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2Lab. of Acoustics and Audio Signal Processing, Helsinki University of Technology, Finland

avanzini@dei.unipd.it {paavo.alku;matti.karjalainen }@hut.fi

http://www.dei.unipd.it http://www.acoustics.hut.fi

Abstract

A lumped physical model of the glottal source is presented. Vo-
cal folds are described as single masses, but vertical phase dif-
ferences between upper and lower margins of the folds are taken
into account by appropriately describing the non-linear interac-
tion of the mechanical model with aerodynamics. This results
in a modified one-mass model, or a “one-delayed-mass model”.
Analysis on numerical simulations shows that the system be-
haves qualitatively as higher-dimensional models (such as the
two-mass model by Ishizaka and Flanagan); in particular, con-
trol over flow skewness is guaranteed, allowing for synthesis of
realistic glottal flow waveforms. As only one degree of free-
dom (one mass) is needed in the model, structure and number
of parameters are drastically reduced, thus making it suitable
for real-time synthesis applications.

1. Introduction
Glottal source modeling is recognized to be a key feature for
improving naturalness in speech synthesis, and for characteriz-
ing different voice qualities (e.g., modal, pressed and breathy
phonation [1]). Among glottal models, both parametric and
physical ones have been developed. One of the most widely
used parametric models is the Liljencrants and Fant(LF) model:
this characterizes one cycle of the derivative of the glottal flow
by using as few as four parameters. It has been proved to be
very flexible, and able to reproduce a variety of voice qualities
[2]. Among physical models, the first and most widely known
one was developed by Ishizaka and Flanagan (IF) in [3]; this
describes one vocal fold as two lumped mechanical oscillators
(two masses with springs and dampings plus a spring for cou-
pling the two oscillators).

A physical model, such as IF, can take into account subtle
features that are not reproduced by a parametric model; in par-
ticular, interaction with the vocal tract is considered, thus allow-
ing to develop a full articulatory model [4, 5]. This interaction
gives rise to several “natural” effects; among them are such phe-
nomena as occurrence of oscillatory ripples on the glottal flow
waveform, as well as a slight dependence of the pitch and the
open quotienton the load characteristics. On the other hand,
the IF model suffers from an over-parametrization: as many as
19 parameters have to be estimated in order to account for non-
linear corrections in the elastic forces, for collisions between
the two folds, and other features. This results in high compu-
tational loads and problems in tuning the parameters. Proposed
refinements to the IF model involve an even larger number of
parameters: an example is the three-mass model by Story and
Titze [6]. Such models account for a very accurate description

Table 1: Constants and parameters. The∗ indicates that the
parameter is varied in simulations

quantity symbol value unit

Air density ρ 1.14 [Kg/m3]
Air shear viscosity ν 1.85 · 10−5 [N· s/m2]

Fold length lg 1.3 · 10−2 [m]
Fold thickness 2d1 3 · 10−3 [m]

Fold mass mg 4.4 · 10−5 [Kg]
Fold spring constant kg 20 [N/m]
Fold viscous resist. rg 0.1 ·

√
mgkg [N· s/m]

Fold equilib. area∗ A0 5 · 10−6 [m2]
Voc. tract input area A1 5 · 10−4 [m2]

Mass delay∗ t0 8.5 · 10−4 [s]
Sampling rate∗ Fs 22.05 [kHz]

of the glottal system, but are hardly controllable and computa-
tionally expensive. On the other hand, simpler one-mass models
suffer from insufficient description of the system; in particular
they are not able to account for phase differences in the vocal
fold motion, thus resulting in a wrong coupling with aerody-
namics. Nonetheless many authors (see for instance [7]) prefer
to use a one-mass model despite its poor accuracy, because of
their reduced computational loads and better controllability.

In this paper we develop an improved one-mass model,
where interaction with aerodynamics is modified: the effect of
a second mass on the aerodynamics equations is taken into ac-
count by introducing a delayt0 in the mass position and de-
scribing the glottal airflow as a function of this “delayed mass”.
Results from simulations show that the model behaves quali-
tatively as IF, using only one degree of freedom (one mass)
instead of two; as a consequence the structure is drastically
simplified and computational costs are reduced. Moreover, less
than half of the IF parameters are needed; among them, the de-
lay t0 gives control on the airflow skewness, which is known
to be a perceptually relevant feature [2]. Having a small set
of meaningful control parameters, the proposed physical model
can be “competitive” with parametric ones, such as LF.

Sec. 2 describes details of the model; Sec. 3 illustrates its
main properties and results from simulations; in Sec. 4 these are
discussed and compared with other models. Table 1 lists sym-
bols and values for constants and parameters used throughout
the paper.

2. The model
The IF model is sketched in Fig. 1 (upper half). Ishizaka and
Flanagan describe pressure dropspij along the vocal folds as
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Figure 1:Scheme of the IF model (upper half) as opposed to the
one-delayed-mass model (lower half).pij are pressures at up-
per and lower margins of masses,p is pressure at the entrance
of vocal tract.

follows [3]:
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where pressures and areas are as depicted in Fig. 1;ps in the
lung (subglottal) pressure andug is the glottal airflow. There-
fore positions of both massesm1,2 are needed in order to com-
pute pressure drops along the glottis and the resulting airflow.

2.1. Discussing the system

The “one-delayed-mass model” presented here avoids the use
of a second mass by exploiting additional information on the
system.
• The IF model has two eigenmodes: the one with two masses in
phase and the one with two massesπ-out of phase. As pointed
out by Berry, Titzeet al. [8, 9], these modes correspond roughly
to the first two excited modes found in a distributed model of
the vocal folds (see Fig. 2). Berry and Titze remark that the
two eigenfrequencies are very closely spaced; as a consequence,
1 : 1 mode locking occurs during self-oscillation.
• In a recent paper de Vrieset al. [10] make use of a similar dis-
tributed model for estimating “correct” values for the IF param-
eters: these are found by requiring the behavior of the IF model
to resemble as close as possible that of the distributed model.
Results show significant differences with the values originally
stated by Ishizaka and Flanagan; in particular the parameter val-
ues for the two masses are found in [10] to be much more sym-
metrical: the ratio betweenm1 andm2 is close to one (while it
is close to five in typical IF parameters), and the same holds for
the spring constants, dampings and geometrical parameters (d1

andd2 in Fig. 1 are found to be the same).

(b)

(a)

Figure 2:First two excited modes in a distributed model of the
vocal folds.

Using this additional information we can consistently sim-
plify the model.

2.2. Simplifying the model

From the discussion in the previous section, we derive the main
assumptions of our model: first,m1,2 are taken to be equal,
together with their thicknessesd1,2 and their spring constants
and dampings. Moreover, the two masses are taken to move
with constant phase difference, because of mode locking; this
means that the areaAg2(t) under the second mass follows the
first onAg1(t) with a constant phase difference:

Ag2(t) = Ag1(t − t0), (2)

t0 being a given delay. Substituting expression (2) in Eq. (1)
results in a set of pressure drops that are nonlinear functions
of areaAg1 and the same area delayed byt0. In this way
only one degree of freedom is needed in the model; in other
words, we can treat the vocal fold as a single massm = 2m1,
and describe phase differences between the upper and lower
margins of the folds by means of delayt0. If we assume the
vocal fold to be driven by the mean pressurepm at glottis
(pm = 1/4

∑2
i,j=1 pij), we can describe the fold motion as

mgÄg1 + rgȦg1 + kg(Ag1 − A0) = 2l2gd1 · pm (3)

The driving pressurepm and pressure at vocal tract entrancep
are derived from Eq. (1):{

pm(t) = pm (Ag(t), Ag(t − t0), ug(t))
p(t) = p (Ag(t), Ag(t − t0), ug(t)) .

(4)

One last equation relates the glottal flow to pressurep:

ug(t) = zload(t) ∗ p(t), (5)

where the load impedancezload can be, for instance, the input
impedance of the vocal tract. Eqs. (3),(4),(5) form our one-
delayed-mass model; this is outlined in Fig. 1 (lower half).
From Eq. (3) it can be seen to be a one-mass model, but the
dependence onAg1(t − t0) in Eq. (4) results in a modified
interaction with the aerodynamics. As shown in the following
section, this allows to preserve the main features of a two-mass
model using a single degree of freedom.
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Figure 3: Attack transients in the one-delayed-mass model.
(a) t0 = 1 · 10−4 [s],system atFs = 22.05 kHz is unstable.
(b) t0 = 2 · 10−4 [s], system atFs = 22.05 kHz is stable.

3. Results
A numerical implementation of the model described in Sec. 2.2
was developed by discretizing Eq. (3) with the bilinear trans-
form; computational problems concerned with the non-linear
block given in Eq. (4) were solved using the K method [11];
such a method has been found effective in dealing with non-
linear aero-mechanical systems [12].

3.1. Stability and accuracy

The dependence onAg1(t−t0) in Eq. (4) results in a delay loop
in the system; this is a potential source of instability [13]. Due
to the non-linear nature of the system, analytical conditions for
stability are not easily found; stability properties of the system
were therefore investigated experimentally, in two steps: first,
simulations were run at a very highFs (= 200 kHz); these
were taken as a reference for the behavior of the continuous-
time system. In a second step, simulations were run at standard
Fs (= 11.025, 22.05 kHz) and compared with the reference.

In Fig. 3 results forFs = 22.05 kHz are plotted: these
show that the numerical delayn0 = t0Fs affects stability. In-
deed, with very small delays (t0 < 2 · 10−4 [s], i.e. n0 < 4 at
Fs = 22.05 kHz) the system is unstable, as seen from Fig. 3(a):
the first few cycles in the oscillation show the increasing error
with respect to the reference; in the following cycles this trend
continues until a steady state far from the reference is reached.
Above the “stability threshold”n0 = 4 the system appears to
be stable, as seen from Fig. 3(b). Similar results are found for
Fs = 11.025 kHz. However, we remark that realistic values for
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Figure 4:Dependence of flow skewness ont0. Simulations were
run atFs = 22.05 kHz.

t0 are sensibly higher than those used in Fig. 3. Thereforen0 is
typically well above the threshold, and stability is guaranteed.

3.2. Airflow features

The effect of the delayt0 in shaping the glottal waveform was
investigated by simulations. In Fig. 4 the areasAg1(t), Ag1(t−
t0) and the airflowug(t) are plotted for two differentt0’s (for
the sake of clarity the signals are normalized). From this, it can
be clearly seen that the airflow skewness is controlled by the de-
lay t0. A quantitative measure of flow skewness is given by the
speed quotient (SQ), defined as the ratio between the opening
phase (̇ug(t) 
 0) and the closing phase (u̇g(t) � 0). This is
recognized to have perceptual relevance in characterizing dif-
ferent voice qualities: for instance, analysis on real signals by
Childers and Ahn [2] show that theSQranges from about1.6
to 3 when voice quality changes from breathy voice to vocal fry
and finally to modal voice.

Simulations with the one-delayed-mass system were run in
order to investigate the dependence ofSQon t0. Each simu-
lation was0.3 [s] long, and automatic analysis was developed
for extracting significant parameters (such as pitch, open quo-
tient, speed quotient, max. amplitude) from the flow signal. Fig.
5(a) shows the results forSQ: it turns out to be an almost lin-
ear function oft0. By appropriately choosingt0, one can range
from very low up to extremely high -even unrealistic-SQval-
ues. Fig. 5(b) shows another interesting feature of the system:
the max. amplitude forug exhibits a peak aroundt0 = 8 ·10−4

[s], thus suggesting the existence of an optimum delayt0 for
maximal aerodynamic input power (defined as mean subglottal
pressure times mean glottal flow).
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Figure 5: Dependence of (a) speed quotient and (b) max. am-
plitude ont0 for the airflow (Fs = 22.05 kHz,ps = 1000 Pa).

4. Discussion
The main advantages of the proposed model are its simple struc-
ture and its low number of control parameters. On the one hand,
only one degree of freedom is needed, instead of two [3] or
more [6] usually assumed in higher-dimensional lumped mod-
els of the vocal folds. On the other hand, the dependence on
t0 in Eq. (4) results in realistic glottal flow waveforms, that
are not obtained with usual one-mass models [7]; in particular,
from results given in Sec. 3t0 is shown to give control on the
airflow skewness. The model is therefore a reasonable trade-off
between accuracy of the description and simplicity of the struc-
ture: thanks to its low computational costs it can be suitable for
real-time tasks.

Interaction of the model with vocal tract loads has not yet
been investigated in detail. Preliminary results with a uniform
tube model show the occurrence of ripples in the airflow signal,
mainly due to interaction with the first formant. Moreover, au-
tomatic analysis reveals a slight dependence of pitch on vocal
tract characteristics. Further efforts will be devoted to this issue,
in order to discuss applications of the proposed glottal model in
articulatory speech synthesis.

One drawback of the model (which is present also in IF and
in general in lumped vocal fold models) concerns closure: as
the glottal areaAg1 is assumed to be rectangular, closure of the
glottis occurs abruptly and results in a sharp corner in the air-
flow (or equivalently in a narrow negative peak in the airflow
derivative). This affects the spectral tilt of the glottal source, in-
troducing additional energy at high frequencies. In natural flow

signals, closure usually occurs in a smoother manner due to, for
example, a zipper-like movement of the glottal area during clos-
ing phase. Further studies will therefore concentrate on how to
integrate such features into the model.
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