion and within [—60°, 60°] and [120°, 240°] for the polar
angle. For the polar error, the lateral interval was limited to
[—30°, 30°]. Furthermore, the polar error definition relied
on an selective procedure by computing two regressions,
separating between front and back. The polar error was
then retrieved only if the difference of the estimation with
the regression line was greater than 45°. The results are
reported in Fig. 4. Since the spatial grid was not reported
in the original work, we simulated five repetitions of the all
the available directions in the accounted interval. The first
outcome of the study was that by increasing the ripple depth
the listeners, performances gradually decreased. When ac-
counting for the ripple density, the performances worsened
up to 4 ripples/octave. The actual results and our simula-
tions are shown in Fig. 4. The SP model underestimated
the performance in the baseline condition, but it followed
the trends of the remaining conditions well. Instead, our
implementation of the SA model reproduced the baseline
while it reported super-human performance for the other
with no effect of ripple density variations while it improved
when the depth increased because for low depth values the
integrated hearing threshold reduces its internal information
which decreases its discrimination capabilities.
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Figure 3. Human and models, performances with band-
limited speech samples. The results are from [4] and the
absolute lateral (top) and polar (middle) angle errors and
QE (bottom) were averaged over directions and listeners.
The stimulus are broad-band (BB) noise, BB speech and
{—20, —40, —60} dB represents the stop-band attenuation
of the processed BB speech samples with a low pass filter,
fc=8kHz.

4. DISCUSSION

Comparisons between two auditory models and the actual
data from three different experiments were performed. The
localization experiments tested the effects of filtering with
non-individualized HRTF (Sect. 3.1), and sources spectrum
distortions, by means of filtering speech samples (Sect. 3.2)
and spectral ripples (Sect. 3.3). Only in one case the novel
model showed a good agreement with the literature while
super-human performances have been reported for all other
cases. The match was found for the baseline condition of
the experiment from Macpherson and Middlebrooks [5] and
it can be explained through the fact that the actual subjects
were trained showing better performance than the average
population. The deviations can be due to the mathemati-
cal formulation and uncertainties quantification within the
Reijniers’ model since the work from Baumgartner et al.
reported similar trends with the real data in most of the
conditions. Although the formulation of SA is interesting
for its simplicity, it is clear that mimicking the human hear-
ing process, as in SP, from a functional perspective can
help to simulate the actual results. The super-human per-
formances can also be related to the mathematical methods
of SA which introduce an high discrimination between the
internal realization and the templates thanks to the adoption
of probability theory. Moreover, the SA model returned
very similar performances across different conditions in
contrast to the large differences observed in human be-
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Figure 4. Polar errors of spectral ripples. The actual results
are reported from [5]. The ripple density of 1 ripple/octave
(bottom) or a depth of 40 dB (top) was kept constant. The
polar error on the different condition is computed as differ-
ence with the baseline condition (bottom-right). The plots
report the medians with the respective quartile intervals.

haviour. This mismatch can be explained by four major
issues of the model. First, the quantification of the internal
noises does not result into similar error predictions for the
baseline conditions of the experiments in Sect 3.1 and 3.2.
Second, the computation of the feature space relies on the
log-magnitude average of the HRTF amplitude over a lim-
ited set of frequency bands. While this aggregation allows
an efficient implementation, it is reducing the variability
on which the human brain has to deal with in the real case.
Third, the sound source spectrum is also averaged over time
and then added to both the target and template. Afterwards,
this information is ruled out when the Bayes formula is
computed, see Eq. 4, removing the source spectral cues
from the estimation pipeline. Finally, the adoption of the
MAP estimator made the model an ideal observer which a
human subject is not [13].

Despite the reported limitations, we believe that the SA
model’s structure successfully interpreted the Bayesian ap-
proach to resemble the human perception. Hence, relying
on the formulation of Reijniers et al. we propose here some
elements that can be addressed to improve the model. From
our point of view the feature space should describe how
the human ear is transducing the acoustic field into neu-
ral information and, consequently, how this information
is processed in a functional perspective. While the model
adopted a multidimensional feature space to wrap the bin-
aural information, the human hearing adopts a hierarchical
organization of the information [2]. For instance, the psy-
choacoustic literature reports that listeners rely mainly on
ITD to estimate the lateral direction [14] and to weight the
monaural spectral features [2]. Also the probabilistic for-
mulation of the model can be addressed. The representation
of the noise sources should be separated since the original
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model adopts the same quantities to define the noise of
the external ear, Eq. 3, and the cognition uncertainties 3.
Moreover, the decision system should be replaced with a
heuristic method since it appears from the literature that
human localization task is not following the MAP estima-
tor [13].

S. CONCLUSION

Our implementation of the auditory localization model pro-
posed by Reijniers et al. [1] was tested and evaluated under
different conditions. The performances of this model and
the one proposed by Baumgartner et al. [2] were compared
against the actual data of previous experiments [3], [4], [5].
While our implementation of the model did not resembled
the real data by showing super-human performancs, we
believe that its Bayesian formulation can help to mimic the
human behaviour by integrating uncertainty factors into the
model. Hence, we underlined some issues that might help
moving towards an accurate representation. Future work
will attempt to build upon these critical elements relying of
on more robust probabilistic modelling techniques.

6. REFERENCES

[1] J. Reijniers, D. Vanderelst, C. Jin, S. Carlile, and
H. Peremans, “An ideal-observer model of human sound
localization,” Biological Cybernetics, vol. 108, pp. 169—
181, Apr. 2014.

[2] R. Baumgartner, P. Majdak, and B. Laback, “Model-
ing sound-source localization in sagittal planes for hu-
man listeners,” The Journal of the Acoustical Society of
America, vol. 136, no. 2, pp. 791-802, 2014.

[3] J. C. Middlebrooks, “Virtual localization improved by
scaling nonindividualized external-ear transfer func-

tions in frequency,” The Journal of the Acoustical Soci-
ety of America, vol. 106, pp. 1493-1510, Aug. 1999.

[4] V. Best, S. Carlile, C. Jin, and A. van Schaik, “The
role of high frequencies in speech localization,” The
Journal of the Acoustical Society of America, vol. 118,
pp- 353-363, July 2005.

[5] E. A. Macpherson and J. C. Middlebrooks, “Vertical-
plane sound localization probed with ripple-spectrum
noise,” The Journal of the Acoustical Society of Amer-
ica, vol. 114, pp. 430445, July 2003.

[6] P. Majdak, R. Baumgartner, and B. Laback, “Acoustic
and non-acoustic factors in modeling listener-specific
performance of sagittal-plane sound localization,” Fron-
tiers in Psychology, vol. 5, Apr. 2014.

[7] B. F. G. Katz and M. Noisternig, “A comparative study
of interaural time delay estimation methods,” The Jour-
nal of the Acoustical Society of America, vol. 135,
pp- 3530-3540, June 2014.

[8] R. F. Lyon, “All-pole models of auditory filtering,” Di-
versity in auditory mechanics, pp. 205-211, 1997.

1923

[9] B.C.J. Moore and B. R. Glasberg, “Suggested formulae
for calculating auditory-filter bandwidths and excitation
patterns,” The Journal of the Acoustical Society of Amer-
ica, vol. 74, pp. 750-753, Sept. 1983.

[10] R. Barumerli, P. Majdak, J. Reijniers, R. Baumgartner,
M. Geronazzo, and F. Avanzini, “Predicting directional
sound-localization of human listeners in both horizontal
and vertical dimensions,” in Audio Engineering Society
Convention 148, Audio Engineering Society, 2020.

[11] M. Mitchell, B. Muftakhidinov, T. Winchen,
B. van Schaik, A. Wilms, kylesower, kensington,
Z. Jedrzejewski-Szmek, T. G. Badger, and badshah400,
“markummitchell/engauge-digitizer: ~ Version 12.1
Directory dialogs start in saved paths,” Nov. 2019.

[12] M. Geronazzo, S. Spagnol, and F. Avanzini, “Do We
Need Individual Head-Related Transfer Functions for
Vertical Localization? The Case Study of a Spec-
tral Notch Distance Metric,” IEEE/ACM Transactions
on Audio, Speech, and Language Processing, vol. 26,
pp. 1247-1260, July 2018.

[13] R. Ege, A. J. V. Opstal, and M. M. Van Wanrooij,
“Accuracy-Precision Trade-off in Human Sound Locali-
sation,” Scientific Reports, vol. 8, p. 16399, Dec. 2018.

[14] S. Carlile, S. Delaney, and A. Corderoy, “The localisa-
tion of spectrally restricted sounds by human listeners,”
Hearing Research, vol. 128, pp. 175-189, Feb. 1999.

e-Forum Acusticum, December 7-11, 2020



