Musical instrument modeling: the case of the piano
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Abstract these have been found to be the most appropriate for real-
time applications [5, 6]. As early as 1987, Garnett [7]
Real-time sound synthesis by physical modeling rpresented a physical waveguide piano model. There a
quires accurate design of each model block, together wsgami-physical lumped hammer model is connected to the
special care on efficiency, computability, complexity iswaveguide string, which incorporates allpass filters for
sues. This paper review the case of the piano: implemsimulating dispersion and first order FIR filters for mod-
tation of the complete model is discussed, from the souelihg losses. The bridge is treated as a common termina-
generation mechanism to radiation issues and couplitigh, where all the strings are connected. The soundboard
pedal effects. Several design techniques are discussediandodeled by a set of waveguides, all connected to the
compared with focus on accuracy and efficiency issuessame termination. The only imperfection here lies in the
hammer model, since hammer velocity cannot be mapped
to sound in a physical way. However, as we shall see in
1 Introduction the next sections, the main ideas on string and soundboard
modeling remained almost the same up to present days.

Sounds produced by acoustic musical instruments ardn 1995, Van Duyne and Smith presented a model based
ultimately caused by the physical vibrations of mecharfin commuted synthesis [8]; in this approach, a waveguide
cal resonators or air volumes. These can be described $fftng model is fed using an excitation table; moreover,
signallevel, where only the time-evolution of the acoustithe radiation properties of the soundboaraanmuted
pressure is considered and no assumptions on the geh@r- its response is included in the excitation table. Al-
ation mechanism are made; alternativelgurcemodels though extremely efficient, commuted synthesis has some
can be developed, that are based on a physical desdiiigwbacks, namely dynamic behavior in response to the
tions of the sound production processes [1, 2]. Such Rlayer’s action is difficult to tune: for instance, repeated
approach can be useful both for gaining a better insigitikes on a vibrating string are not easily modeled.
in the functioning of the instruments and for designing In order to account for more realistic behavior, a fully
sound synthesis algorithms; however, while complicatplysical description of the excitation mechanism has to
and accurate models have to be used for understandiegdeveloped. Early results in hammer modeling were
physical phenomena, efficient sound synthesis calls filstained in 1990 by Boriet al. [9]. As part of a collab-
fast algorithms. Therefore a trade-off between accuramsation between the University of Padova and General-
and simplicity of the description has always to be foundmusic, Borinet al. [10] presented a complete real-time

Physics-based synthesis algorithms provigenantic model already in 1997; the hammer is treated as a lumped
sound representations, since the control parameters havwadel, where a mass is connected in parallel with a non-
straightforward physical interpretation in terms of masséiiear spring that accounts for the felt compression char-
springs, dimensions and so on. Thus, modification of theteristics; the string is simulated with a waveguide struc-
parameters leads in general to meaningful results, and tiane, and coupling between strings and with the sound-
help the user in interacting with the virtual instrument. Iroard are treated by connecting all the strings to a sin-
deed, source models of sounding objects (not necessaglly lumped load. This research produced a number of
musical instruments) are nowadays gaining popularity fyyproducts, such as physically-based piano effects (pedal
the multimedia community, due to their potential applicand damper), as well as electro-mechanical piano models
tions in human-computer interaction and the easinesstitplemented in commercial keyboards.
synchronizing audio and visual synthesis [3]. In 2000, Bank [11] introduced a similar physical model,

In this paper we review some of the strategies and alith the same functional blocks but with a somewhat dif-
gorithms of physical modeling, with special reference ferent implementation. An alternative approach was used
piano simulation. This is a particularly interesting instrdfer the solution of the hammer differential equation. in-
ment, both for its prominence in western music and fdependent string models were used without any coupling,
the complexity of its functioning [4]. The models deand the influence of the soundboard on decay times was
scribed here are all based on digital waveguides, sirtaken into account by high-order loss filters. Beating and



two-stage decay of the piano sound was modeled by using c2
a resonator bank in parallel with the basic string model. ‘
The use of feedback delay networks was suggested for 4q|
simulating the effects of soundboard radiation.

The remaining of this paper addresses the design of
each element of a piano model (i.e. hammer, string and@ or
soundboard). Discussion is carried on with particular em- ¢
phasis to real-time applications, where the time complex-& 20}
ity of algorithms plays a key role. Perceptual issues are _
also addressed, since a precise knowledge of what is sig-
nificant to the human ear can drive the degree of accuracy -60r
of the design. Section 2 deals with general aspects of pi-

20¢

ano acoustics, and points out the most relevant features of _8801 10 10° 10*
piano tones spectra. In Sec. 3 the hammer is discussed, Freauencv (Hz) €Y
and efficient numerical techniques are presented that al- Cc6

60

low to overcome non-computability problem in the non-
linear discretized system. Section 4 is devoted to string 4o}
modeling and simulation of losses, dispersion and frac-
tional delays; dispersion is the most demanding problem
in terms of computation, and is discussed from both the@ |
filter design and the perceptual viewpoints. Finally, Sec. ¢
5 deals with the soundboard, which is to a large extent still § ~20,
an open problem; diverse techniques for its simulation are _
described and future directions in research are outlined.
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2 General considerations 10* 10° 10° 10*
Freauencv (Hz) (b)
2.1 Spectral complexity Figure 1: Spectra generated from (abové&réissimo(ff)

note and (belo ianissim note; (a)C, string and
Piano sounds are the final product of a complex syQ) ( W) pianissimo(pp) (8)C% string

thesis process, involving all the instrument body. As ar ) C's string.
sult of this complexity, each piano note exhibits its unique
sound features and nuances, especially in high quality inThese examples are far from describing the whole com-
struments. Moreover, just varying the impact force onldexity of variations occurring during a change in the note
single key allows the player to explore a rich dynamf' in the dynamic. For instance, the initial transients are
space. For these reasons, many cheap solutions whighaccounted by a steady-state spectral analysis. Nev-
were adopted in the earlier electronic pianos inevitagijtheless, they give an idea of the complex results of the
resulted in poor sound quality, due to low hardware cdound synthesis process in the piano, and how difficult
pab|||t|es (eg groups through resamp”ng of one Sind%understanding which sound feature is caused by what.
prototype note or dynamics through changes in loudnedd§counting for such dynamic variations in a wavetable
This uniqueness is highlighted even looking at stead§/eCtronic piano is not trivial: dynamic post-processing
state spectral analysis of different piano sounds [12]. Aers can be designed, that shape the spectrum accord-
an example, Fig. 1 shows steady-state spectra of t|§§ t0 key velocity, but finding a satisfactory mapping
notes,C, and Cy respectively, recorded in an anechoit®m velocity to filter response in far from being an easy
chamber from a Steinway C Grand piano. Each pﬁﬁsk. Alt_ernatlvely, a physical _model can be_developeq,
presents spectra generated from (abovigrassimo(ff) that mimics as closely as possible the acoustics of the in-
note and (below) pianissimo(pp) note. The spectra of Strument; this is the topic of the next sections.
theppnotes have been lowered of 30 dB to avoid superpo-
sition with theff plots. In the_ case of thé, note it can be 2 2 Acoustics and model structure
seen that, apart from the different loudness,fthigas an
audible spectral content up 6dkHz, whereas the compo- The general structure of the piano is the following: an
nents of thepp note become negligible ov8ikHz. In any iron frame is attached to the upper part of the wooden
case, substantial differences in the spectra start #@bn case and the strings are extended upon this in a direc-
Hz, suggesting the presence of important non-linear &bn nearly perpendicular to the keyboard. That end of
fects happening when a piano note varies in its dynamtiee string which is closer to the keyboard is connected to
The case of th&’s note is even more interesting. Thehe tuning pins on the bin block, and the other end, after
presence of the above-mentioned effects originates feuossing the bridge, is attached to the hitch-pin rail of the
new steady-state spectral components irfthe frame. The bridge is a thin wooden bar transmitting the



String Bridge law, i.e. the restoring forcg (x) is not simply propor-

\ | tional to the compression. As a first approximation, a
r%j\ power law can be assumed:
? [ 1
| AN y(z(t) = f(z(t) = kx(t)”. €y

Hammer Soundboard

(@) It has been shown (see e.g. [13]) that Eq. (1) provides
a qualitative description for real hammers wijitvalues
Excitation | String »| Radiator = Sound ranging from~ 2 to ~ 4. Due to this non-linearity, the
¥ tone spectrum varies dynamically with hammer velocity.
Control (b) However, Eq. (1') is not fuIIy'satlsfac.tory. in that real pi-
ano hammers exhibit hysteretic behavior, i.e. a one-to-one
Figure 2: General structures; (a) schematic representatf®f Petween compression and force does not adequately
of the instrument; (b) model structure. describe reality. Boutillon [14] proposed a mode_l where
non-constant values of the expongraccount for differ-
o ) ) ent paths during loading and unloading of the felt; how-
vibration of the string to the soundboard, which can Rger this non-analytical model has no strong physical ba-
found under the frame. This is displayed in Fig. 2(a).  sjs. A more general description of hysterisis was provided
According to the above-mentioned parts, the soungly Stulov [15]; the idea, coming from the general theory
production mechanism of the piano can be divided ing® mechanics of solids, is that the spring stiffnésa Eq.
three steps. The first is the EXCitation, the hammer Strll@) has to be rep|aced by a time_dependent operator. Thus

The kinetic energy taken in by the player is transformefe contact force for positive compressions takes the form
to kinetic energy of the hammer, which hits the string and

transforms it to vibrational energy. This is stored by the — y(z(t)) = f(2(t)) = k[1 — ho(8)] * [z()"],  (2)

string in its normal modes; some is dissipated due to mt(\?\;ﬁerehr(t) _ feft/T is arelaxation functiorthat con-

nal losses, the remaining gets to the soundboard thro%% S the “memory” of the material. The Stulov model

the bridge. The soundboard converts the vibrational Q- - ccc1in fitting experimental data where a ham-

ergy to acou_stical_ene_zrgy, the audible sound._The COMBIGEr strikes a massive surface, and force, acceleration
spectra depicted in Fig. 1 are the result of this process'displacement signal are recorded. However, recent re-

Since the physical modeling approach tries to simul arch by Giordano and Mills [16] has investigated differ-

the structure of the instrument and not the sound its t experimental settings, where a hammer hits a vibrating

the blocﬁ In tthe ;t)lanc_) mdqdell resdembllzg thg Earti_ﬁf af.rgﬂ’kng, and showed that the Stulov model is not able to fit
plar(;oi bl eks_ rur? ure 1s cisp a?/]e hm ig. 2( )k Ie "Me data collected from such an experiment. These results
model block Is the excna'tlon,t € hammer .Sm e ltso uggest the need for further investigations on alternative
put propagates to the string, which determines the fun immer models; one example is given by the collision

mental frequency of the tone. The quasi-periodic output o developed by Marhefka and Orin in [17].
signal is filtered through a post-processing block, cover-

ing the radiation effects of the soundboard. Figure 2(b) .
shows that the hammer-string interaction is bidirectiona;2 Modeling approaches

since the hammer force depends on the string displacep already mentioned in the Introduction, one way to

ment [4]. On the other hand, there is no feedback frog. ., nt for hammer excitation is commuted synthesis [8]:
the radiator to the string. Feedback and coupling effegfSiis approach the hammer is a linear filter and an exci-
of the bridge and the soundboard are taken into accopty,, signal is simply provided to the string.
in the string block. Thus, at this point the model differs ajtematively, the models described in the previous sec-
from the real p|ano:.the. two functlons.of the soundboargly, can be discretized and coupled to the string model,
namely the determination of decay times and the Sp&eqer to provide a full physical description. It is easily
trum shaping, are put to separate parts of the model. This., that whichever method we use in order to translate
allows to treat radiation as a linear filtering operation. o hammer equations (1) or (2) in discrete-time form, we
obtain the structure depicted in Fig. 3(a), wheris a lin-
ear block,u collects inputs to the hammer model aggl
3 The hammer stands for the outputs. This results in an implicit system
] ] ) _relating thenth sample of the force and thgh sample of
~ We first discuss physical aspects of hammer-strifgs feit compression [18]. This implicit relationship can
interaction, then concentrate on various modeling aps made explicit by assuming thgtn) ~ y(n — 1), thus
proaches and focus on accuracy and efficiency issues.jnserting a fictitious delay element in a delay-free path.
Although this trick has been extensively used in the liter-
3.1 Hammer-string interaction ature, it is a potential source of instability, as proved py
Anderson and Spong [19]. Figure 3(b) shows that the in-
Itis well known that the force-compression characterisertion of a fictitious delay has severe consequences on the
tics of a hammer felt is not described by the linear Hookesgmulation of high-pitched notes at audio sampling rates.




A more rigorous approach to the problem is provided
by the wave digital filter (WDF) theory; this can be gen-

eralized in order to provide a systematic methodology for
modeling circuits (and mechanical systems) in which a
non-linear element is present [20]. This approach was
taken by Pedersirgt al. [21], where a mechanical model

f(-)

N

of the hammer was connected to a WDF string model in-
corporating stiffness and distributed losses. Van Duyne
and Smith [22] presented a distributed hammer model,
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connected to the waveguide by a scattering junction.
A rather general strategy for solving non-computable 1eof
loops, named K method, has been recently proposed by ,,.|
Borin et al. [23]. We do not discuss details; suffice it to
say that, whichever the discretization method, the hammer '
statex(n) := [z(n), i (n)]T can be written as 1001
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x(n) = p(n) + Ky(n), ®)
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wherep(n) is a computable vector (i.e. it is a linear com-
bination of past values of, y andx) and K is the K
matrix of the method. Substituting equation (3) in the
non-linear contact force and applying the implicit func-
tion theorem we can find as a function op:

20+

15

(b)

Figure 3: (a) Block scheme for a non-linear discrete-time
y=f(p+Ky) y=nh(p). (4 hammer model. (b) Time evolution gfwith F, = 44.1
[kHz], v = 6 : 8 [m/s] (fortissimo). Dashed line: K

Thus, instantaneous dependencies across the non-lineé‘ﬂ@}hOd solution. Solid line: insertion of fictitious delay
are dropped. The functioh can be precomputed ancglement.
stored in a look-up table for efficient implementation. The
K method avoids artificial instabilities and allows to re- .
produce a reliable force signal (see dashed line in Fi@. The string
3(b)), and more natural sounds. In fact, the bumps in the
dashed line of Fig. 3(b) come from reflections from the Many different approaches have been presented in the
string ends, while spikes in the solid line are not physiciierature for string modeling. Since we are consider-
and are responsible for “buzzy” sounds. The K methdiad techniques suitable for real-time applications, only
was recently used by Avanzini and Rocchesso [24] fite digital waveguide [6] is considered here in detail.
implementing the hysteretic hammer model by Marhahis method is based on the time-domain solution of the
fka and Orin [17]; high accuracy in the simulations wa@he-dimensional wave equation: the velocity distribution
achieved at low Computationa| costs. U(JJ, t) can be seen as the sum of two traveling waves:
Bank [25] presented a simpler, but less general method (5)
for avoiding artifacts caused by the fictitious delay. The
idea is that instability can be avoided by increasing théhere in this case: denotes the spatial coordinateis
sampling rateF;. The discretized hammer model withime, c is the propagation speed, and andv~ are the
inserted delay is stable when the variables change otrgveling wave components.
a little in every temporal sampling interval, thus stability Spatial and time-domain sampling of Eq. (5) results in
can be always maintained by choosing a sufficiently largesimple delay-line representation. If the linearity and
Fy (if the corresponding continuous-time system was stime-invariance of the string is assumed, all the distributed
ble). WhenF; — oo, the discrete system will behave aksses and dispersion can be consolidated to one end of the
the original differential equation. Increasing the samplirdjgital waveguide [6]. In the case of one polarization of
rate of the whole string model by a factor of two would piano string, the system takes the form shown in Fig. 4,
double the computation time as well. Nevertheless, if onlyhere M is the length of the string in spatial sampling
the hammer model operates at a double rate, the comervals, M;,, denotes the position of the force input,
putational complexity is raised by a negligible amourénd H,. (z) refers to the reflection filter. This structure
Therefore, in the proposed solution the string operatedsatapable of generating a set of quasi-harmonic exponen-
normal, but the hammer runs at douldle For the down- tially decaying sinusoids. The phase respons#.of(z),
sampling, simple averaging, and for the upsampling, litegether with the total delay line length are responsible
ear interpolation is used. The multi-rate hammer has bdencontrolling the frequencies of the partials. The decay
found to give well behaving force signals at a low comptimes of the partials are determined by the magnitude re-
tational cost. sponse offf,. (z) and the total length of the delay line.

t [ms]

Kmeth.
—

v(z,t) =v(z —ct) + v (z+ct)



M, M The advantage of this filter is that stability constraints for
= M) F,, the waveguide loop are relatively simple, namely< 0
I and0 < g < 1. As for the design, ¥limaki et al. [27, 30]
used a simple algorithm for minimizing the magnitude er-
ror in the mean squares sense. However, the overall decay
FJ time of the synthesized tone did not always coincide with
g M) the original one. Erkuet al. [31] suggested an iterative
optimization algorithm to overcome this problem.

As a general solution for loss filter design, Bank [11]
Figure 4: Digital waveguide model of a string with onguggested to minimize the approximation error in the de-
polarization. cay time domain. This assures that the overall decay time

of the note is ensured together with the stability of the
For creating realistic sounds, accurate design of the fre(_adbaqk Ioop. Moreover, optimization .Wlth respect Fo

S . .~ .deécay times is perceptually more meaningful than min-
flection filter plays a key role. To simplify the design, it _._. : :
. . Imizing the error of the filter magnitude response. The
is usually factored into three partdl,, = —HiHaHya, oimods described hereafter are all based on this idea
where H; accounts for the losse#], for the dispersion, . . .

dH 4 for fine-tuning the fundamental frequency. Usin The approximate analyt!cal fprmulas for th(_a decay
anatyq X 9 . . req Y- mesT;, of a digital waveguide with a one-pole filter (7)
allpass filtersH, for simulating dispersion ensures tha ere given by Bank [11]:
the decay times of the partials are controlled by the loss '
filter H; only. The slight phase difference caused by the o 1
loss filter is negligible compared to the phase response B c1 + ez
of the dispersion filter. This way, the loss filter and dis- . , . . . .
persion filter can be treated as orthogonal with respect"YB'Ch is the same as for a string with the simplest fre-

design, as we do in the next two sections. Fine tuning gyency dependent losses;andc; correspond to the first

the string is needed because only an integer phase déﬁ% third order time derivatives of the wave equation:

-1 F, H,,(2)

©)

can be implemented with delay lines and this provides a a = fo(l—yg)
too rough discretization of the allowed fundamental fre- aq
quencies. Fractional delay can be incorporated in the dis- s = —fo 2(a; +1)2 ©)

persion filter design, of alternatively a separate fractional _ _ .
delay filter H ;4 can be used in series with the delay linéVhere fo is the fundamental frequency ang is the dig-
Jaffe and Smith [26, 5] suggested to use a first-order il frequency of the K partial. Equation (8) shows that
pass filter for this purpose. Alimaki et al. [27] proposed the decay rate;, = 1/7; is a second order polynomial
an implementation based on low-order Lagrange interpgd-frequencyd;, with even order terms. This simplifies
lation filters. \Alimaki [28] and Laakset al. [29] pro- the filter design, since; andcg are easily determined by

vided exhaustive overviews on this topic. polynomial regression. A weighting function has to be
used to minimize the error with respeg, and not to de-

. . cay rates. From the;, c3 coefficients the parameters of
4.1 Loss filter design the one-pole loop filter are easily computed via Eq. (8).

First, the partial envelopes of the measured note ha tgor the precise rendering of the partial erwelopes,
be calculated. This can be done by the Short Time Fouz‘ggher-ordler filters have to be used. H.owever., Comp“t'
Transform [27] or by heterodyne filtering [30]. A robust"d @nalytical formulas for the decay times with high-

way of calculating decay times is fitting a line by Iinea?rder filters is a difficult task. A two-step procedure was

regression on the logarithm of the amplitude enveIopl%%ggesteOI by Erkut [32]; in this case, a high-order poly-

[27]. The magnitude specification, for the loss filter nomial is fit to the decay rates, which contains even or-
can be computed as follows: der terms only. Then, a magnitude specification is calcu-

lated from the decay rate curve defined by the polynomial
and this magnitude response is used as a specification for
minimum-phase filter design. Another approach was pro-

i (ﬁ)osed by Bank [11], who suggested the transformation of
wherc}afk andr;, are the frequency and the decay time gf\o gpecification. As the goal is to match the decay times,
the K" partial, andF, is the sampling rate. Fitting a filter

the magnitude specificatiof), is transformed in a form

to the g coefficients is not trivial, since the error in thegtr which approximatesy, and a transformed filteH,,

decay times is a non-linear function of the filter magnijz designed for the new specification by minimizings:
tude error. If the magnitude response oversteps unity, the

27 fg __k
9k = ‘Hl (ej Fs )‘ =e Tk (6)

digital waveguide loop becomes unstable. To overcome K " 5 1

this problem, \Alimaki et al. [27, 30] suggested the usefLs = ZW (Hir (&%) = ger) ™5 Ghtr = o

of the one-pole loop filter, whose transfer function is: k=1 (10)
1+a The loss filter H;(z) is then computed by the inverse

Hip(z) = e (") transformH, = 1 — 1/H,,. Both of these techniques



for high-order loss filter design have found to be robust in
practice. Comparing them is left for future work.

Borin et al. [10] have used a different approach for =
modeling the decay time variations of the partials. In their
implementation, second order FIR filters are used as loss
filters. These are responsible for the general decay of the
note. The small variations of the decay times are modeled
by connecting all the notes to a same termination, which
is a complex filter with a high number of resonances. This
also enables the simulation of the pedal effect, since now
all the strings are coupled to each other (see Sec. 4.3). An -
advantage of this method compared to high-order loop fil- order of partal
ters is the smaller computational complexity. On the other (@)
hand, the partial envelopes of the different notes cannotbe  «
controlled independently.

Although optimizing the loss filter with respect to de- \
cay times has been found to give perceptually adequate
results, we remark that the loss filter design can be helped
via perceptual studies. The audibility of the decay-time
variations for the one-pole loss filter was studied by Tolo-
nen and drvekinen [33]. The study states that relatively
large deviations (between25% and-+40%) in the over-
all decay time of the note are not perceived by listeners. \ !
Unfortunately, the results of the paper are not directly ap- 40} a0
plicable for the design of high-order loss filters. reen

percentage dispersion (%)

100
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(b)

4.2 Dispersion simulation Figure 5: Synthesis of dispersive filters for g string

_ o ) ) ~with three sixth-order filters; (a) percentage dispersion vs.
Dispersion is due to stiffness, that cause piano stringgf&tial numbers and (b) deviation of partials.
behave differently from an ideal string obeying the wave

equation. If the dispersive correction term is small, its
first order effect is to increase the wave propagation spegereq,. (f) is the prescribed allpass response. Then it

c(f) with frequency. This phenomenon cause the strifigd the filter coefficients,; by solving the system
partials to become inharmonic: if the string parameters
are known, then the frequency of the Istretched partial n
can be computed as > ajsin(Be + 2w fi) = —sin(Br),  k=1...1
T "~ (13
fi = kfov1+ B2, (11) A Least-Squared Equation ErrdtSEB is used to solve

the overdetermined system (13). It was showed in [35]
that several tens of partials can be correctly positioned for

ny piano key, with the allpass filter order not exceeding

. Moreover, fine tuning of the string is automatically

taken into account in the design. Figure 5 plots results ob-

. Gied with three sixth-order filters. A vertical line shows
counting for the frequency dependent wave velocity) here the approximation in the LSEE method ends, while

[6]. Van Duyne and Smith [34] proposed a very efficie A -
method for simulating dispersion by cascading equal fir%ﬁ-e two bounds in Fig. 5(b) indicate the frequency JND

where the value of the inharmonicity coefficieBt de-
pends on string parameters.

The problem of simulating dispersion in a wavegui
structure is equivalent to designing a fil#g ( /) with flat
magnitude response and a non-linear phase respons

. ; d i ust Noticeable Difference). The steep dashed line is the
order allpass filters in the waveguide loop; however, the .~ "> .~ : . .
. : ' . . artial distribution in a non-dispersive string.
constraint of using equal first order sections is too severe, . . . o
Since the computational load &f, is heavy, it is im-

and does not allow accurate tuning of inharmonicity. . . L
. ortant to find criteria that allows to optimize accuracy
Rocchesso and Scalcon [35] proposed a design metho : . .
order of the filters with respect to human perception.

X . an
?Si?ﬂ;};gil S;erténghfgggnntgﬁ t‘:}is;rrgguzziiea;?;pé)gﬁ_gbchesso and Scalcon [37] studied the dependence of
. = . . . ' {pde bandwith of perceived inharmonicity on the funda-
r_espondlmg o the _pomts where the string partials S.h Ol|J’nental frequency, by performing listening tests with de-
ﬁh?iﬂfsgg?;;su?g:fﬁg ;3::,{;;’5 For each partial caying piano tones; such a bandwidth is seen to increase
almost linearly on a logarithmic pitch scaleardekinen
1 et al. [38] also found that inharmonicity is more easily
B = =5 (Gpre(fi) +2nmfy), (12) perceived at low frequencies, even when theoefficient



for bass tones is lower than for treble tones. This is prob@as able to accurately simulate the sound of two coupled
bly due to the fact that beats are used by listeners as a piao strings with one-polarization. However, the model
for inharmonicity, and even low8’s produce enough mis-was implemented in the frequency domain, which makes
tuning in higher partials of low tones. This findings cait unrealizable for real-time applications. For time do-
help in the allpass filter design procedures, though thenain implementation, high-order coupling filters should
is still a number of issues that need further investigatiorse designed, and no such filter design methods exist which
As high-order dispersion filters are needed for mode@uarantee the stability of such a coupled system.
ing low notes, they increase the computational complexityln these proceedings, Bank [43] presents a different
significantly. Bank [11] proposed a multi-rate approach model beating and two stage decay, based on a multi-rate
overcome this problem. Since the lowest tones do not ceasonator bank. In this approach, second order resonators
tain significant energy in the high frequency region angre connected to the basic string model in parallel, in-
way, it is worthwhile to run the lowest two or three ocstead of using a second waveguide. The resonator bank
taves of the piano at the half of the sampling rate of the implemented by the multi-rate approach, resulting in
model. This will reduce the required computation in twsignificantly lower computational costs, compared to the
ways: one is that the whole digital waveguide loop hasethods mentioned earlier. The parameter estimation gets
to be computed for every second time instant only. Tlsémpler, since there is no need for coupling filter design.
other is the dispersion filter gets simpler, since the totiability problems of a coupled system are also avoided.
length of the digital waveguide diminishes by a factor of Modeling the coupling between strings of different
two in terms of delay elements. The outputs of the losnes is essential when the sustain pedal effect has to be
notes are summed before upsampling, therefore only @@ulated. Garnett [7] and Boriet al. [10] suggested
interpolation filter is required. to connect the strings to the same lumped terminating
impedance. The impedance is modeled by a filter with
a high number of peaks, for that, the use of feedback de-
lay networks [44] is a good alternative. Although in real
Coup"ng between Strings occurs at two different |e\pjanos the brldge connects the String as a distributed ter-
els: first of all, two or three slightly mistuned strings ar@lination, thus coupling different strings in different ways,
sounding together when a single piano key is depres$@@ simple model of Boriet al. was able to produce real-
(except for the lowest octave) and a complicated modstic sustain pedal effect [45].
lation of the amplitudes is brought about. This results in
beating and two-stage decay, the first referring to an am-
plitude modulation overlaid on the overall tone decay, af@  The radiation problem
the latter meaning that tone decay is not exponential and
is faster in the beginning. These phenomena were studiedhe soundboard radiates and filters the velocity waves
by Weinreich already in 1977 [39]. At a second level, thidat reach the bridge, and radiation patterns are essential
presence of the bridge and the action of the soundbo&rddescribing the “presence” of a piano in a musical con-
is known to originate important coupling effects even b#ext. Modeling the soundboard as a linear post-processing
tween different tones. In fact, the bridge—soundboard sgsage is intrinsically a weak approach, since in a real piano
tem connects the strings together and acts as a distributediso accounts for coupling between strings, and affects
driving-point impedance for string terminations. the decay times of the partials. However, as already stated
The simplest way for modeling beating and two-stagie Sec. 2, our modeling strategy keeps tadiation prop-
decay is to use two digital waveguides in parallel for a simfties of the soundboard as separated fronmfsedance
gle note. When their pitches are different, beating, whernoperties. The latter are incorporated in the string model,
their decay times are different, two-stage decay will apnd have already been addressed in Sec. 4.1 and 4.3; here
pear in the sound. Karjalainest al. [40] suggested the we concentrate on radiation.
use of real coupling coefficients. Nevertheless, the en-The most efficient approach for modeling the radiation
velopes of specific partials cannot be controlled individeffect of the soundboard is the commuted piano model
ally by this model, they will have similar behavior. of Van Duyne and Smith [8]. There, the soundboard is
Another approach, taken by Smith [41], couples twapmmuted with the string and the hammer models. In
strings to the same termination and lumps all the losseotder to do this, the whole system must be assumed to
the bridge impedance. This comes from the assumptio® linear, including the hammer. The advantage of the
that all the losses come from the bridge, which is a rougtethod is that the soundboard is not implemented as a
approximation. One advantage is that only one loss filigh-order filter, but as a wavetable, whose content is fed
ter is needed, whose transfer function can be determiriedhe string. Since this approach cannot be used with
from the decay times of the partials. The drawback is thain-linear hammers, we do not consider it in detail.
decay times and mode coupling are not independent.  Giordano [46] presented a finite difference piano
Aramaki et al. [42] presented a model of coupledoundboard model. A similar model was developed by
waveguides with four filters. Two of them accounted fdazzi and Rocchesso [47]. This approach is physically
the losses and dispersion of the strings and two for timeaningful and allows simulation of many features of the
coupling. By this increased degree of freedom, the modelundboard, e.g. the effect of ribs. On the other hand,

4.3 Coupled piano strings



20 i i works for soundboard simulation. Feedback delay net-
works have been proven to be efficient in simulating room
reverberation, since they are able to produce high modal
density at a low computational cost. For an overview, see
the work of Rocchesso and Smith [44]. Bank [11] applied
feedback delay networks with shaping filters for the simu-
lation of piano soundboards. The shaping filters were set
in such a way that the system matched the overall mag-
nitude response of a real piano soundboard. A drawback
of the method is that the modal density and the quality
factors of the modes are not fully under control. Tun-
‘ ‘ ing the parameters of the feedback delay network by hand
10' 10'2: 10° 10 requires a significant amount of work and not always re-
reauency (Hz) sults in a satisfactory sound. The method has proven to be
rather applicable for high piano notes, where simulating
Figure 6: Soundboard magnitude response obtained wlig attack noise (the knock) of the tone is the most impor-
the CAP method. tant issue. However, no satisfactory results are obtained
for the treble and bass registers.

=
(&)}
T

Gain (dB)
=
C?

solving the difference equations takes too much compug- .
tions, and is not suitable for real-time applications. Conclusions

Multidimensional Digital Waveguide Networks (N-D We h . dth in st in the devel ¢
DWN), first proposed in a particular case known a € have reviewed the main stages in the developmen

Waveguide Mesh [48], can describe a wide variety Q@ physical model fgr the piano, addressing computa-
propagation phenomena, and have straightforward traﬂgpal aspects in detail. We have showed that gompl_,lf[a-
nal loads are due to both the presence of non-linearities

lation to parallel algorithms. These structures were r%qd th d of hiah-order filter: | ¢
cently adopted for modeling stringed instrument bodiggv 1€ need o |gh—or her ' E”ng edc_emen S.d for deali
[49]. However, while they are successful in simulating vi- arious approaches have been discussed for dealing

brations in elastic media, they do not naturally fit in mocY\-"th non-linear equations in the excitation block; we have

els of stiff bodies (as a piano soundboard). At the mBointed out that inaccuracies at this stage can lead to se-

ment, we are not aware of a successful description of IiYmeere mr?tablllty pro?jlelms. Invest|gat||.on ?f a!tefr na;l\{[e non-
soundboard by means of a DWN. inear hammer models is an appealing topic for future re-
Fontana [50] obtained accurate radiation spectral search. However, we emphasize that in our opinion us-
. P ifig more accurate models would probably not increase the
sponses by extracting common spectral features from PYCerall sound quality substantially:

recorgte)z d p('jaT‘O samplttes '_Ir_]hWhC':C h the coXtrlbuttlp nloll;the Several filter design techniques have been reviewed for
soundboard 1S present. € L.ommon Acoustica Olt @ accurate tuning of the resonating waveguide block.

EE AP) n;ret_hoil bnyaEIng?.tltal' [5,3& allgws_ to dcalgulatt(; Especially the dispersion filter has been shown to require
€ coelncients ot a iter with a desired order, 1nh ligh orders for accurate simulation of inharmonicity. This

matc;hss :hgse common slpectral featuresa Eh? qlgon is Why perceptual studies can be helpful in optimizing the
must be Ted using properly pre-processed data in or rsign and reducing computational loads.

to avoid any possible detection of common zeros or SN\we do believe that radiation modeling is at present the

gularities by the algorithm that would translate into huQrﬁofst urgent topic to be addressed in order to step toward
peaks or dips. Figure 6 shows the magnitude response ot d lity. N f th h ted |
such a model, consisting ofl26'"-order FIR filter com- I% sound quaily. TYone of fne approaches pressiied in

puted with the CAP method. The algorithm was fed usi Sec. 5 has so far provided satisfactory results; on the other

a collection of high-quality, anechoic piano samples, ag nd, when experimenting with large (e.g. 2000 tap) FIR
the response was limited tokHz. Although the impulse ers good resuits can be achieved. This suggests that

o ) there is still room for improvements, even when radiation
response of this filter is not comparable with that (muci:

| q tion-d dent) of | dboard modeled as a linear filtering operation. The develop-
onger, and position-dependent) o a real soundboard, i3+ of parameter estimation for feedback delay networks
performance suggests that carefully designed linear pa

. . ) guld be of significant help in deriving a satisfactory radi-
processors may be used in connection with proper revefs

: ion model at low computational costs.

beration stages and loudspeakers.

A simple and efficient radiation model was presented
by Garnett [7]. The waveguide strings were Connectgﬁdcknowledgements
to the same termination and the soundboard was simu-
lated by connecting six additional waveguides to the com-The work at C.S.C D.E.I in the University of Padova
mon termination. Each of these waveguides incorporateds developed under a Research Contract with General-
a lowpass filter with a large damping factor. This camusic S.p.A. Partial funding was provided by the EU
be seen as a predecessor of using feedback delay Redject “MOSART", Improving Human Potential.
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