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8.1 Introduction

“Traditional” techniques of sound synthesis (e.g. additive, subtractive, FM)
are based on, and accessed through, signal theoretic parameters and tools.
While deep research has established a close connection to conventional mu-
sical terms, such as pitch, timbre or loudness, newer psychoacoustic works [92]
point out that the nature of everyday listening is rather different. From the eco-
logical viewpoint, auditory perception delivers information about a listener’s
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138 The Sounding Object

surrounding, i.e. objects in this surrounding and their interactions, mostly with-
out awareness of and beyond attributes of musical listening. The common use
of wavetables, i.e. the playback of prerecorded sound files, can probably be
seen as the standard reaction to the severe restrictions existing in former meth-
ods of sound generation. That approach is still signal-based, and not satisfact-
ory in many contexts, such as in human-computer interaction or in interactive
virtual environments, due to the static nature of the produced sounds.

In contrast, we use the term acoustic modeling to refer to the development
of “sound objects” that incorporate a (possibly) complex responsive acous-
tic behavior, expressive in the sense of ecological hearing, rather than fixed
isolated signals. Physically-based models offer a viable way to synthesize nat-
urally behaving sounds from computational structures that can easily interact
with the environment and respond to physical input parameters. Various mod-
eling approaches can be used: Van den Doel et al. [238, 237] proposed modal
synthesis [2] as an efficient yet accurate framework for describing the acoustic
properties of objects. Contact forces are used to drive the modal synthesizer,
under the assumption that the sound-producing phenomena are linear, thus be-
ing representable as source-filter systems. For non-interactive applications, it
has been proposed to generate sound as a side effect of nonlinear finite element
simulations [188]. In this way, sounds arising from complex nonlinear phe-
nomena can be simulated, but the heavy computational load prevents the use of
the method in interactive applications. Physical models are widely developed
in the computer music community, especially using the waveguide simulation
paradigm [223], but their main application has been the faithful simulation of
existing musical instruments.

Although real sounds hereby serve as an orientation, realistic simulation is
not necessarily the perfect goal: simplifications which preserve and possibly
exaggerate certain acoustic aspects, while losing others considered less im-
portant, are often preferred. Besides being more effective in conveying certain
information, such “cartoonifications” are often cheaper to implement, just like
graphical icons are both clearer and easier to draw than photo-realistic pictures.
Can the idea of audio cartoons suggest an approach to sound design, that fills
the gap between simulation or arrangement of concrete sounds and abstract
musical expression?

The design approach outlined in this chapter can be roughly referred to as
low-level modeling. The basic physical mechanisms involved in sound gener-
ation are accounted for, including the description of resonating structures, as
well as various interaction modalities, such as impact and continuous contact
(friction). Section 8.2 describes an efficient structure for describing resonating
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objects, based on the modal analysis/synthesis approach. Section 8.3 presents
models for the non-linear interaction forces which arise during collision and
friction between two modal resonators, and describes an efficient model for
rendering texture of surfaces with variable degree of roughness. Section 8.4
discusses the implementation of these contact models as real-time modules,
and addresses the problem of control. Finally, details about the synthesis al-
gorithms are given in the appendix 8.A. This is especially meant to help the
understanding of the numerical techniques used for developing real-time al-
gorithms, and provides detailed equations and pseudo-code. Chapter 9 will
make use of these sound models for developing high-level strategies for sound
presentation.

8.2 Modal resonators

8.2.1 Continuous-time model

The simplest possible representation of a mechanical oscillating system is
a second-order linear oscillator of the form

ẍ(r)(t) + g(r)ẋ(r)(t) +
[

ω(r)
]2

x(r)(t) =
1

m(r)
fext(t) , (8.1)

where x(r) is the oscillator displacement and fext represents any external driv-
ing force, while the parameters ω(r) and g(r) are the oscillator center frequency
and damping coefficient, respectively. The parameter 1/m(r) controls the “in-
ertial” properties of the oscillator (note that m(r) has the dimension of a mass).
Such a one-dimensional model provides a basic description of the resonator in
terms of its pitch ω(r) and quality factor q(r) = ω(r)/g(r). The parameter g(r)

relates to the decay properties of the impulse response of system (8.1): spe-
cifically, the relation te = 2/g(r) holds, where te is the 1/e decay time of the
impulse response.

However, in most cases a single-mode oscillator is not enough to produce
interesting and spectrally-rich sounds. A slightly more sophisticated model is
obtained by parallel connection of N oscillators such as that of Eq. (8.1). By
choosing a different center frequency ω

(r)
l (l = 1 . . . N ) for each oscillator, it

is possible to account for a set {ω(r)
l }N

l=1 of partials of the resonator spectrum.
A set of N decoupled modal resonators excited by the same external force can
be described by means of a multi-variable generalization of Eq. (8.1). In matrix
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form, this can be written as
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(8.2)
where the matrices are given by

Ω
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ω
(r)
1 0
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(r)
N
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g
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0 g
(r)
N









, (8.3)

m(r) =









1/m
(r)
1

...
1/m

(r)
N









.

When a distributed resonating object is modeled as a chain of N masses con-
nected with springs and dampers, the resulting system is composed of N cou-
pled equations [180]. However, the theory of modal analysis [2] shows that
it is generally possible to find a transformation matrix T = {tjl}N

j,l=1 which
diagonalizes the system and turns it into a set of decoupled equations. The
transformed variables {x(r)

l }N
l=1 are generally referred to as modal displace-

ments. The displacement xj and velocity vj of the resonating object at a given
point j = 1 . . . N are then given by

xj =
N
∑

l=1

tjlx
(r)
l and ẋj =

N
∑

l=1

tjlẋ
(r)
l . (8.4)

The modal description given by Eqs. (8.2), (8.4) provides a high degree of
controllability. The damping coefficients g

(r)
l control the decay times of each

exponentially-decaying mode of the resonator. The frequencies ω
(r)
l can be

chosen to reproduce spectra corresponding to various geometries of 1D, 2D
and 3D resonators. As an example, the first N resonances of a cavity can be
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mapped into the modal frequencies of the N oscillators, and morphing between
different shapes can be obtained by designing appropriate trajectories for each
of these resonances.

In the remainder of this chapter, the quantities m
(r)
l are referred to as modal

masses, while the quantities 1/m
(r)
l are referred to as modal weights. Note that

by allowing the modal masses to vary for each oscillator, the matrix m(r) can
be generalized to give control on the amounts of energy provided to each oscil-
lator (see section 8.2.2 below). This permits simulation of position-dependent
interaction, in that different interaction points excite the resonator modes in
different ways.

8.2.2 Position-dependent excitation

Figure 8.1 shows a membrane which is displaced from its rest position in
such a way that only one single mode is set into vibration. The distance of each
point of the membrane from the “rest plane” is proportional to the weighting
factor 1/m(r) of the mode at this position. Note that the intersections of the
mode–shape with the rest plane (i.e., the nodal lines) remain fixed during the
entire cycle of the modal vibration. Therefore, the modal weights at these pos-
itions are 0 (equivalently, the modal masses tend to infinity). Correspondingly,
an external force applied at these node lines does not excite the mode at all.

In order for the resonator model (8.2) to account for such a situation, the
weights 1/m

(r)
l must be made position-dependent. In other words, the (N ×1)

matrix m(r) must be generalized by defining a (N ×N) matrix M (r), whose
element (l, j) is the modal weight of mode l at interaction point j.

There are several possible approaches to gain the position dependent weights.
In the case of a finite one dimensional system of point masses with linear in-
teraction forces, modal parameters are exactly found through standard matrix
calculations. Most systems of interest of course do not fit these assumptions. In
some cases the differential equations of distributed systems can be solved ana-
lytically, giving the modal parameters; this holds for several symmetric prob-
lems such as circular or rectangular membranes.

Alternatively, either accurate numerical simulations (e.g. waveguide mesh
methods) or “real” physical measurements can be used. Impulse responses
computed (or recorded) at various interaction points then form a basis for
the extraction of modal parameters. The acoustic “robustness” of the modal
description allows convincing approximations on the basis of microphone-
recorded signals of e.g. an object struck at different points, despite all the
involved inaccuracies: spatially distributed interaction, as well as wave dis-
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(1,1) (1,2)

Figure 8.1: A circular membrane displaced from its rest position according to
the spatial shape of mode(1,1) (left) and mode(1,2) (right). The frequencies
of vibration along these axes are 1.593 and 2.917 times that of mode(0,1) (the
“fundamental”).

tribution in air, provide signals that are quite far from impulse/frequency re-
sponses at single points.

Qualitative observations on modal shapes can be effectively used in a con-
text of cartoonification: for modes of higher frequencies the number of nodal
lines increases and their spatial distance decreases accordingly. One conse-
quence is that for higher modes even small inaccuracies in interaction or pickup
position may result in strongly different modal weights, so that an element of
randomization can here add “naturalness”. In the case of vibrating strings,
membranes, or clamped bars, the boundary is a nodal line for all the modes,
and the higher modes gradually gain importance over the lower modes as the
interaction point is shifted toward the boundary. This phenomenon can be well
noticed for a drum: if the membrane is struck close to the rim, the excited
sound becomes “sharper”, as the energy distribution in the frequency spectrum
is shifted upward (“rimshots”). For a clamped bar higher partials are dominant
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near the fixed end, whereas lower frequencies are stronger for strokes close to
the free vibrating boundary (noticeable in sound adjustments of electromech-
anical pianos).

Similar considerations apply to points of symmetry: some resonant modes,
those with modal shapes antisymmetric to central axes, are not excited when
the driving force is applied at the center of a round or square membrane. They
consequently disappear “bottom–up” when approaching the center point. For
3D resonators, such as cavities, one can generally say that the most effective
modal excitation is obtained at the boundary. For instance, in a rectangular
room seven modes over eight have a nodal plane passing through the room
center, while all the modes are excited at a corner.

8.2.3 Discrete-time equations

The continuous-time system (8.4) is discretized using the bilinear trans-
formation1, which is usually interpreted as a s-to-z mapping between the La-
place and the Z domains:

s = 2Fs
1 − z−1

1 + z−1
. (8.5)

The bilinear transformation is one appealing discretization technique for vari-
ous reasons. First, its order of accuracy can be seen [146] to be two. Second,
the transformation preserves the order of the system (e.g., the second-order
equation (8.1) is turned into a second-order difference equation by the bilinear
transformation). Finally, the transformation is stable, since the left-half s-plane
is mapped by Eq. (8.5) into the unit z-circle. Consequently, the bilinear trans-
formation provides a reasonable trade-off between accuracy and efficiency. On
the other hand, some of its properties can be seen as drawbacks in this con-
text. Noticeably, it introduces frequency warping [177], and it is an implicit
method (which has some consequences on the resulting numerical equations,
as discussed in appendix 8.A.1 below).

After applying transformation (8.5) to system (8.2), the resulting discrete-
time system appears as a parallel filter bank of second-order low-pass resonant
filters, each one accounting for one specific mode of the resonator. The output
of the filter bank can be taken to be the weighted sum (8.4) of either the modal
displacement or the modal velocities. Each of the filters can be accessed to its
parameters of center-frequency ω

(r)
l and damping coefficient g

(r)
l (or, equival-

ently, decay time tel).
1Also known in the numerical analysis literature as the one-step Adams-Moulton method [146]
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The complete numerical system takes the form
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for j = 1 . . . N , where the vectors x
(r)
l and xj are defined as x

(r)
l =

[

x
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l

ẋ
(r)
l

]

,
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]

, respectively. The matrices A
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1
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b
(r)
l =

1

m
(r)
l

· 1

4∆(r)

[

1
2Fs

]

,

where the quantity ∆
(r)
l is given by ∆

(r)
l = F 2

s + Fs/tel +
[

ω
(r)
l

]2

/4.

Note that the modal weights 1/m
(r)
l only appear in the definition of b

(r)
l ,

which controls the extent to which mode l is excited by the external force fext.
Following the discussion in section 8.2.2 above, multiple excitation points can
be modeled by attaching an additional index j = 1 . . . N to the modal masses.

8.3 Interactions

8.3.1 Impact

In this section we construct a continuous-time impact model between two
modal resonators, following the “cartoonification” approach that has informed
the research activities of the SOb project: Figure 8.2 shows that the sound
model is controlled through a small number of parameters, which are clearly
related either to the resonating objects or to the interaction force. The precise
meaning and role of the parameters depicted in Figure 8.2 will be explained in
the remainder of this section.
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Figure 8.2: Cartoon impact between two modal resonators.

Impact models have been widely studied in musical acoustics, mainly in re-
lation with hammer-string interaction in the piano. If the contact area between
the two colliding objects is assumed to be small (ideally, a point), the simplest
model [111] states a polynomial dependence of the contact force f on the ham-
mer felt compression x:

f(x(t)) =

{

k[x(t)]α x > 0
0 x ≤ 0

, (8.8)

The compression x at the contact point is computed as the difference between
hammer and string displacements. Therefore, the condition x > 0 states that
there is actual felt compression, while the complementary condition x ≤ 0 says
that the two objects are not in contact. The parameter k is the force stiffness,
and the exponent α depends on the local geometry around the contact area. As
an example, in an ideal impact between two spherical object α takes the value
1.5. Typical experimental values in a piano hammer felt range from 1.5 to 3.5,
with no definite trend from bass to treble.

More realistic models have to take into account the hysteresis effects in-
volved in the interaction. As an example, it is known that the force-compression
characteristic in a piano hammer exhibits a hysteretic behavior, such that load-
ing and unloading of the hammer felt are not alike. In particular, the dy-
namic force-compression characteristic is strongly dependent on the hammer
normal velocity before collision. In order to account for these phenomena,
Stulov [230] proposed an improved model where the contact force possesses
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history-dependent properties. The idea, which is taken from the general the-
ory of mechanics of solids, is that the spring stiffness k in Eq. (8.8) has to be
replaced by a time-dependent operator. Consequently, according to Stulov the
contact force can be modeled as

f(x(t), t) =

{

k[1 − hr(t)] ∗ [x(t)α] x > 0
0 x ≤ 0

, (8.9)

where ∗ stands for the continuous-time convolution operator, and hr(t) =
ε
τ e−t/τ is a relaxation function that controls the “memory” of the material.
In fact, by rewriting the convolution explicitly the Stulov force is seen to be:

f(x(t), t) = kx(t)α − ε

τ
e−t/τ

∫ t

0

eξ/τx(ξ)α dξ for x > 0 . (8.10)

The Stulov model has proved to be successful in fitting experimental data
where a hammer strikes a massive surface, and force, acceleration, displace-
ment signal are recorded. Borin and De Poli [23] showed that it can be im-
plemented numerically without significant losses in accuracy, stability and ef-
ficiency with respect to the simpler model (8.8).

Useful results on impact modeling are also found from studies in robot-
ics. Physical modeling of contact events is indeed a relevant issue in dynamic
simulations of robotic systems, when physical contact with the environment
is required in order for the system to execute its assigned task (for example,
handling of parts by an industrial manipulator during assembly tasks, or ma-
nipulator collisions with unknown objects when operating in an unstructured
environment). Marhefka and Orin [167] provide a detailed discussion of a col-
lision model that was originally proposed by Hunt and Crossley [122]. Under
the hypothesis that the contact surface is small, Hunt and Crossley proposed
the following form for the contact force f :

f(x(t), v(t)) =

{

kx(t)α + λx(t)α · v(t) = kx(t)α (1 + µv(t)) x > 0
0 x ≤ 0

,

(8.11)
where v(t) = ẋ(t) is the compression velocity, and k and α are defined as
above. The parameter λ is the force damping weight, and µ = λ/k is a
mathematically convenient term which is called “viscoelastic characteristic”
by Marhefka and Orin. Similarly to Eqs. (8.8) and (8.9), the value of the ex-
ponent α depends only on the local geometry around the contact surface. Note
that the force model (8.11) includes both an elastic component kxα and a dis-
sipative term λxαv. Moreover, the dissipative term depends on both x and v,
and is zero for zero compression.
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Marhefka and Orin have studied the following case: an idealized hammer,
described as a lumped mass m(h), strikes a surface. The surface mass is as-
sumed to be much greater than m(h), therefore the surface is assumed not to
move during the collision. When the two objects collide, the hammer initial
conditions are x(h)(0) = 0 (hammer position) and ẋ(h)(0) = −vin (hammer
normal velocity before collision). Since the surface is assumed not to move,
the hammer position and velocity relate to the compression and compression
velocity through the equalities x(h)(t) = −x(t), ẋ(h)(t) = −v(t). The ham-
mer trajectory is therefore described by the differential equation m(h)ẍ(h) =
f(−x(h),−ẋ(h)). Then it is shown in [167] that

d(ẋ(h))

dx(h)
=

v̇

v
=

(Λv + K) [x]
α

v
⇒

∫

v dv

(Λv + K)
=

∫

[x]
α

dx ,

(8.12)
where two auxiliary parameters Λ = −λ/m(h) and K = −k/m(h) have been
introduced for clarity. The integral in Eq. (8.12) can be computed explicitly
and gives

x(v) =

[(

α + 1

Λ2

)(

Λ(v − vin) − K log

∣

∣

∣

∣

K + Λv

K + Λvin

∣

∣

∣

∣

)]
1

α+1

. (8.13)

Eq. (8.13) provides x as a function of v, and can therefore be exploited for
plotting the phase portrait on the (x, v) plane. This is shown in Figure 8.3a.

Another remark by Marhefka and Orin is concerned with “stickiness” prop-
erties of the contact force f . From Eq. (8.11), it can be seen that f becomes
inward (or sticky) if v < vlim := −1/µ. However, this limit velocity is never
exceeded on a trajectory with initial conditions x = 0, v = vin, as shown in
the phase portrait of Figure 8.3a. The upper half of the plot depicts the tra-
jectories of a hammer which strikes the surface with various normal velocities
(trajectories are traveled in clockwise direction). Note that the output velocit-
ies after collision vout are always smaller in magnitude than the corresponding
vin. Moreover, for increasing vin the resulting vout converges to the limit
value vlim. The horizontal line v = vlim corresponds to the trajectory where
the elastic and dissipative terms cancel, and therefore the hammer travels from
right to left with constant velocity. This horizontal line separates two regions
of the phase space, and the lower region is never entered by the upper paths.
The lower trajectories are entered for an initial compression x < 0 and initial
negative compression velocity vin < vlim. If such conditions are imposed,
then one of the lower trajectories is traveled from right to left: the hammer
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Figure 8.3: Collision of a hammer with a massive surface for various vin’s; (a)
phase portrait, (b) compression-force characteristics. Values for the hammer
parameters are m(h) = 10−2 [Kg], k = 1.5 · 1011 [N/mα], µ = 0.6 [s/m],
α = 2.8, vin = 1 . . . 4 [m/s].

bounces back from the surface, while its velocity decreases in magnitude, due
to the dissipative term in the force f .

Figure 8.3b shows the compression-force characteristics during collision.
Note that the dissipative term λxαv introduces hysteresis. In this respect the
role of the dissipative term, in the Hunt and Crossley model, is very similar to
that of the relaxation function in the Stulov model.

The Hunt and Crossley impact model (8.11) can be used as a coupling
mechanism between two modal resonators (described in section 8.2). For clar-
ity, the two objects are denoted with the superscripts (h) and (r), which stand
for “hammer” and “resonator”, respectively. The two objects interact through
the impact contact force f(x, v) given in Eq. (8.11). Assuming that the interac-
tion occurs at point l = 1 . . . N (h) of the hammer and point m = 1 . . . N (r) of
the resonator, the continuous-time equations of the coupled system are given
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by:
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ẍ
(r)
j + g

(r)
j ẋ
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kx(t)α + λx(t)α · v(t) x > 0

0 x ≤ 0

(impact force)

,

(8.14)
where x

(h)
i and x

(r)
j are the modal displacements of the hammer and the res-

onator, respectively. The terms f
(h)
e , f

(r)
e represent external forces, while the

integers N (h) and N (r) are the number of modes for the hammer and the reson-
ator, respectively. As a special case, one or both the objects can be a “hammer”,
i.e. an inertial mass described with one mode, zero spring constant and zero
internal damping. As another special case, one object can be a “rigid wall”,
i.e. a modal object with an ideally infinite mass.

8.3.2 Friction

The continuous-time friction model presented in this section follows the
same “cartoon” approach adopted for the impact model: Figure 8.4 shows that
the sound model is controlled through a small number of parameters, which
are clearly related either to the resonating objects or to the interaction force.
The precise meaning and role of the parameters depicted in Figure 8.4 will be
explained in the remainder of this section. Given the non-linear nature of fric-
tion, interacting structures with few resonances are able to produce complex
and rich sonorities. This is an important issue from a computational viewpoint,
since efficient models can be developed that provide realistic simulations of
contacting objects. It is necessary to bear in mind, however, that when looking
for accurate reproduction of friction phenomena � [...] there are many dif-
ferent mechanisms. To construct a general friction model from physical first
principles is simply not possible [...] � [189].
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Figure 8.4: Cartoon friction between two modal resonators.

The friction models adopted in the literature of physical modeling of bowed
string instruments are typically referred to as kinetic or static models. Although
the two definitions may seem contradictory (kinetic vs. static) at a first glance,
they actually refer to the same modeling approach: given a fixed bow pressure,
the friction force f is assumed to be a function of the relative velocity only
(kinetic models), and the dependence is derived under stationary conditions
(static models). An example of parametrization of the steady velocity friction
force is given by the following equation:

f(v) = sgn(v)
[

fc + (fs − fc)e
−(v/vs)2

]

, (8.15)

where fc, fs are the Coulomb force and the stiction force, respectively, while
vs is usually referred to as Stribeck velocity. Figure 8.5 provides a plot of
this function. Note in particular that static models are able to account for the
so-called Stribeck effect, i.e. the dip in the force at low velocities. The stic-
tion force is always higher than the Coulomb force, and the term e−(v/vs)2

parametrizes the slope of the dip in the friction force as the relative velocity v
increases.

In recent years, a new class of friction models has been developed and
exploited for automatic control applications, where small displacements and
velocities are involved, and friction modeling and compensation is a very im-
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Figure 8.5: The static friction model (8.15), computed with parameters values
µd = 0.197, µs = 0.975, vs = 0.1, fN = 0.3.

portant issue. These are usually referred to as dynamic models, since the de-
pendence of friction on the relative sliding velocity is modeled using a dif-
ferential equation. Being more refined, these models are able to account for
more subtle phenomena, one of which is presliding behavior, i.e. the gradual
increase of the friction force for very small displacement values. Static and dy-
namic friction models exhibit the same behavior at high or stationary velocities,
but dynamic models provide more accurate simulation of transients [7], which
is particularly important for realistic sound synthesis. The difference between
static and dynamic models is qualitatively similar to what occurs in reed in-
strument modeling: it has been shown that dynamic models of the single reed
mechanism offer superior sound quality and are capable to reproduce various
oscillation regimes found in experiments with real instruments [12].

The first step toward dynamic modeling was proposed by Dahl (see [189]
for a review), and was based on the stress-strain curve of classic solid mech-
anics. This has been later improved by the so-called LuGre model2 which
provides a more detailed description of frictional effects [62]. Specifically,
friction is interpreted as the result of a multitude of micro-contacts (bristles), as
shown in Figure 8.6a. The LuGre model describes this interaction as a single-

2The name derives from LUnd and GREnoble, and refers to the two research groups that have
developed the model.
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Figure 8.6: The bristle interpretation (a) and the LuGre single-state averaged
model (b).

state system which represents the average bristle behavior (as in Figure 8.6b).
One drawback of the LuGre model is that it exhibits drift for arbitrarily

small external forces, which is not physically consistent. This effect has been
explained in [66] by observing that LuGre does not allow purely elastic regime
for small displacements: therefore, a class of elasto-plastic models has been
proposed in [66], where the drawbacks of LuGre are overcome. These mod-
els have been applied in [117] to haptic rendering applications. An alternative
extension of LuGre has been proposed in [231], which incorporates hyster-
esis with nonlocal memory in the non-linear friction force. The elasto-plastic
models are going to be used in the remainder of this section, and consequently
demand a more detailed description.

The pair of equations

ż(v, z) = v

[

1 − α(z, v)
z

zss(v)

]

,

f(z, ż, v, w) = σ0z + σ1ż + σ2v + σ3w ,
(8.16)

summarizes the elasto-plastic modeling approach. The first equation in (8.16)
defines the averaged bristle behavior as a first-order system: z and ż can be in-
terpreted as the mean bristle displacement and velocity, respectively, while v is
the relative velocity. The second equation in (8.16) states that the friction force
f results from the sum of three components: an elastic term σ0z, an internal
dissipation term σ1ż, and a viscosity term σ2v which appears in lubricated sys-
tems.3 A fourth component σ3w is added here to equation (8.16), which is

3As explained in [189], the viscosity term needs not to be linear and may be a more complicated
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not part of the original formulation by Dupont et al. [66]. The term w(t) is
a pseudo-random function of time which introduces noise in the force signal,
and is therefore related to surface roughness (see also section 8.3.3 below).

The auxiliary functions α and zss can be parametrized in various ways.
Here we follow [62] by defining zss as

zss(v) =
sgn(v)

σ0

[

fc + (fs − fc)e
−(v/vs)2

]

, (8.17)

where fc, fs, and vs are defined as above (see Eq. 8.15), and the subscript ss
in zss stands for “steady-state”. As far as α is concerned, we follow [66] by
defining it as

α(v, z) =















0 |z| < zba

αm(v, z) zba < |z| < zss(v)
1 |z| > zss(v)







if sgn(v) = sgn(z)

0 if sgn(v) 6= sgn(z)

.

(8.18)
The function αm(v, z), which describes the transition between elastic and plastic
behavior, is parametrized as

αm(v, z) =
1

2

[

1 + sin

(

π
z − 1

2 (zss(v) + zba)

zss(v) − zba

)]

. (8.19)

Therefore the parameter zba defines the point where α starts to take non-zero
values, and is termed breakaway displacement.

It is now time to try to make out some sense from these equations. Suppose
that a constant relative velocity v is applied, starting from zero conditions.

1. As far as z remains small (z < zba), then α = 0 and the first equation
in (8.16) states that ż = v. This describespresliding elastic displace-
ment: the (mean) bristle deflection rate equals the relative velocity and
the bristle is still anchored to the contact surface.

2. When z exceeds zba, the mixed elastic-plastic regime is entered, where
|ż| < |v|.

3. After the transient mixed regime, the first-order equation in (8.16) con-
verges to the equilibrium ż = 0, and steady-state is reached with purely

function of the relative velocity.
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plastic bristle displacement. Note that ż = 0 means z = zss. It is now
clear why zss (z at steady-state) has been given this name.

Therefore, the steady-state friction force is f(v) = σ0zss(v). In other words,
at steady-state the elasto-plastic model converges to the kinetic model (8.15).
What interests us is the complex transient that takes place before steady-state,
which is going to provide our friction sounds with rich and veridical dynamic
variations.

Using the elasto-plastic model as the coupling mechanism between two
modal resonators, the resulting system is
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ż(v, z) = v

[

1 − α(z, v)
z

zss(v)

]

f = σ0z + σ1ż + σ2v + σ3w (friction force)

,

(8.20)
where for clarity the two objects have been denoted with the superscripts (b)
and (r), which stand for “bow” and “resonator”, respectively. The x variables
are the modal displacements, while z is the mean bristle displacement. The
terms f

(b)
e , f

(r)
e represent external forces, while the integers N (b) and N (r)

are the number of modes for the bow and the resonator, respectively. The
relative velocity v has been defined assuming that the interaction occurs at
point l = 1 . . . N (b) of the bow and point m = 1 . . . N (r) of the resonator.
Note that this system has one degree of freedom (z) more than the impact
model given in Eq. (8.14).

8.3.3 Surface texture

Many of the contact sounds we are interested in cannot be convincingly
rendered by only using deterministic models. As an example, rolling sounds
result from random sequences of micro-impacts between two resonating ob-
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jects, which are determined by the profile of the contacting surface4. Fric-
tion modeling also requires the knowledge of some surface texture, in order
to synthesize noisy sliding sounds (see Eq. (8.16) and the σ3w term). In the
remainder of this section we therefore address the problem of surface texture
rendering by means of fractal processes. Fractal processes are widely used in
computer graphics, since they provide surfaces and textures that look natural
to a human eye [193]. Since in physics-based modeling there is direct transla-
tion of geometric surface properties into force signals and, consequently, into
sound, it seems natural to follow the same fractal approach to surface model-
ing.

Fractals are generally defined [116] as scale-invariant geometric. They are
self-similar if the rescaling is isotropic or uniform in all directions, self-affine
if the rescaling is anisotropic or dependent on the direction, as statistically self-
similar if they are the union of statistically rescaled copies of themselves.

More formally, a one-dimensional fractal process can be defined as a gener-
alization of the definition of standard Brownian motion. As reported in [202],
the stochastic process x = {x(t), t ≥ 0} is standard Brownian motion if

1. the stochastic process x has independent increments;

2. the property

x(t) − x(s) ∼ N (0, t − s) for 0 ≤ s < t

holds. That is, the increment x(t) − x(s) is normally distributed with
mean 0 and variance equal to (t − s);

3. x(0) = 0.

The definition of standard Brownian motion can be generalized to the definition
of fractal process, if the increment x(t) − x(s) is normally distributed with
mean 0 and variance proportional to (t − s)2H . The parameter H is called
Hurst exponent, and characterizes the scaling behaviour of fractal processes: if
x = {x(t), t ≥ 0} is a fractal process with Hurst exponent H , then, for any
real a > 0, it obeys the scaling relation

x(t)
P
= a−Hx(at) , (8.21)

where
P
= denotes equality in a statistical sense. This is the formal definition

for statistical self-similarity. The 1/f family of statistically self-similar pro-
cesses, also known as 1/f noise, is defined as having power spectral density

4Rolling sound design is addressed in detail in chapter 9.
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Sx(ω) proportional to 1/ωβ for some spectral parameter β related to the Hurst
exponent H by β = 2H + 1. For β = 0 the definition corresponds to white
noise, for β = 2 Brownian noise is obtained, and for β = 1 the resulting noise
is referred to as pink noise.

The parameter β also relates to the fractal dimension [256]. The fractal
dimension of a function is related to the roughness of its plot and is exploited
in computer graphics to control the perceived roughness [193]. For 1/f pro-
cesses, it is inversely proportional to the Hurst exponent H . Larger values of
H correspond to lower values of the fractal dimension and H is proportional to
β. Therefore, by increasing β, we will achieve a redistribution of power from
high to low frequencies, with an overall smoothing of the waveform.

The problem of generating 1/f noise has been treated extensively. One
of the most common approaches amounts to properly filtering a white noise
source in order to obtain a 1/f spectrum. We follow here this approach, and
use a model reported in [210] and [55]. The shaping filter is a cascade of N
first-order filters, each with a real zero-pole pair. The overall transfer function
H(s) in the Laplace domain is the following:

H(s) = A

∏N
i=1(s − s0i)

∏N
i=1(s − spi)

, (8.22)

where A is a suitable constant.
The fractal noise generator is obtained by properly setting the poles and

the zeros of the filters in the cascade [210]. Specifically, the pole and zero
frequencies, fpi and f0i, can be computed as functions of the spectral slope β
with the following formulas:

fpi = −spi

2π
= fp(i−1)10

1
h ,

f0i = −s0i

2π
= fpi10

β
2h , (8.23)

where fp1 is the lowest pole frequency of the filter. Therefore, the lowest
limit of the frequency band for the approximation is fp1 and the range width
is expressed in decades. The density h (density of the poles per frequency
decade) can be used to control the error between the target spectrum and the
approximated spectrum obtained by white noise filtering. The dependence of
the error with respect to filter pole density is discussed in [55]. Figure 8.7
shows a 1/fβ spectrum obtained using the filter (8.22), with two different h
values.
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Figure 8.7: Magnitude spectrum of generated fractal noise with β = 1.81,
h = 2 (left) and h = 6 (right)

The transfer function in the discrete-time domain can be computed with
the Impulse Invariant method [177]. It is known that this corresponds to map-
ping poles and zeros of the transfer function H(s) to poles and zeros of the
transfer function H(z) in the discrete-time domain by making the following
substitution:

s − sx → 1 − esxTsz−1 , (8.24)

where Ts is the sampling period and sx stands for a pole spi or a zero s0i. The
following discrete transfer function is then obtained:

H(z) = A′

∏N
i=1 1 − es0iT z−1

∏N
i=1 1 − espiT z−1

, (8.25)

where A′ is a normalizing constant. In conclusion, the 1/fβ spectrum is ap-
proximated by a cascade of first-order filters, each one with the following dis-
crete transfer function:

H(i)(z) =
1 + biz

−1

1 + aiz−1
, with



















ai = e−2πfpiT , bi = e−2πf0iT

fpi = fp(i−1)10
1
h , f0i = fpi10

β
2h

.

(8.26)

8.4 Implementation and control

As part of the SOb project activities, the low-level sound models described
so far have been implemented as real-time modules written in C language for
pd5, the open source real-time synthesis environment developed by Miller

5http://www.pure-data.org/doc/
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Puckette and widely used in the computer music community. The modules
have been collected into the interaction_modal package, downloadable
from the Sounding Object web site 6.

When opening the interaction_modal folder, one finds a few subdir-
ectories that reflect the object-oriented structure of the plugins:

resonators: contains the implementation of resonators described as a bank
of modal oscillators, each discretized with the bilinear transformation.
External forces can be applied at specified interaction points, each point
being described by a set of numbers that weight each mode at that point.
Displacement or velocity are returned as outputs from the modal object;

interactors: for impact and friction interactions, a function computes the
forces to be applied to two interacting resonators using the non-linear
equations discussed in the previous section. Details about numerical is-
sues are discussed in appendix 8.A below;

sound_modules: contains a subdirectory for each plugin implemented, whe-
re the structures and functions required by pd are provided. Here, the
external appearance (default parameter values, inlets and outlets) of the
plugins is also defined.

One critical issue in physically-based sound modeling is parameter estim-
ation and control. Interaction between the user and the audio objects relies
mainly upon a small subset of the control parameters. These are the external
forces acting on each of the two objects (which have the same direction as the
interaction force). In the case of friction, a third high-level parameter is the
normal force fN between the two objects. The remaining parameters belong
to a lower level control layer, as they are less likely to be touched by the user
and have to be tuned at the sound design level.

Such low-level parameters can be grouped into two subsets, depending on
whether they are related to the resonators’ internal properties or to the interac-
tion mechanism. Each mode of the two resonating objects is tuned according
to its center frequency and decay time. Additionally, the modal gain (inversely
proportional to the modal mass) can be set for each resonator mode, and con-
trols the extent to which the mode can be excited during the interaction. The
implementation allows position dependent interaction by giving the option to
choose any number of interaction points. A different set of modal gains can be
set for each point.

6http://www.soundobject.org
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Figure 8.8: Implementation of the interaction models as pd plugins: schematic
representation of the sound modules.

A second subset of low-level parameters relates to the interaction force spe-
cification, as given in Eqs. (8.11) and (8.16). In certain cases typical parameter
values can be found from the literature. Alternatively, they can also be found
from analysis of real signals. Parameter estimation techniques are the subject
of many studies in automatic control, an extensive discussion of such issues is
provided in [7].

This hierarchy for the control parameters is depicted in Figure 8.8, where a
schematic representation of the pd sound modules is provided. The remainder
of this section addresses the phenomenological role of the low-level control
parameters.

8.4.1 Controlling the impact model

The impact model has been tested in order to assess its ability to convey
perceptually relevant information to a listener. A study on materials [10] has
shown that the decay time is the most salient cue for material perception. This
is very much in accordance with previous results [137]; however, the physical
model used here is advantageous over using a signal-based sound model, in
that more realistic attack transients are obtained. The decay times tej of the
resonator modes can therefore be used to “tune” the perceived material of the
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resonator in a collision with a hammer. See also chapter 4 in this book for
more detailed discussion on material perception from recorded and synthesized
sounds.

A study on hammer hardness [11] has shown that the contact time t0 (i.e.
the time after which the hammer separates from the resonator) can be con-
trolled using the physical parameters. This is a relevant result, since t0 has a
major role in defining the spectral characteristics of the initial transient. Qual-
itatively, a short t0 corresponds to an impulse-like transient with a rich spec-
trum, and thus provides a bright attack. Similarly, a long t0 corresponds to a
smoother transient with little energy in the high frequency region. Therefore
t0 influences the spectral centroid of the attack transient, and it is known that
this acoustic parameter determines to a large extent the perceived quality of the
impact [82]. See also an earlier chapter in this book for a detailed discussion
on impact sounds and the perceptual role of the spectral centroid of the attack
transient.

An equation has been derived in [11], which relates t0 to the physical para-
meters of the model:

t0 =

(

m(h)

k

)

1
α+1

·
(

µ2

α + 1

)
α

α+1

· (8.27)
∫ vin

vout

dv

(1 + µv)
[

−µ(v − vin) + log
∣

∣

∣

1+µv
1+µvin

∣

∣

∣

]
α

α+1
.

This equation states that the contact time t0 depends only on vin and two para-
meters, i.e. the viscoelastic characteristic µ and the ratio m(h)/k. Specifically,
the ratio m(h)/k is found to be the most relevant parameter in controlling con-
tact time and consequently the perceived hardness of the impact. Numerical
simulations have shown excellent accordance between contact times computed
using Eq. (8.28) and those observed in the simulations. Figure 8.9 shows an
example of soft and hard impacts, obtained by varying mh/k.

Due to the physical description of the contact force, realistic effects can be
obtained from the model by properly adjusting the physical parameters. Figure
8.10a shows an example output from the model, in which the impact occurs
when the resonator is already oscillating: the interaction, and consequently the
contact force profile, differs from the case when the resonator is not in motion
before collision. This effect can not be simulated using pre-stored contact force
profiles (as e.g. in [237]). Figure 8.10b shows an example of “hard collision”,
obtained by giving a very high value to the stiffness k, while the other model
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Figure 8.9: Sound spectra obtained when hitting a resonator with a soft mallet
(low mh/k) and with a hard hammer (high mh/k).

parameters have the same values as in Figure 8.10a. It can be noticed that sev-
eral micro-collisions take place during a single impact. This is qualitatively in
accordance with the remarks about hard collisions by van den Doel et al. [237].

8.4.2 Controlling the friction model 7

Similarly to impact, the phenomenological role of the low-level physical
parameters of the friction model has been studied. The description given in
Table 8.1 can be a helpful starting point for the sound designer.

The triple (σ0, σ1, σ2) (see Eq. (8.16)) define the bristle stiffness, the bristle
internal dissipation, and the viscous friction, and therefore affects the charac-
teristics of signal transients as well as the ease in establishing stick-slip mo-
tion. The triple (fc, fs, vs) (see Eq. (8.17)) specifies the shape of the steady
state Stribeck curve. Specifically, the Coulomb force and the stiction force are
related to the normal force through the equations fs = µsfN and fc = µdfN ,
where µs and µd are the static and dynamic friction coefficients8. Finally, the
breakaway displacement zba (see equation (8.18)) is also influenced by the nor-
mal force. In order for the function α(v, z) to be well defined, the inequality

7section co-authored with Stefania Serafin
8It must be noted that treating fN as a control parameter is a simplifying assumption, since

oscillatory normal force components always accompany the friction force in real systems [5].
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Figure 8.10: Numerical simulations; (a) impact on an oscillating resonator;
(b) micro-impacts in a hard collision. Intersections between the solid and the
dashed lines denote start/release of contact.

Symbol Physical Description Phenomenological Description

σ0 bristle stiffness affects the evolution of mode lock-in
σ1 bristle dissipation affects the sound bandwidth
σ2 viscous friction affects the speed of timbre evolution and pitch
σ3 noise coefficient affects the perceived surface roughness
µd dynamic friction coeff. high values reduce the sound bandwidth
µs static friction coeff. affects the smoothness of sound attack
vs Stribeck velocity affects the smoothness of sound attack
fN normal force high values give rougher and louder sounds

Table 8.1: A phenomenological guide to the friction model parameters.

zba < zss(v) ∀v must hold. Since minv zss(v) = fc/σ0, a suitable mapping
between fN and zba is

zba = cfc/σ0 = cµdfN/σ0 , with c < 1 . (8.28)

By exploiting the above indications on the phenomenological role of the
low-level parameters, and their relation to user-controlled parameters, simple
interactive applications have been designed which use a standard mouse as the
controlling device. Namely, x- and y-coordinates of the pointer are linked to
the external force f

(b)
e and the normal force fN , respectively. The applications
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have been designed using the OpenGL-based Gem9 external graphical library
of pd.

Braking effects Different kinds of vibrations and sonorities develop within
wheel brakes: in the case of rotating wheels slipping sideways across
the rails, the friction forces acting at the wheel rim excite transverse vi-
brations. In the simulation depicted in Figure 8.11a, a wheel driven by
the external force f

(b)
e rolls on a circular track (a detailed description of

rolling sound design is given in the next chapter). When a positive nor-
mal force is applied, the wheel is blocked from rolling and the friction
model is triggered. Neat stick-slip is established only at sufficiently low
velocities, and brake squeals are produced in the final stage of decelera-
tion. The resulting effect convincingly mimics real brake noise.

Wineglass rubbing An excitation mechanism analogous to wheel-brake in-
teraction appears when a wineglass is rubbed around its rim with a moist
finger. In this case sound radiates at one of the natural frequencies of the
glass and its harmonics. By properly adjusting the modal frequencies
and the decay times of the modal object which acts as the resonator, a
distinctive glassy character can be obtained. In the example depicted in
Figure 8.11b, the rubbing finger is controlled through mouse input. Inter-
estingly, setting the glass into resonance is not a trivial task and requires
some practice and careful control, just as in the real world.

Door squeaks Another everyday sound is the squeak produced by the hinges
of a swinging door. In this situation, different combinations of transi-
ent and continuous sliding produce many squeaks which create a broad
range of sonic responses. The example depicted in Figure 8.11c uses
two exciter-resonator pairs, one for each of the shutters. In this case
the modal frequencies of the objects have been chosen by hand and hear
tuning on the basis of recorded sounds. The results are especially con-
vincing in reproducing complex transient and glissando effects which
are typically found in real door squeaks.

8.4.3 Implementation of the fractal noise generator patch

At the time of writing this book chapter the fractal noise generator dis-
cussed in section 8.3.3 has not been integrated within the friction model yet.

9http://gem.iem.at/
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(a) (b) (c)

Figure 8.11: Interactive applications; (a) a wheel which rolls and slides on a
circular track; (b) a moisty finger rubbing a crystal glass; (c) a swinging door,
each of the two shutters is linked to a friction module.

Having done this would (will) allow to control information on surface rough-
ness by controlling the fractal dimension of the noisy component σ3w in Eq.
(8.16).

The fractal noise generator has been implemented independently as a pd
patch. For convenience in implementation, the shaping filters (8.26) are rewrit-
ten as a cascade of biquads. Therefore, the cascade is made of N/2 second-
order filters, each one with the following transfer function (calculated from
Eq. (8.26)):

H(i)(z) = H(j)H(j−1)(z) =
(1 + bjz

−1)(1 + bj−1z
−1)

(1 + ajz−1)(1 + aj−1z−1)
(8.29)

=
1 + (bj + bj−1)z

−1 + (bjbj−1)z
−2

1 + (aj + aj−1)z−1 + (ajaj−1)z−2
,

with j = 2 · i, i = 1 . . . N/2.

The pd patch of the fractal noise generator has been developed with a modular
approach, for future exploitation in physics-based sound design. The most
relevant parameter accessible to the user is β, which defines the target 1/fβ

spectrum. The number of poles of the filtering cascade can be also set, as well
as the frequency of the first pole: these parameters controls the accuracy of the
1/fβ approximation. A snapshot of the patch is given in Figure 8.12.
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Figure 8.12: pd patch of the fractal noise generator.

8.A Appendix – Numerical issues

We have shown that the low-level interaction models, impact and friction,
are represented through some non-linear coupling between the resonating ob-
jects. When the continuous-time systems are discretized and turned into nu-
merical algorithms, the non-linear terms introduce computational problems
that require to be solved adequately. This is the topic of this appendix.

8.A.1 Discretization

As already discussed in section 8.2.3, the discrete-time equations for the
modal resonator are obtained by using the bilinear transformation. Recalling
Eq. (8.6), the “resonator” object is then described in the discrete-time domain
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, (8.30)

for j = 1 . . . N (r), where the matrices are given in Eq. (8.8) and f(n) is either
the impact force (8.11) or the friction force (8.16). An identical system is
written for the “hammer” and the “bow” objects. The state x(r)(n) has been
defined assuming that interaction occurs at point j of the resonator.

But how is the interaction force f(n) computed at each time step?

Impact As for the impact force, the missing equations are simply










[

x(n)
v(n)

]

= x(r)(n) − x(h)(n)

f(n) = f(x(n), v(n))

, (8.31)

where f is given in Eq. (8.11). It can be seen that at each time step n
the variables [x(n), v(n)] and f(n) have instantaneous mutual depend-
ence. That is, a delay-free non-computable loop has been created in the
discrete-time equations and, since a non-linear term is involved in the
computation, it is not trivial to solve the loop. This is a known problem in
numerical simulations of non-linear dynamic systems. An accurate and
efficient solution, called K method, has been recently proposed in [24]
and will be adopted here. First, the instantaneous contribution of f(n)
in the computation of vector [x(n), v(n)] can be isolated as follows:

[

x(n)
v(n)

]

=

[

x̃(n)
ṽ(n)

]

+ Kf(n) with (8.32)

K = −





N(h)
∑

i=1

tmib
(h)
i +

N(r)
∑

j=1

tljb
(r)
j



 ,

where [x̃(n), ṽ(n)] is a computable vector (i.e. it is a linear combination
of past values of x

(r)
j , x

(h)
i and y). Second, substituting the expression
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(8.32) in the non-linear contact force equation, and applying the implicit
function theorem, f(n) can be found as a function of [x̃(n), ṽ(n)] only:

f(n) = f

([

x̃(n)
ṽ(n)

]

+ Kf(n)

)

K method7−→ f(n) = h(x̃(n), ṽ(n)) .

(8.33)
Summarizing, if the map f(n) = h(x̃(n), ṽ(n)) is known, then the
delay-free loop in the computation can be removed by rewriting the al-
gorithm as

for n = 1 . . . samplelength

Assign f(n) = 0

Compute x
(h)
i (n) (i = 1 . . . N (h)),

and x
(r)
j (n) (j = 1 . . . N (r))

Compute x̃(n), ṽ(n),
and f(n) = h(x̃(n), ṽ(n))

Update x
(h)
i (n) = x

(h)
i (n) + b

(h)
i f(n) (i = 1 . . . N (h))

Update x
(r)
j (n) = x

(r)
j (n) − b

(r)
j f(n) (j = 1 . . . N (r))

end

Friction The numerical implementation for frictional contact (8.16) is slightly
more complicated, because of the additional degree of freedom z. The
dynamic equation for ż is again discretized using the bilinear transform-
ation. Since this is a first order equation, discretization by the trapezoid
rule is straightforward:

z(n) = z(n − 1) +

∫ nTs

(n−1)Ts

ż(τ)dτ ⇒

z(n) ≈ z(n − 1) +
Ts

2
ż(n − 1) +

Ts

2
ż(n) .

(8.34)

Therefore, the missing equations in the coupled numerical system are


























[

x(n)
v(n)

]

= x(r)(n) − x(b)(n)

z(n) = z(n − 1) + Ts

2 ż(n − 1) + Ts

2 ż(n)
ż(n) = ż(v(n), z(n))
f(n) = f(z(n), ż(n), v(n), w(n))

, (8.35)
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where ż(v, z) and f(z, ż, v, w) are given in Eq. (8.16). Again, it can be
seen that at each time step n the variables [v(n), z(n)] and ż(n) have
instantaneous mutual dependence. Again, the K method [24] will be
adopted in order to solve this problem. To this end, the instantaneous
contribution of ż(n) in the computation of vector [x(n), v(n)] must be
isolated so that the K method can be applied on the non-linear function
ż(v, z):

[

v(n)
z(n)

]

=

[

ṽ(n)
z̃(n)

]

+ K ż(n) , (8.36)

then

ż(n) = ż

([

ṽ(n)
z̃(n)

]

+ K ż(n)

)

K method7−→ ż(n) = h(ṽ(n), z̃(n)) .

(8.37)
where ṽ and z̃ are –as above– computable quantities. From Eq. (8.34),
the element K(2) is easily found as K(2) = Ts/2, while z̃(n) = z(n−
1) + Ts/2 · ż(n − 1). Finding K(1) is less straightforward, since the
friction force itself depends explicitly upon v. Recalling that

v(n) =
N(r)
∑

j=1

tlj ẋ
(r)
j (n) −

N(b)
∑

j=1

tmiẋ
(b)
i (n) , (8.38)

and substituting here the discrete-time equations (8.30) for ẋ
(r)
j (n) and

ẋ
(b)
i (n), a little algebra leads to the result

v(n) =
1

1 + σ2b







N(r)
∑

j=1

tlj

{

˙̃x
(r)
j (n) + b

(r)
j (2)[f (r)

e (n) − σ0z̃(n)]
}

−

−
Nb

∑

i=1

tmi

{

˙̃x
(b)
i (n) + b

(b)
i (2)[f (b)

e (n) + σ0z̃(n)]
}







−

− b

1 + σ2b

(

σ0
Ts

2
+ σ1

)

ż(n) =

= ṽ(n) + K(1)ż(n) ,

(8.39)
where the quantities ˙̃x(r,b) are the “computable” part of the modal ve-
locities (i.e., they are computed from modal resonator equations (8.30)
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with f(n) = 0), and the term b is defined as

b =





N(b)
∑

i=1

tmib
(b)
i (2) +

N(r)
∑

j=1

tljb
(r)
j (2)



 . (8.40)

The quantities ṽ and K(1) are defined in Eq. (8.39) in an obvious way.
Having determined the K matrix, the K method can be applied and the
algorithm can be rewritten as

for n = 1 . . . samplelength

Assign f(n) = 0

Compute x
(b)
i (n) (i = 1 . . . N (b)),

and x
(r)
j (n) (j = 1 . . . N (r))

Compute ṽ(n), z̃(n), and ż(n) = h(ṽ(n), z̃(n))
Compute v(n) = ṽ(n) + K(1)ż(n),

z(n) = z̃(n) + K(2)ż(n), and f(n)

Update x
(b)
i (n) = x

(b)
i (n) + b

(b)
i f(n) (i = 1 . . . N (b))

Update x
(r)
j (n) = x

(r)
j (n) − b

(r)
j f(n) (j = 1 . . . N (r))

end

8.A.2 The Newton-Raphson algorithm

Two choices are available for efficient numerical implementation of the K
method. The first choice amounts to pre-computing the new non-linear func-
tion h off-line and storing it in a look-up table. One drawback is that when the
control parameters (and thus the K matrix) are varied over time, the function
h needs to be re-computed at each update of K. In such cases, an alternative
and more convenient approach amounts to finding h iteratively at each time
step, using the Newton-Raphson method. This latter approach is adopted here.
Since most of the computational load in the numerical system comes from the
non-linear function evaluation, the speed of convergence (i.e. the number of
iterations) of the Newton-Raphson algorithm has a major role in determining
the efficiency of the simulations.

Using the Newton-Raphson method for computing h means that at each
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time step n the value h(n) is found by searching a local zero of the function

g(h) =



















f

([

x̃
ṽ

]

+ Kh

)

− h (impact)

ż

([

ṽ
z̃

]

+ Kh

)

− h (friction)
. (8.41)

The Newton-Raphson algorithm operates the search in this way:

h0 = h(n − 1)
k = 1
while (err < Errmax)

Compute g(hk) from Eq. (8.41)

Compute hk+1 as hk+1 = hk −
g(hk)
g′(hk)

Compute err = abs(hk+1 − hk)
k = k + 1

end

h(n) = hk

Therefore, not only the function g(h) but also its derivative g′(h) has to be
evaluated at each iteration. As for the impact, this is found as a composite
derivative:

dg

dh
=

∂f

∂x
K(1) +

∂f

∂v
K(2) − 1 , (8.42)

where (recalling Eq. (8.11))

∂f

∂x
= αxα−1 [k + λv] ,

∂f

∂v
= λxα .

(8.43)

As for friction, the computation of g′(h) is slightly lengthier. Again, it is done
in successive steps as a composite derivative. First step:

dg

dh
=

∂ż

∂v
K(1) +

∂ż

∂z
K(2) − 1 . (8.44)
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Second step (recalling Eq. (8.16)):

∂ż

∂v
= 1 − z

[

(α + v · ∂α/∂v)zss − α · v · dzss/dv

z2
ss

]

,

∂ż

∂z
= − v

zss

[

z
∂α

∂z
+ α

]

.
(8.45)

Third step (recalling Eqs. (8.18, 8.19)):

∂α

∂v
=























π

2
cos

(

π
z − zss+zba

2

zss − zba

)

dzss

dv (zba − z)

(zss − zba)2
,

(zba < |z| < zss) &
(sgn(v) = sgn(z))

0 , elsewhere

(8.46)

∂α

∂z
=























π

2
cos

(

π
z − zss+zba

2

zss − zba

)

1

zss − zba
,

(zba < |z| < zss) &
(sgn(v) = sgn(z))

0 , elsewhere
.

(8.47)
Last step (recalling Eq. (8.17)):

dzss

dv
= −sgn(v)

2v

σ0v2
s

(fs − fc)e
−(v/vs)2 . (8.48)

Computing these terms from the last step to the first step, the derivative g′(h)
can be obtained.

In order to develop a real-time model, it is essential that the number of iter-
ations for the Newton-Raphson algorithm remains small in a large region of the
parameter space. To this end, analysis on the simulations has to be performed,
where model parameters are varied over a large range. Such analysis shows that
in every conditions the algorithms exhibit a high speed of convergence. More
precisely, in the case of the impact the number of iterations is observed to be
never higher than four, even when the Newton-Raphson algorithm is given ex-
tremely low tolerance errors (Errmax∼ 10−13). As for friction, the number of
iterations remains smaller than seven.
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