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5.1 Introduction

If a tree falls in a forest and no one is around to hear it, does it make a sound? The origin of this riddle
is unclear, but it is often referenced whenever one wants to address the topic of the division between
perception of an object and how an object really is. If the tree exists regardless of perception, then it will
produce sound waves when it falls. However, no one knows how these sound waves will actually sound
like. Sound as a mechanical and fluid-dynamical phenomenon will occur, but sound as a sensation will
not occur.

So what is the difference between what something is, and how it appears? Subjective idealism
answers to this question by saying that “to be is to be perceived”. As far as sound in particular is
concerned, some contemporary metaphysicians propose proximal theories of sound. According to these
theories, sounds are sensations or qualitative aspects of auditory perception, they are conceived of as
internal events, as mental episodes, or proximal stimulations. This view emphasizes the high correlation
between felt properties of sounds and properties of perceptual system. As opposed to proximal theories,
distal theories consider the nature of sounds to be found in distal properties, processes or events in the
medium inside (or at the surface of) sounding physical objects. Medial theories regard sounds as being
located between the sounding objects and the hearer: sounds are sound waves.
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Figure 5.1: Schematic, not-in-scale, drawing of the human peripheral auditory system.

5.2 Anatomy and physiology of peripheral hearing

Figure 5.1 provides a representation of the anatomy of the human peripheral auditory system. This
comprises: the external ear, which has been already examined in Chapter Sound in space and is basically
composed by the pinna and the ear canal; the middle ear, which comprises three tiny bones or ossicles
and transforms into mechanic oscillations the acoustic pressure disturbances that arrive on the tympanic
membrane; and the inner ear, where mechanical oscillations are transduced into oscillations of the fluid
that fills the cochlea.

We only address the peripheral auditory system and do not speak of the central system. Higher-level
functions not known well.

5.2.1 Sound processing in the middle and inner ear

5.2.1.1 The middle ear

Figure 5.2(a) provides a schematic representation of the mechanics of the middle ear: the eardrum sep-
arates the outer ear from the middle ear cavity, in which a chain of three ossicles is found: these are
the malleus (a hammer-shaped bone), the incus (an anvil-shaped bone), and the stapes (a stirrup-shaped
bone). This chain of ossicles acts like a lever in response to vibrations of the eardrum; the footplate of
the stapes is in contact with the inner ear through the oval window at the base of the cochlea and acts like
a piston on the fluid inside the cochlea.

Normally, the middle ear cavity containing the ossicles is closed off from its surroundings by the
eardrum on one side and the eustachian tube on the other. However, the eustachian tube, which is
connected to the upper throat region, is opened briefly when swallowing. External pressure changes,
that can be experienced e.g. during mountain hiking, flying, or diving, can produce changes the resting
position of the eardrum with a consequent shift of the working point in the transfer characteristic of the
middle ear ossicles and a reduction of hearing sensitivity. Normal hearing is resumed by swallowing
because the opening of the eustachian tube allows to equalize the air pressure in the middle ear with that
of the environment.

The middle ear acts as a mechanical energy transformer. The tympanic membrane operates over a
wide frequency range as a pressure receiver and is firmly attached to the long arm of the malleus. The
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Figure 5.2: Middle ear function; (a) scheme of the mechanical action , and (b) qualitative magnitude
response (note that this plot does not report real measured data, it is an illustrative example in qualitative
agreement with real data).

lever system formed by the three ossicles increases the force transmitted from the tympanic membrane
to the stapes by means of two main mechanisms: first, the ossicle system lever provides a lever ratio of
almost 2 thanks to the different lengths of the arms of the malleus and incus; second, the large surface
ratio between tympanic membrane and oval window (about 35 ) again provides a gain with respect to
the magnitude of the acoustic pressure. The transformation operated by the middle ear can be visualized
by means of its transfer function, from acoustic pressure in the ear canal to fluid pressure in the cochlea.
A qualitative magnitude response is shown in Fig. 5.2(b). The forward impedance gain is about 30 dB.
Filtering effects due to resonances of the middle ear cavity and mechanical parameters of the ossicle
system produce a peak in the range 1 − 2 kHz, so that all-in-all the middle ear behaves like a bandpass
filter.

The main role of the middle ear is to provide an impedance matching between air and cochlear
fluid: if energy were transmitted directly from acoustic pressure to the cochlea, this would produce an
energy loss of about 30 dB. If we compare this number with Fig. 5.2(b) we can conclude that the human
middle ear provides an almost perfect impedance match in the frequency range around 1 kHz. Another
important function of the middle ear is to act as a protection mechanism against very loud sounds: when
the acoustic pressure exceeds a certain level, an acoustic reflex is generated so that movement of the
ossicles is inhibited by muscular contraction and the amount of energy transmitted to the inner ear is
lowered. However, because of relatively high latencies of muscle activations, the acoustic reflex is not
effective for very fast transient sounds (that is why a shot in your ear hurts).

5.2.1.2 The cochlea and the basilar membrane

The inner ear is constituded by the cochlea, which is shaped like a snail (hence its name) and is embedded
in the extremely hard temporal bone (see Fig. 5.1). The cochlea forms 2 and a half turns and has a total
length of about 35 mm. If we “linearize” this snail-like shape we obtain the schematic representation
given in Fig. 5.3, where all the main elements of the cochlea can be recognized.

The footplate of the stapes is in direct contact with the interior of the cochlea through the membra-
neous oval window. At the interior, the cochlea is divided into three channels (or scalae), which are
separated by two membranes. The thicker membrane is the basilar membrane (BM), while the thinner
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Figure 5.3: Linearized structure of the cochlea.

one is the Reissner’s membrane. Two channels, the scala vestibuli and the scala tympani, run until the
apex of the cochlea and are filled with the same fluid, the perilymph. Perilymph has a high sodium
content and resembles other extracellular fluids. It is in direct contact with the cerebrospinal fluid of
the brain cavity. The third channel, the scala media, ends blindly before the apex of the cochlea and is
filled with a different fluid, the endolymph. Endolymph is in contact with the vestibular system and has a
high potassium content. Loss of the potassium ions from the scala media by diffusion is reduced by the
tight membrane junctions of the cells surrounding the scala media. Any losses are rapidly replaced by an
ion-exchange pump with high energy requirements found in the cell membranes of a specialized group
of cells on the outer wall of the cochlea. This ion exchange generates a positive potential of about 80 mV
in the scala media with respect to the perilymph, with the Reissner’s membrane providing chemical iso-
lation between the compartments. From a hydromechanical point of view, the scala media and the scala
vestibuli can be regarded as one unit, since the Reissner’s membrane that separates them is extremely
thin and light, and therefore mechanically very compliant.

Oscillations are transmitted from the stapes to the perilymph, and from the fluid to the BM which is
displaced in a transverse direction. Since the fluids and the walls of the cochlea (surrounded by bone)
are essentially incompressible, the fluid volume displayed at the oval window by the movement of the
stapes must be equalized. The equalization occurs at the round window, which is a second membrane that
closes off the scala tympani at the base of the cochlea. In general the oscillation is transmitted from the
perilymph to the endolymph and finally to the round window trhrough the BM. However, for very low
frequencies the equalization occurs through a direct connection between the scalae tympani and vestibuli
at the apex of the cochlea, called the helicotrema.

5.2.1.3 Spectral analysis in the basilar membrane

The total length of the BM is something less than 35 mm. Moreover, it is extremely narrow (about
0.05 mm) at the very base of the cochlea, and becomes much wider (about 0.5 mm) and thinner towards
the apex. Due to this particular shape, the BM behaves as a non-homogeneous transmission line. One
can hypotesize that low frequencies will produce oscillations of the wider and less stiff portion of the
BM at the apex of the cochlea, while high frequencies will produce oscillations of the thinner and stiffer
portion at the base.

In fact many experimental results have confirmed this hypothesis. The peak displacement of the BM
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Figure 5.4: Qualitative responses to a 1 kHz sinusoidal stimulus at various sites on the basilar mem-
brane.

in response to a sinusoidal stimulus has a small amplitude near the base, grows slowly moving along the
cochlea, reaches its maximum at a certain, frequency-dependent location, and then dies out very quickly
in the direction of the apex. The fluid surrounding the BM also keeps at rest beyond the point of maximal
BM vibration.

In this way the BM acts as a spectrum analyzer in which different frequencies produce maximum
displacement at different locations. A sinusoid of say 8 kHz will produce a maximum displacement
within the first few millimiters of the BM, while a sinusoid of say 200 Hz will produce a maximum
displacement within the last few millimiters. Through this mechanism of frequency separation, energy
from different frequencies is transferred to and concentrated at different places along the BM. In other
words, different regions along the cochlea have different characteristic frequencies (CF), to which they
respond maximally. This separation by location on the BM is sometimes termed the place principle.

Figure 5.4 provides a qualitative illustration of this mechanism. If a 1 kHz tone burst is presented at
the oval window, the responses at different positions of the BM may be represented as different bandpass
filters with a somehow asymmetrical frequency response, and with centre frequencies related to position.
Near the oval window the 1 kHz burst produces a short click due to the broadband transient at the setup
of the burst, followed by 1 kHz oscillation with very small amplitude. Further along the cochlea in
the direction of the helicotrema the response becomes larger, and the amplitude reaches its maximum
roughly at the median position along the BM. Then the amplitude of vibration produced by the burst
becomes quickly smaller and smaller for places in the cochlea located further towards the helicotrema,
which correspond to lower and lower resonance frequencies.

Many experiments have been performed on various mammalian cochleae in order to determine a
precise mapping between CF and longitudinal position on the BM (or “tonotopic” mapping). In the
cochleae of several species the tonotopic map follows the law

CF = A(10ax − k), (5.1)

where CF is expressed in kHz, x is the distance from the apex expressed as a proportion of BM length
(from 0 to 1), a has the same value (a ∼ 2.1) in many species including humans, k also varies only
slightly in many species (from 0.8 to 1, typically 0.85), while A varies considerably across species and
determines the range of CFs (e.g. it has been measured to be a high 0.456 in cat, and only 0.164 in
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chinchilla). Equation (5.1) provides a simple linear relation between BM position and the logarithm of
CF, which can be assumed to be valid for the basal 75% of the cochlea (i.e., for x > 0.25), while in the
remaining 25% apical region CF octaves become more compressed (in general the behavior of the BM
near the apex is less clearly understood than near the base).

5.2.1.4 Cochlear traveling waves

A second effect depicted in Fig. 5.4 is a time delay between the tone burst at the oval window and the
response of the BM, which increases with increasing distance. Therefore our simplified description of
the linear dynamics of the BM has to take into account two main effects: spatial frequency resolution on
one hand, and temporal effects (time delays), on the other. High frequencies produce oscillations near
the oval window and with small delay times, while low frequencies travel far towards the helicotrema
and show long delay times.

Position-dependent time delays in BM oscillation have been observed experimentally. Typical delay
values can be of ∼ 1.5 ms for frequencies around 1.5 kHz, and up to 5 ms near the end of the cochlea.
This evidence has led many researchers to the conclusion that a pertubation at the oval window produces
a mechanical transverse traveling wave on the BM. This mechanical wave is not to be confused with
acoustic pressure waves, which propagate in the cochlear fluids at speeds of about 1550 m/s and traverse
the cochlea in a few microseconds.

It has to be noted that the elastic fibers that are tensed across the cochlear duct and form the BM are
loosely coupled to each other, so that they can be assumed to vibrate almost independently, like strings
of a musical instrument. Due to this weak longitudinal coupling in the BM, many agree that the energy
delivered to the cochlea by the stapes is transported principally via pressure waves in the cochlear fluids
rather than by the BM itself. Fluid pressure interacts with the flexible BM, generating coupled “slow”
waves that travel from base to apex: a differential pressure wave that propagates in the cochlear fluids
and a displacement wave that propagates on the BM. In this view, although the BM displacement appears
to travel in a wave from base to apex, the energy is in fact carried longitudinally by the fluid rather than
by the BM.

Nowadays the traveling wave model is regarded to be too simplistic in many respects. In particular
the model disregards possible multiple modes of vibrations, so that sites along the radial direction (of a
cochlear cross-section) do not all vibrate in phase. Some models and also some experimental observa-
tions suggest that multiple modes may be present, and that the presence of a summation of at least two
modes may have a role in the stimulation of the stereocilia of inner hair cells (see below), although clear
evidence is still lacking. One second open issue regards the longitudinal coupling of the tissues in the
BM. Although such coupling is weak, and typically ignored as we have seen, it could potentially propa-
gate a significant amount of energy longitudinally, so that multiple pathways for energy propagation may
be present in the cochlea.

5.2.1.5 The organ of Corti and the haircells

We still have to understand how the mechanical vibrations of the BM are transduced into electrical signals
to be propagated in the auditory nerve. To this end we have to take a closer look at anatomical details of
the cochlea.

Figure 5.5 (left) depicts a section of the cochlea, and shows that the BM supports the organ of Corti,
in the scala media. The function of the organ of Corti is precisely the transformation of mechanical
oscillations in the inner ear into a signal that can be processed by the nervous system. This organ
contains various supporting cells and the haircells, which can be seen in Fig. 5.5, right. The haircells
are arranged in one row of inner haircells (IHCs) on the inner side of the organ of Corti, and three rows
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Figure 5.5: Left: cross-section of the cochlea. Right: close-up on the organ of Corti and haircells.

of outer haircells (OHCs) near the middle of the organ of Corti. The OHCs are supported at their upper
poles by the reticular lamina, the top surface of the organ of Corti. The tectorial membrane covers part
of the organ of Corti and is attached to the inner side of the scala media, creating a subtectorial space
which is separated from the rest of the scala media.

At rest, the stereocilia (or hairs) that protrude from the haircells are contacting with the tectorial
membrane. However vibration of the BM causes shearing between the the top of the organ of Corti and
the tectorial membrane, and a consequent bending of the stereocilia. This bending in turn opens ion chan-
nels located on the stereocilia and sensitive to mechanical deformation (mechano-sensitive channels),
which modulate conductance within the cells. Aided by the endolymphatic potential, this conductance
modulation produces a receptor potential in the inner haircells (i.e. a time dependent modulation of their
membrane potential), which eventually generates a neural spike that propagates in the afferent auditory
nerve fibers attached to the cells. The intracellular potential of inner haircells is about −45 mV with
respect to that of the perilymph, therefore the driving force is a potential difference of about 125 mV.

Experimental studies have shown that the rate of neural spikes produced by a single cell does not
exceed 1 kHz, which means haircells are very low-pass channels. In particular, a single haircell generates
a neural spike due to stereocilia deflection on a rather probabilistic basis, and in general not for every
cycle of the vibration. The reason why our auditory system still works despite this low neural-spike rate
is that, as we have seen, a wideband acoustic signal is broken up into many narrowband signals in the
BM thanks to the place principle, and each narrowband signal can therefore be separately transmitted on
a narrowband channel.

As shown in Fig. 5.5, right, inner and outer haircells have different constructions. Outer haircells
are thinner and pillar-shaped. Moreover, while the afferent nerve fibres of the inner haircells (going
towards the brain) possess typical characteristics, those of the outer haircells are atypical. More than
90% of afferent fibres make contact with inner haircells, with each fibre typically in contact with one
inner haircell and each inner haircell contacted by up to 20 fibres. The remaining afferent fibres produce
a sparse innervation of the outer haircells which, on the other hand, are contacted by many efferent fibres
(coming from the brain).

These structural differences are indicative of different functions for inner and outer haircells. As
we will see in Sec. 5.2.3, IHCs are the main sensory receptors of the cochlea that deliver neural spikes
towards the brain depending on the vibration of the BM and the organ of Corti. On the other hand, OHCs
do not generate neural spike, but instead possess a unique type of electromotility that is exploited to
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actively amplify the motion of the BM and the organ of Corti: therefore OHCs are actuators rather than
sensors.

5.2.2 Non-linearities in the basilar membrane

One typical approach to cochlear measurements consists in keeping the location of observation (along the
cochlea) constant and to observe the influence of changes in intensity and frequency of the stimulus. The
input-output functions and the tuning curves that we are going to discuss are examples of this approach.
It has to be noted that most of the findings that we will report are based on observations at basal sites
of the cochlea, where consensus on many issues has now been reached. On the other hand, studies of
mechanical responses at the apex of the cochlea have provided contradictory verdicts regarding several
fundamental issues, but have shown that responses at the apex of the cochlea differ at least quantitatively
from those at the base.

5.2.2.1 Input-output functions and sensitivity

Our auditory system possesses great sensitivity and responds to sound pressure levels over a range of
120 dB, i.e. a range spanning 12 orders of magnitude for the acoustic pressure. This is a striking per-
formance. The displacements of the BM are very small: as an example, conversational speech produces
acoustic pressures of about 20 mPa (or sound pressure levels around 60 dB), which cause BM displace-
ment in the amplitude range of 10 nm, a number which is not so far away from atomic sizes. What is
amazing is that we can still hear acoustic pressures that are 1000 times smaller. Our auditory system
must use very special arrangements to produce such an extraordinary sensitivity.

The magnitude of BM vibration at threshold is an issue in which past controversy is being gradu-
ally replaced by consensus. Early experiments measured peak displacements of BM at a given site as a
function of stimulus frequency and intensity. These experiments were performed on excised (dead) mam-
malian cochleae, and using stimuli with rather large sound pressure levels. If one linearly extrapolates
these data back to lower SPLs, one would get to the rather improbable conclusion that at hearing thresh-
old (0 dB) the BM moves by ∼ 10−1 pm for mid-range frequencies (around 1 kHz). As technology has
evolved, permitting in vivo measurements on the cochlea, it has become clear that BM displacements at
threshold are much larger. In particular several experiment on various (non-human) species have shown
that at a given cochlear site (typically a basal site) the neural threshold for a CF stimulus corresponds to
a BM displacement in the range 0.3− 3 nm, and to a BM velocity in the range 20− 200 µm/s.

A more precise picture is provided by the so-called input-output functions of the basilar membrane,
which are defined as follows: for a given site of the BM the input-output function represents the BM
velocity (or displacement) as a function of sound pressure level (in dB) of the stimulus, and with stimulus
frequency as a parameter. Figure 5.6(a) provides a qualitative example of an input-output function for
a CF stimulus. Interestingly this plot shows that responses to stimuli with frequencies near CF exhibit
a highly compressive growth, i.e., response magnitude grows less than linearly. Compression is most
prominent at moderate and high stimulus intensities, while at low intensities the dependence is almost
linear. There is some evidence that the curve switch back to a linear dependence also for very high
stimulus frequencies (around 100 dB, although some data suggest that linearization starts somewhat
earlier, at 80− 90 dB).

The highly compressive behavior of input-output functions for BM responses at frequencies around
CF allows the cochlea to translate the enormous range (120 dB) of auditory stimuli into a range of
vibrations (30 − 40 dB) suitable for transduction by the inner hair cells which have a narrow dynamic
range. This behavior probably provides the foundation of many psychoacoustic phenomena that we will
examine in Sec. 5.3, such as the nonlinear growth of forward masking with masking level and the level
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Figure 5.6: Cochlear measurements: (a) example of input-output curve of the basilar membrane at CF;
(b) examples of tuning curves of basilar membrane and haircells. Note that these plots do not report
real measured data, they are just illustrative examples in qualitative agreement with real data.

dependence in the ability to detect changes in stimulus intensity.
But before that we need to find a physiological explanation to the non-linearity of input-output func-

tions. Indeed this behavior is not explained by a linear, passive BM such as the one that we have described
in Sec. 5.2.1 and in Fig. 5.4. To further complicate the picture, it has to be noted that this behavior is seen
only for CF stimuli, while if the stimulus frequency is lower or higher than the CF at the measurement
position on the BM, then the input-output function approaches a linear plot on the entire intensity range.
Another important observation is that cochlear damage linearizes functions even for CF stimuli. This
suggest that compressive BM responses are originated in some delicate physiological mechanim. We
will return on this point in Sec. 5.2.3.

5.2.2.2 Tuning curves and frequency selectivity

We have seen in Sec. 5.2.1 that the BM and the cochlea function as a spectrum analyzer in which different
frequencies are mapped onto different cochlear locations. The frequency selectivity of the inner ear (i.e.
the quality factor of the bandpass filters depicted in Fig. 5.4), can be visualized by plotting cochlear
tuning curves.

For a given site of the BM, one the tuning curve represent the the sound pressure level (in dB) of
the stimulus necessary to produce a constant BM response magnitude at that site, as a function of the
stimulus frequency. Obviously these curves have a minimum at the CF, which is by definition the fre-
quency for which an excitation is most easily produced. In a similar way one can define the tuning curve
of a inner haircell at a given BM site: this is the sound pressure level (in dB) of a stimulus necessary to
produce a certain DC receptor potential as a function of frequency. Again these curves have a minimum
at the CF. Additionally, however, if one plots these curves for various BM oscillation magnitudes (or IHC
potentials) one can observe a strongly non-linear behavior, in which the sensitivity around the CF be-
comes much larger for low magnitudes (potentials): this reflects the non-linear behavior of input-output
curves examined above, which are strongly compressive at CF and approximately linear for frequency
well above/below CF.

Qualitative examples of tuning curves are given in Fig. 5.6(b). The solid line shows a prototype of a
sharply tuned response that can be observed for IHC tuning-curves, while the dashed line shows a proto-
type of a less selective response that was observed in early experiments. This marked difference in terms
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of selectivity between the two curves was taken by many researchers to imply the presence of some sort
of “second filter” between the BM and the afferent nerve, a mechanism that was supposed to transform
poorly tuned and insensitive mechanical vibrations into well-tuned and sensitive IHC responses.

However, later in vivo measurements on intact BMs have not confirmed this conjecture, since they
have provided evidence that BM tuning curves are at least comparable to those of IHCs and that sharp
tuning observed in IHC responses is present in the BM mechanics as well. In retrospect, it seems apparent
that early methods for the measurement of BM vibrations induced severe physiological damage in the
cochlea. However these later findings raise the question of how this mechanical behavior with sharp
tuning is achieved. The linear passive cochlea such as that of Fig. 5.4 does not seem to be able to
produce a similar performance.

It has to be noted that all the measures related to input-output functions and to tuning curves are
obtained as responses to sinusoidal signals. If the cochlea were a linear system these measures would
provide all the information that is needed to characterize its behavior. However, as we are starting to
understand, the cochlea is a non-linear system and thus these responses cannot generally be used to
predict responses to arbitrary stimuli. Therefore many studies of BM behavior also use other stimuli,
such as tone complexes, noise, and clicks.

5.2.2.3 Two-tone interactions

Psychophysical studies on two-tone interactions led to a recognition of the existence of BM nonlinearities
well before these were demonstrated in physiological experiments. In this brief section we anticipate
some psychoacoustic studies, which will be further discussed in Sec. 5.3.

Two-tone suppression consists of the reduction of the audibility of one sinusoidal probe tone by
the simultaneous presence of a second, suppressor tone. This psychophysical evidence has a direct
physiological counterpart in BM behavior. Specifically, if we look at BM response at a given site (i.e.
at a certain CF) and apply a probe tuned to the CF plus a suppressor, the following behavior can be
observed: for zero or low suppressor levels the input-output functions grow as usual at compressive
rates. At higher suppressor levels however, the responses to low-level CF tones are reduced strongly,
but only weakly at high levels. As a result, the BM input-output curve for the CF tones is substantially
linearized in the presence of moderately intense suppressor tones.

Tuning curves are also affected by the two-tone suppression phenomenon. If we look at BM response
at a given site and apply a probe with varying frequencies plus a suppressor, the following behavior can
be observed: the tuning curve exhibits a reduced selectiviy, so that the magnitude of suppression is
in general maximal at CF and diminishes as the frequency of the probe tones departs from CF. But
suppression is also CF specific in that, with a fixed probe tone at CF, suppression thresholds vary much
in the same manner as the sensitivity of BM responses to single tones, i.e., suppression thresholds are
lowest for suppressor frequencies close to CF.

A second relevant phenomenon that points to the existence of BM nonlinearities is intermodulation
distortion. We have examined in Chapter Sound modeling: signal based approaches the concept of memoryless
nonlinear processing, and the generation of intermodulation frequencies when a linear combination of
sinusoidal signals is passed through a nonlinear distortion function. This phenomenon is in fact observed
in the BM: when two (or more) sinusoidal signals are presented simultaneously, humans can hear addi-
tional frequencies that are not actually present in the acoustic stimulus. In the case of two-tone stimuli,
the additional tones have frequencies corresponding to combinations of the two original sinusoidal fre-
quencies (f1 and f2 > f1), such as f2 − f1, 2f1 − f2, 2f2− f1. Additionally, their perceived intensity
is highly dependent on stimulus-frequency separation.

Again, this psychophysical evidence has a direct counterpart in the mechanics of the cochlea: ex-
periments have demonstrated the presence of distortion products in BM vibrations. BM responses to
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two-tone stimuli with close frequencies contain several distortion products, or difference tones, at fre-
quencies both higher and lower than the frequencies of the primary tones (3f2 − 2f1, 2f2 − f1, 2f1 −
f2, 3f1 − 2f2, f2 − f1, . . .). As f1, f2 are increasingly separated, the number of detectable distortion
products in the response decreases.

So-called cubic difference tones (2f1−f2) are particularly relevant. Psychophysical experiments with
human subjects show that these tones reach levels as high as −15 dB to −22 dB relative to the level of
the primaries. Moreover, for equal-level primaries distortion product magnitudes grow at linear or faster-
than-linear rates at low intensities, and saturate and even decrease slightly at higher stimulus intensities
(≥ 60 dB). In general relative levels of distortion-products are highest at low stimulus intensities and
decrease little over wide ranges of stimulus intensity. For a fixed level of one of the primary tones,
the distortion product magnitude is a nonmonotonic function of the level of the other primary tone.
For moderate f2/f1 ratios (e.g., > 1.2), distortion product magnitudes decrease rapidly with increasing
frequency ratio.1

Two-tone distortion is also CF specific, in that the magnitude and phase of distortion products on the
BM depend strongly on the frequency separation between the primary tones. The magnitude of the cubic
difference tone on the BM decays with increasing frequency ratio.

5.2.3 Active amplification in the cochlea

Nowadays it is generally accepted that many properties of auditory nerve responses probably reflect
corresponding features of BM vibration, including sharp frequency tuning, compressive input-output
non-linearity at near-CF frequencies, two-tone suppression and distortion. Appropriately, all these prop-
erties exhibit CF specificity, i.e., a dependency on stimulus frequency relative to CF, while many other
properties of auditory nerve responses do not exhibit CF specificity and, accordingly, probably originate
at sites other than the BM (such as IHCs and their synapses).

The problem is then to explain how the BM can exhibit these properties. In contemporary research,
the dominant explanation takes the name of cochlear amplification. This definition indicates some sort of
positive feedback to BM vibrations in which biological energy is converted into mechanical vibrations,
with the effect of increasing sensitivity of BM responses, in particular to low-level stimuli, and frequency
selectivity. This is obtained at the expense of dissipation of biological energy (i.e., not present in the
acoustic stimulus).

5.2.3.1 Experimental evidence for cochlear amplification

In Sec. 5.2.2 we have reviewed non-linear behaviors at cochlear sites. At least at the base of the cochlea,
compressive non-linearity, high sensitivity, and sharpness of frequency tuning appear to be inextricably
linked with each other: when one of these three properties is abolished by cochlear insults the other two
are also eliminated or drastically reduced.

The most permanent cochlear damage is death: various measurements have shown that post-mortem
cochlear responses exhibit disappearance of compressive non-linearity, loss of sensitivity, and broaden-
ing of tuning curves, accompanied by a downward shift (up to one-half octave) of the most sensitive
frequency (see Fig. 5.6(b)). Surgical trauma and exposure to intense sounds are other source of cochlear
damage: in particular the effects of acoustic overstimulation on BM responses closely resembles the

1Italian composer, violinist, and music theorist Giuseppe Tartini is credited with the discovery of difference tones. In
particular the “terzo suono di Tartini” (Tartini’s third sound) can be heard when playing two violin strings tuned at a perfect
fifth, say f1 and f2 = 3/2f1: in this case the quadratic (f2 − f1) and cubic (2f1 − f2) distortion products both give 1/2f1,
and a listener perceives a tone one octave lower than f1.
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effects of death. In some cases (e.g., listening to a few rock concerts) the effects can be transient, while
in other cases (e.g., listening to a few more rock concerts) they can be permanent.

Measurements on damaged cochleae point to the existence of some delicate cellular process that
boost BM vibrations, but do not address directly the nature of this process. More indications are pro-
vided by experiments that manipulate cochlear responses via pharmacological means, in particular using
substances that drastically but reversibly alter cochlear function by abolishing the endocochlear potential.
This reduces the drive to mechanoelectrical transduction, presumably causing reduced receptor poten-
tials of haircells, and ultimately altering the sensitivity of auditory nerve fibers. These experiments show
that changes in high-CF fiber responses are substantially greater at CF than at other frequencies. This
implies that the sensitivity and non-linearity of BM vibrations depend critically on the receptor potentials
of haircells, and that the cochlear amplification mechanism is associated with some sort of feedback from
the organ of Corti to BM vibration.

One further step towards the localization of the cochlear amplification mechanism is provided by ex-
periments on electrical stimulation of efferent fibres (which as we know terminate at the base of OHCs).
These experiments clearly show that efferent fibers have an inhibitory effect on cochlear responses: in
particular, CF-specific loss of sensitivity and linearization of BM vibrations is observed. This is a strong
indicator of the ability of OHCs to influence BM vibrations. Because it is inconceivable that afferent
fibers can affect BM vibrations, the efferent effects must be mediated by OHCs.

Another striking phenomenon that suggests that biological energy can be converted into cochlear
vibrations is the existence of spontaneous otoacoustic emissions. Otoacoustic emissions are in general
defined as sounds produced inside the auditory system, and can be measured in the ear canal using very
sensitive microphones, since their level is extremely small.2 Spontaneous emissions in particular are
narrow-band sounds emanating continuously from the inner ear in the absence of acoustic stimulation.
They are often understood to represent oscillations powered by biological energy sources. Because there
is some indirect evidence that spontaneous emissions are accompanied by corresponding BM vibrations,
one can venture to postulate that the same processes that give rise to spontaneous emissions are also
involved in amplifying the magnitude of acoustically stimulated BM motion.

5.2.3.2 Reverse transduction and OHC electromotility

The biological energy that is supposedly converted into mechanical energy is presumably electrical.
Therefore if cochlear amplification actually takes place, there must be some mechanism for reverse,
electrical-to-mechanical transduction in the cochlea.

This conjecture is supported by experimental evidence. Direct currents passed across the organ of
Corti produce marked changes in BM responses to acoustic stimuli with frequencies at and above CF, and
little changes in responses to stimuli with frequencies below CF. Positive currents (from scala vestibuli
to scala tympani) increase the sensitivity and frequency tuning of BM sound-evoked motion and shift
its characteristic frequency upward, while negative currents decrease the sensitivity and tuning of the
response and shift the characteristic frequency downward. Presumably, the effects of negative currents
are analogous to those of decreased endocochlear potential obtained through pharmacological means (as
discussed above).

Another finding is that when sinusoidal currents are injected into the scala media and an acoustic
stimulus is simultaneously delivered, otoacoustic emissions are evoked. More precisely, the sinusoidal
current generates emissions with the same frequency of the electrical stimulus, and also interacts with

2Here we mention otoacoustic emissions briefly only to the extent that they shed direct light on active cochlear vibrations.
The reader should be aware that this is a diversified phenomenon that includes spontaneous emissions produced without a sound
stimulus, simultaneously evoked emissions during tonal stimulation, delayed evoked emissions in response to periodic impulses
(e.g., broad-band clicks), and distortion product emissions produced by stimulation with two primaries.
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Figure 5.7: Schematic representation of the positive feedback that causes cochlear amplification. The
OHCs are involved in the loop while IHCs have no role in the amplification and are passive motion
detectors .

the acoustic tone to produce distortion-product otoacoustic emissions. These findings support the idea of
electrically induced BM motion, and indeed some in vivo experiments have also directly demonstrated
the existence of electrically induced BM motion for some mammalian cochleae.

One of the most authoritative candidates to explain reverse transduction is the so-called phenomenon
of somatic electromotility in OHCs. This definition refers to the ability of OHCs to exhibit rapid motile
responses, namely elongation and shortening, in response to hyperpolarization or depolarization of their
transmembrane potential. Depolarization causes outer haircells to shorten, pulling the reticular lamina
toward the scala tympani, and the BM toward the scala vestibuli. Hyperpolarization instead causes rapid
elongation of OHCs. Intrinsically, such responses are sufficiently fast to provide forces (or stiffness
changes) potentially capable of enhancing BM vibration, on a cycle-by-cycle basis, even at the highest-
CF regions of the cochlea.

The channel conductivity S of OHCs depends non-linearly upon stereocilia deflection, so that the
voltage-displacement relation exhibits compression and saturation and resembles a second-order Boltz-
mann function:

S(y) =
1

1 + c1e−y/y1 + c2e−y/y2
− b, (5.2)

where y is a quantity proportional to stereocilia deflection, scaled by a coefficient that depends upon
position along the BM. All coefficients can be determined in order to fit physiological data. The sigmoid
shape of this function implies that the motile responses of OHCs ceases to be effective outside a narrow
range of stereocilia deflection.

5.2.3.3 The cochlear amplifier at work

If the mechanical feedback that the organ of Corti exerts upon BM vibration is controlled by the mag-
nitude of haircell receptor potentials or transduction currents, the non-linear nature of this transduction
process must necessarily result in mechanical counterparts in BM vibration. Accordingly, models in-
corporating a feedback loop between OHCs and BM vibration often identify reverse transduction as the
source of all BM non-linear phenomena, including the compressive growth at CF, as well as two-tone
suppression and intermodulation distortion.

We can summarize the whole idea of the cochlear amplifier as in Fig. 5.7: (A) acoustic power entering
the cochlea induces a pressure difference across the BM and a traveling wave motion that propagates from
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the basal end towards the apex; (B) displacement of the BM causes deflection of the stereocilia of the
OHCs, which in turn (C) modulates the current through the OHCs; (D) mechanical motion is induced in
the OHCs and this produces a direct effect on the BM in such a way as to reinforce the displacement.
This loop represents the cochlear amplifier and stage (D) specifically represents the reverse transduction
stage. The overall effect of this active process is similar to that of a negative viscosity, or an undamping
of the BM oscillations.

We may represent the basilar membrane as a set of N forced mechanical oscillators (we omit the
continuous time variable t for brevity):

miẍi + riẋi + kixi = fstapes
i (t) + fhydro

i (ẍ1 . . . , ẍN ) + fshear
i (ẋi−1, ẋi, ẋi+1) + fampl

i (yi), (5.3)

where i = 1, . . . , N and mi, ri, ki are the oscillator mass, viscosity, and stiffness, respectively, deter-
mined in such a way that the corresponding center frequencies and quality factors take physiologically
suitable values. The first forcing term f stapes

i is generated by the acceleration as(t) of the stapes and
transmitted by the cochlear fluid to oscillator, and can be assumed to take the form

f stapes
i (t) = −Gias(t), (5.4)

where Gi are suitable positive constants. The second term fhydro
i represents a hydrodynamic force

caused by negative acceleration of oscillator j, transmitted to oscillator i by the fluid pressure field:

fhydro
i (ẍ1(t) . . . , ẍN (t)) = −

N∑
j=1

Gj
i ẍj(t), (5.5)

where fluid coupling is represented by the positive coefficients Gj
i . The third term f shear

i represents a
shear force component caused by viscous forces acting on oscillator i depending on relative velocities of
its neighboring oscillators:

fshear
i (ẋi−1(t), ẋi(t), ẋi−1(t)) = s+i [ẋi+1(t)− ẋi(t)] + s−i [ẋi−1(t)− ẋi(t)], (5.6)

where s±i are the viscosity coefficients at the two sides. Finally, the term fampl is associated to cochlear
amplification: it depends non-linearly upon the stereocilia displacement yi(t) and represents forces gen-
erated by OHCs through somatic electromotility. This term vanishes at yi = 0 and has a sigmoidal shape
to account for the saturation properties of the cochlear amplifier (see also Eq. (5.2)).

In order for this dynamical system to be completely described we need to determine the equation
of motion for the stereocilia displacements yi(t). We can assume that the yi’s also are second order
mechanical oscillators, resonating at frequencies close to the characteristic frequencies of the primary
oscillators, and coupled to the accelerations ẍi’s through the tectorial membrane:

m̄iÿi + r̄iẏi + k̄iyi = −Ciẍi (5.7)

At resonance, the first and third terms on the left-hand side approximately cancel, so that during steady-
state motion one can write r̄iyi(t) ∼ −Ciẋi(t). The fact that yi is almost proportional to BM velocity
confirms the idea that the force term fampl behaves like a negative viscosity term and undamps cochlear
motion neutralizing viscous losses in the range of relatively small oscillations (up to about 10 nm). For
larger amplitudes transducer current saturates, undamping is overcome by viscous losses and the BM
response approaches that of a passive cochlea (see again Fig. 5.6(a)).

Simulations show that this model qualitatively explain the most important phenomena associated to
cochlear amplification. In particular for nearly CF stimuli the presence of the amplifier has a profound
effect and is able to simulate the compressive behavior of input-output functions as well increase in
frequency selectivity and shift toward the apex of the place at which maximum amplitude is achieved.
Two-tone interaction mechanisms are also convincingly simulated.
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5.3 Elements of psychoacoustics

We still know very little about how sensorial stimuli are processed in the brain: this is why results
from psychophysics are useful. Psychophysics investigates quantitative relationships between physical
stimuli and the sensations and perceptions that they produce. Generally speaking, psychophysical studies
analyze perceptual processes by investigating how systematic variations of the properties of a sensorial
stimulus along one or more physical dimensions affect the experience or the behaviour of a human
perceiver.

Quantitative results from psychophysics have produced a range of important practical applications
employing computational models of human perception. A typical example is the development of models
and methods of perceptual compression in the field of digital signal processing: these models produce
lossy compression algorithms that allow for high compression rates at the expense of little or null loss of
perceived quality.

As a branch of psichophysics, psychoacoustics is concerned with the study of auditory perception.
This section summarizes some fundamental aspects, focusing on what may be termed “engineering psy-
choacoustics”: quantitative results that are the basis for the development of computational models of
auditory functions.

5.3.1 Loudness

Loudness can be defined as that attribute of auditory sensation that corresponds most closely to the
physical measure of sound intensity, or as a psychological description of the magnitude of an auditory
sensation. As we will see the loudness of a sound strongly depends on both the sound intensity and its
frequency content.

5.3.1.1 Threshold in quiet

In Chapter Fundamentals of digital audio processing we have defined sound pressure level and the related dB unit
as

SPL = 10 log10(I/I0) = 20 log10(p/p0) (dB), (5.8)

where I and p are the RMS intensity and acoustic pressure of the sound signal, respectively, while I0 and
p0 are a reference intensity and a reference pressure, respectively. In particular, in an absolute dB scale I0
and p0 are chosen to be the intensity and the pressure at the threshold of hearing and have conventionally
the values I0 = 10−12 W/m2 and p0 = 2 · 10−5 Pa, respectively. A dB scale that uses these reference
values is often indicated with the unit dBSPL.

However these values are only qualitative indicators of the true threshold of hearing. In particular
they do not consider that this threshold is frequency-dependent. The most typical experimental setup used
to measure the treshold of hearing in quiet is the following: a subject listen to a sweep signal in which the
frequency is changing very slowly. As the sweep frequency changes, the subject can continuously adjust
the volume in such a way that he/she maintains the tone around the threshold of audibility. This method
is known as the “Békésy-tracking” method (from the name of its inventor), and the resulting trajectories
of increments-decrements in volume will typically produce a plot like the one in Fig. 5.8(a).

This plot is an estimate of the threshold sound pressure level in quiet. Although a specific plot is
produced by a specific subject, the dependence on frequency is qualitatively similar in many subjects
with normal hearing. At low frequencies, threshold in quiet requires pretty high SPLs (as much as
40 dB around 50 Hz). For frequencies in the range 0.5 − 2 kHz, the threshold in quiet remains almost
independent of frequency. The range 2 − 5 kHz is a very sensitive range in which very small SPLs
(even below 0 dB) are perceived. Above 5 kHz, the threshold exhibits peaks and valleys that vary greatly
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Figure 5.8: Loudness formation; (a) threshold in quiet as a function of frequency, measured with the
method of Békésy-tracking; (b) equal loudness contours illustrating the variation in loudness with fre-
quency (each curve represents one loudness level).

depending on the subject, but in general it increases rapidly for frequencies above 12 kHz and finally
reaches a limit above which no sensation is produced even at very high SPLs. This limit is strongly
dependent on the age of the subject: it is roughly in the range 16− 18 kHz for an age of 20− 25 years,
and drops with increasing age.

Using individual thresholds in quiet measured in many subjects, an average threshold in quiet can be
calculated. The dashed curve in Fig. 5.8(a) indicates such an averaged curve. One possible parametriza-
tion of this curve is given by the equation

pth(f) = 3.64

(
f

1000

)−0.8

− 6.5e−0.6( f
1000

−3.3)
2

+ 103
(

f

1000

)4

(dB SPL). (5.9)

5.3.1.2 Equal loudness contours and loudness scales

Equal loudness contours describe the frequency dependence of the loudness of sinusoidal tones. These
curves are typically measured by requiring listeners to match the intensity of a comparison sinusoid of
variable frequency to the intensity of a reference sinusoid at 1 kHz.

Many experiments have been carried out to determine equal loudness contours along the audible
range of hearing, and many investigators have reported qualitatively similar results, although with some
quantitative differences. Figure 5.8(b) shows equal loudness contours as reported in some of the most
recent studies, which have contributed to the latest version of the international standard ISO 226:2003
(Acoustics – Normal equal-loudness-level contours). Although the curves tend to follow the absolute
threshold curve at low loudness levels, it can be seen that at high loudness levels the contours flatten
somewhat. This phenomenon is experienced in everyday life when listening to recorded music: a greater
relative amount of bass is perceived at high intensities than at low intensities.

Starting from the 1950’s, several analytical approximations of these curves have been proposed. If
one considers loudness of sinusoidal sounds with a fixed frequency and variable intensity, at moderate
to high sound pressure levels the growth of loudness is well approximated by the power law S = ap2α,
where p is the acoustic pressure of the sinusoid, a is a dimensional constant, α is the exponent, and S
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is the perceived loudness. However this approximation cannot describe the dependence of loudness on
frequency, nor the deviation of the loudness function from power-law behavior below about 30 dB. One
recently proposed modification to the power-law (which has been used to plot Fig. 5.8(b)), assumes in
particular frequency-dependent parameters a(f) and α(f)

p2(f) =
1

u2(f)

{[
p(1000)2α(1000) − pth(1000)

2α(1000)
]
+ [u(f)pth(f)]

2α(f)
}1/α(f)

, (5.10)

where u(f) = [a(f)/a(1000)]1/2α(f) (therefore u(1000) = 1). The meaning of this equation is the
following: the loudness of a sinusoid with frequency f is equal to the loudness of a reference 1 kHz
sinusoid (with acoustic pressure p(1000)), when its acoustic pressure is p(f). Note that at threshold the
the value p(f) coincides with pth(f), as one would expect.

For a given reference value p(1000), an equal loudness contour p(f) can be drawn if the functions
a(f) and α(f) (or equivalently u(f) and α(f)) are known, i.e. estimated from experimental data. The
following function computes Eq. (5.10) using experimental values reported in recent literature.

M-5.1
Write a function that an equal loudness contour p(f), given a reference acoustic pressure p(1000).

M-5.1 Solution

function [spl, f] = eqloudness(db); %db: reference pressure at 1kHz, in dB

p0=2E-5; %standard acoustic pressure at threshold of sensitivity
alpha1=0.25; %value of exponent alpha at reference freq. 1kHz
pth1= (1.15)ˆ(1/(2*alpha1))*p0; %threshold acoustic pressure at 1kHz

%...from the equality (prt/p0)ˆ2alpha1=1.15

%%%%%%%%%%%%%%%%%%%%% frequency-dependent parameters %%%%%%%%%%%%%%%%%%%%%%%%%%

f =[20 25 31.5 40 50 63 80 100 125 160 200 250 315 400 500 630 800 1000 1250 ...
1600 2000 2500 3150 4000 5000 6300 8000 10000 12500]; %%%% frequency points

alphaf = [0.532 0.506 0.480 0.455 0.432 0.409 0.387 0.367 0.349 0.330 0.315 ...
0.301 0.288 0.276 0.267 0.259 0.253 0.250 0.246 0.244 0.243 0.243 ...
0.243 0.242 0.242 0.245 0.254 0.271 0.301]; %%%% exponent alpha(f)

logu = [-31.6 -27.2 -23.0 -19.1 -15.9 -13.0 -10.3 -8.1 -6.2 -4.5 -3.1 ...
-2.0 -1.1 -0.4 0.0 0.3 0.5 0.0 -2.7 -4.1 -1.0 1.7 ...
2.5 1.2 -2.1 -7.1 -11.2 -10.7 -3.1]; %%%% coefficient u(f)

uf =2*10.ˆ(logu/20-5); %...from the equality 0.4*10ˆ(log(u(f))/10 -9) = u(f)ˆ2;

dB_pthf = [ 78.5 68.7 59.5 51.1 44.0 37.5 31.5 26.5 22.1 17.9 14.4 ...
11.4 8.6 6.2 4.4 3.0 2.2 2.4 3.5 1.7 -1.3 -4.2 ...
-6.0 -5.4 -1.5 6.0 12.6 13.9 12.3];

pthf=10.ˆ(dB_pthf/20); %%%% freq.-dependent threshold acoustic pressure p_th(f)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

p1 =p0*10ˆ(db/20); %reference press. at 1kHz, from equality db= 20*log10(pr/p0)
pf2=uf.ˆ-2.*(p1ˆ(2*alpha1)-pth1ˆ(2*alpha1)+(uf.*pthf).ˆ(2*alphaf)).ˆ(1./alphaf);
spl= 10*log10(pf2);
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Figure 5.9: A-weighted dB scale: (a) inverse curve of the 40 phon equal loudness contour, and (b)
magnitude response of the filter HdBA(s), digitized with the bilinear transform.

Using equal loudness contours, one can define a psychophysical scale of loudness, whose unit of
measure is the phon. The loudness level in phons of a sinusoid at frequency f is defined as the level (in
dB SPL) of the 1 kHz tone that produces that same perceived loudness. As an example, any tone that has
the same loudness of a 60 dB, 1 kHz tone has, by definition, a loudness of 60 phons.

However the phon unit only describes sounds that are equally loud, while it cannot be used to measure
relationships between sounds with different loudness. As an example, a sinusoid at 40 phons is not twice
as loud as a sinusoid at 20 phons. In fact, psychophysical experiments show that an increase of 10 phons
approximately produce the impression of loudness doubling. Starting from this observation, the sone
scale of subjective loudness can be introduced. One sone is arbitrarily defined to correspond to 40 phons
at any frequency. A sinusoid that is judged by listeners to be twice as loud as the 1 sone sinusoid will be
defined to have a loudness of 2 sones. Therefore, in light of the above observation, 2 sones correspond
to 50 phons. Similarly, 4 sones are twice as loud again, i.e. they correspond to 60 phons. Therefore the
relationship between phons and sones is expressed by the equation

phon = 40 + 10 log2(sone). (5.11)

5.3.1.3 Weighting curves

Since equal loudness contours are not flat, plotting the spectrum of a sound signal (either on a linear scale
or on the dB SPL scale) does not represent very accurately our perception of that spectrum. In particular,
we have seen that humans are most sensitive to spectral energy in the frequency range from 0.5 to 5 kHz,
while they are less sensitive to spectral energy in the low- and high-frequency ranges.

In order to produce a more perceptually relevant spectral representation of a sound, a common pro-
cedure is to pass the sound signal through a filter that compensates for non-flat equal loudness contours.
Two remarks need to be made: first, the shape of equal loudness contours changes with loudness; sec-
ond, the loudness of a sound with a complex spectrum is not obtained by summing the loudness of each
of its sinudoidal components, due to the non-linear behavior of our auditory system (we will return on
this point in the next section). Therefore a linear filtering operation cannot in principle produce an ac-
curate loudness compensation. Having said that, linear filtering is nonetheless used in many practical
applications.

One of the most commonly used weighting filters corresponds to the so-called A-weighted dB scale
(usually abbreviated as dBA). The magnitude response of this filter approximates the inverse of the equal
loudness contour at 40 phons. Therefore a dBA weighting is only accurate for fairly quiet sinusoidal
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sounds. Despite this, this weighting is often used as an approximate equal loudness adjustment for
any measured spectra. An analog filter transfer function that can be used to implement an approximate
A-weighting is

HdBA(s) =
(2π · 13682)2s4

(s+ 2π · 20.6)2(s+ 2π · 107.7)(s+ 2π · 737.9)(s+ 2π · 12194.2)2
, (5.12)

where the coefficient at the numerator normalizes the gain to unity at 1 kHz. Figure 5.9 illustrates
the magnitude response of a digital filter HdBA(z) (obtained by digitizing Eq. (5.12) with the bilinear
transform) and compares it with the inverse curve of the equal loudness contour at 40 phons.

M-5.2
Write a function that computes the coefficients of a digital filter approximating the A-weighted dB scale with the
bilinear tranform.

M-5.2 Solution

function [b,a]= compute_Aweight();

global Fs;

k = 2*pi*13681.8653719;
p1 = -2*pi*20.598997; p2 = -2*pi*12194.217;
p3 = -2*pi*107.65265; p4 = -2*pi*737.86223;

[bil_zeros,bil_poles,bil_k]=bilinear([0;0;0;0],[p1;p1;p2;p2;p3;p4],kˆ2,Fs);
[b,a]=zp2tf(bil_zeros,bil_poles,bil_k);

This function has been used to plot the magnitude response in Fig. 5.9.

The A-weighted dB scale has two main drawbacks. First, as already mentioned, it is designed to
work at low sound pressure levels. Second and more important, it is based on old and fairly inaccurate
experimental data about equal loudness contours. Other frequency weightings (in particular, B- C- D-
weightings) have been proposed. While B- and D-frequency-weightings have fallen into disuse, the
C-frequency-weighting is still widely used.

5.3.2 Masking

In the previous section we have examined the perception of loudness of single sound in quiet conditions.
We now consider situations in which two competing sounds are heard.

The phenomenon of masking may be simply summarized with the common-sense statement that
“a loud sound makes a weaker sound imperceptible”. In fact masking effects are encountered in our
everyday life: when we are speaking to another person, we need little speech power in quiet conditions,
while the conversation is severely disturbed in the presence of a masker signal (e.g. if we are speaking
inside a noisy bus) and we will probably have to raise our voice to produce more speech power and
greater loudness. Similarly, the sound of one orchestral instrument may be made imperceptible by that
of another instrument, if one is very loud while the other remains soft.

Quantitative measures of masking are devoted to the determination of the masking threshold, i.e. the
sound pressure level of a probe signal (usually a sinusoidal signal) that is needed to make it just audible
in the presence of a masker signal. If the level of the masker signal is increased steadily, a continuous
transition between a perfectly audible and a totally masked probe signal will occur, and partial masking
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Figure 5.10: Masking threshold curves of a sinusoidal probe signal as a function of its frequency; (a)
masking caused by white noise with density levels Lmask; (b) masking caused by 1.1 kHz low-pass
filtered white noise and 0.9 kHz high-pass filtered white noise with density levels Lmask. Here and in the
following figures the dashed curve indicates threshold of hearing in quiet (see Sec. 5.3.1).

will occur in between. Partial masking reduces the loudness of a probe signal but does not mask it
completely. This effect often takes place in conversations.

These masking effects are example of simultaneous masking, i.e. they can be observed when masker
and probe signals are presented simultaneously. However masking can also occur when they are not
simultaneous. In particular, when the probe is a sound impulse which is presented right before the masker
is switched on, or right after the masker is switched off, then “premasking” (or “backward masking”) and
“postmasking” (or “forward masking”) occur, respectively. In the remainder of this section we discuss
in detail all these effects.

5.3.2.1 Simultaneous masking: noise-masking-tone

Simultaneous masking is best understood from a frequency-domain point of view: the relative shapes
of magnitude spectra of the probe and masker signals determine to what extent the presence of certain
spectral energy will mask the presence of other spectral energy (phase relationships between stimuli
can also affect masking outcomes, although to a lesser extent). As we will see, an explanation of the
mechanism underlying simultaneous masking phenomena is that the presence of a strong noise or tonal
masker creates an excitation on a certain portion of the basilar membrane which is strong enough to
block effectively the detection of a weaker signal.

A widely studied type of simultaneous masking is the so-called Noise-Masking-Tone (NMT), in which
the masking signal is a broad- or narrow-band noise and the probe signal is a sinusoid. Ideal white noise
is the most easily defined broad-band noise, its flat spectral density is not associated to any specific pitch.3

Figure 5.10(a) shows the masking threshold curves of a sinusoidal probe in the presence of white noise
with various density levels Lmask, as a function of the sinusoid frequency. The curves are horizontal only
at low frequencies, and lie about 17 dB above Lmask, while for f > 0.5 kHz they start to rise at a rate
of about 10 dB per decade. At very low and very high frequencies the curves will superimpose on the
threshold of hearing in quiet. Note also that the curves depend linearly on Lmask, i.e. increasing Lmask

by a certain number of dB shifts the curves upwards by the same amount. Moreover, even negative values

3In practice, white noise used in auditory research has flat spectral density only in the range from 20 Hz to 20 kHz, which
spans the audible range of hearing.
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Figure 5.11: Masking threshold curves of a sinusoidal probe as a function of its frequency; (a) masking
caused by narrow-band noise with Lmask = 60 dB and three different center frequencies f0; (b) masking
caused by narrow-band noise with f0 = 1 kHz and five different levels Lmask.

of Lmask (e.g., −10 dB) produce masking.

A second example of NMT effect is given in Fig. 5.10(b), which shows masking threshold curves of a
sinusoidal probe in the presence of low- and high-passed white noise. Below the cut-off frequency of the
low-pass noise, and above that of the high-pass noise, the curves are the same as those in Fig. 5.10(a).
More interestingly, the decrease of the masking curves at cut-off frequencies is much slower than the
magnitude response of the low-pass and high-pass filters, so that spreading of masking occurs above (or
below) the noise cut-off frequency.

A third, more complex NMT effect is obtained using narrow-band noise as a masker. For the moment
“narrow-band” means a bandwidth of 100 Hz for center frequencies f0 ≤ 500 Hz, and of about 0.2f0
for f0 > 500 Hz (in Sec. 5.3.3 we will see that these numbers correspond to critical bandwidths).
Figure 5.11(a) shows the masking threshold curves of a sinusoidal probe masked by narrow-band noises
with f0 = 0.25, 1, 4 kHz, all with levels Lmask = 60 dB (with a slight abuse of notation here Lmask

indicates the total level rather than the density level). The curves for f0 = 1 and 4 kHz are very similar,
while the curve for f0 = 250 Hz is broader. A second effect is that the maximum of the curves tends
to lower for higher noise center frequencies, although the noise level is always 60 dB: the maximum
of the masking threshold curve is about 58, 57, and 55 dB for the three center frequencies shown in
Fig. 5.11(a). A third notable effect is that the curves increase very steeply (about 100 dB per octave)
below the maximum, and exhibit a flatter decrease above the maximum.

Figure 5.11(b) shows masking threshold curves for a narrow-band noise centered at 1 kHz and with
varying level. The behavior of these curves below the center frequency seems to be quite linear with
respect to noise level: in particular the maximum is always 3 dB below the noise level. Above the
maximum, however, the behavior becomes quite non-linear: the curves decay quite quickly for low and
medium noise levels, while at higher levels the slope becomes increasingly shallow. The dips that appear
for high (≥ 80 dB) masker levels are due to non-linear effects in the cochlea, analogous to the two-tone
interactions that we have examined in Sec. 5.2.2. In this case audible difference noises are created by
interaction between the sinudoidal sound and the narrow-band noise. With increasing levels, subjects
tend to hear the difference noise rather than the sinusoid, while this only becomes audible when its level
is increased to the values indicated by the dotted lines.
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Figure 5.12: Masking threshold curves of a sinusoidal probe as a function of its frequency; (a) masking
caused by a sinusoid at 1 kHz and 80 dB, with regions where beats and difference tone are audible; (b)
The masked thresholds are given for sound pressure levels of 40 and 60 dB of each partial.

5.3.2.2 Simultaneous masking: tone-masking-noise

5.3.2.3 Simultaneous masking: tone-masking-tone

A second important type of simultaneous masking is the the so-called Tone-Masking-Tone (TMT), in
which the masker is made of one or more sinusoidal partials, and the probe signal is a sinusoidal sound.
Figure 5.12(a) shows an example of masking threshold curve for a sinusoidal probe masked by a sinu-
soidal masker. An effect that appears in this case is that beats are audible when the frequencies of the
probe and the masker are close (e.g., a probe at 990 Hz and a masker at 1 kHz produce audible beats at
10 Hz), and to a lesser extent in two regions around where the probe frequency is twice or three times
that of the masker. The example in Fig. 5.12(a) also show that for probe frequencies near 1.4 kHz some
(inexperienced) subjects would indicate audibility of an additional tone at a level as low as 40 dB: in
reality these subjects would hear a cubic difference tone near 600 Hz (2f1 − f2, with f1 = 1000 Hz
and f2 = 1400 Hz) resulting from the two-tone interaction mechanism described in Sec. 5.2.2, while the
“true” probe is only detected at higher levels. These results indicate that TMT is in general more difficult
to measure than NMT: individual differences are greater, and large numbers of well-trained subjects are
needed in order to estimate masking curves.

The dependence of masking threshold on masker level exhibits some analogies but also some differ-
ences with the NMT case shown before in Fig. 5.11(b). In particular, non-linear behavior is observed on
both sides of the curve maximum: above the maximum curves decay quickly for low and medium masker
levels, and more slowly for higher levels (analogously to the NMT case), while below the maximum the
slope becomes less steep with decreasing masker level (while in the NMT case the behavior is quite
linear). As a result, at high levels a greater spread of masking is found towards higher frequencies than
towards lower frequencies, while at low levels the opposite occurs, and for intermediate levels (around
40 dB) the masking patterns are approximately symmetrical.

Figure 5.12(b) shows an example of masking curves of a sinusoidal probe masked by a harmonic
masker (with all partial at the same amplitude). Above 1.5 kHz the local maxima and minima of the
curves can hardly be distinguished. At frequencies above the last harmonic partial the curves decays
more slowly with increasing masker level, and eventually approach threshold in quiet.
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Figure 5.13: . Regions of premasking, simultaneous masking, and postmasking. Two different time
scales are used: time relative to masker onset and time relative to masker cessation.

5.3.2.4 Temporal masking

In the previous sections we have examined masking in steady-state conditions, i.e. with long-lasting
probe and masking signals. However temporal effects of masking also exist. These are typically mea-
sured quantitatively by presenting maskers of limited duration (e.g. 200 ms), and probe tone bursts as
short as possible with respect to masker duration. The probes are shifted in time relative to the masker.
Figure 5.13 illustrates an example of a temporal masking curve (i.e. the level needed for the tone burst to
be perceived) measured in this way. Three different temporal regions of masking relative to the masker
are visible. Premasking (or backward masking) takes place before the masker onset. It is followed by
simultaneous masking when the masker and probe are presented simultaneously. After the end of the
masker, postmasking (or forward masking) occurs.

During the time intervals of premasking and postmasking the masker is not physically existent, and
nevertheless it still produces masking. The effect of postmasking corresponds to a decay in time of the
effect of the masker. Several experimental studies have shown that the amount of postmasking depends
non-linearly but in a predictable way on probe frequency, masker intensity, probe delay after masker ces-
sation, and masker duration. As an example, for a masker duration of 200 ms postmasking is comparable
to the plot of Fig. 5.13, while for a masker duration of 5 ms the decay is initially much steeper. More-
over postmasking exhibits frequency-dependent behavior similar to simultaneous masking, that can be
observed when the masker and probe frequency relationship is varied. Postmasking can last up to about
200 ms after masker cessation (or more, depending on masker level), and is therefore the dominant
non-simultaneous temporal masking effect.

Premasking is at first a more surprising phenomenon because it appears before the masker is switched
on. This does not mean that our hearing system can listen into the future. Rather, the effect is under-
standable if one realizes that our sensations do not occur instantaneously, but require a build-up time to
be perceived. Premasking is less well understood and less reliably measured than postmasking. It decays
much more rapidly than forward masking: the time during which it can be reliably measured is not more
than 20 ms, and some studies indicate that, already ∼ 2 ms prior to masker onset, the masking threshold
falls about 25 dB below the threshold of simultaneous masking. However the literature lacks consensus
over the maximum time of persistence of significant premasking.
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5.3.3 Auditory filters and critical bands

5.3.3.1 The power spectrum model of masking

Imagine the following experiment: the masking threshold for a sinusoidal probe is measured as a function
of the bandwidth of a band-pass noise masker, centered at the sinusoid frequency, and with constant level
density (so that the total noise level increases with the bandwidth). This experiment has been performed
several times by many researchers, always yelding similar results: for small noise bandwith values, the
threshold increases with the noise bandwidth; however, above a certain bandwith value the threshold
flattens off and is not changed significantly by further increases in noise bandwidth.

A way of interpreting this result is the following: looking back at Fig. 5.4, we can model the behavior
of the basilar membrane as a bank of bandpass filters with overlapping passbands, the auditory filters.
The probe is detected by looking at the output of the auditory filter centered on the probe frequency.
Increases in noise bandwidth result in more noise passing through that filter, as long as the noise band-
width is less than the filter bandwidth. However, once the noise bandwidth exceeds the filter bandwidth,
further increases do not change the noise passing through that specific filter. The bandwidth at which the
signal threshold ceases to increase is called the critical bandwidth (CB), and it is closely related to the
bandwidth of the auditory filter at the same center frequency.

This “band-widening” experiment is important because it leads to the so-called power-spectrum
model of masking, which assumes that (a) the peripheral auditory system behaves as a bank of over-
lapping bandpass filters, (b) only one filter is used to detect a sinusoidal signal in a noise background
(the one with center frequency corresponding to that of the signal), (c) the threshold for detecting the
signal is determined only by a certain signal-to-noise ratio at the output of that filter. Although none
of these assumptions is strictly correct (in particular, the filters are level dependent rather than linear,
and listeners can combine information from more than one filter to enhance signal detection), the basic
concept of the auditory filter is widely accepted and has proven useful. The power-spectrum model of
masking then predicts that simultaneous masking occurs when the the masker has energy in the same
critical band of the probe signal. In reality simultaneous masking effects are not bandlimited to within
the boundaries of a single critical band. Interband masking also occurs, i.e., a masker centered within
one critical band has some predictable effect on the masking thresholds in other critical bands: this effect
is known as the spread of masking.

Extensive research has been devoted to determining auditory filter shapes and the critical bandwidths.
It is immediately evident that auditory filters do not have a rectangular magnitude response. In fact, if
they were rectangular (with a bandwith exactly equal to the CB), then according to hypothesis (c) of
the power-spectrum model the following equation would hold for the threshold level Lth of a sinusoidal
probe masked by broadband white noise with level density Lmask:

Lth = K · [CB · Lmask] , (5.13)

where CB · Lmask is the total masker level (because all noise components within the CB are passed
equally and all components outside the CB are removed totally), and K is the signal-to-noise ratio at
threshold. According to Eq. (5.13), for subcritical bandwidths the signal threshold should increase by
3 dB per doubling of bandwidth (i.e. 3 dB increase in masker level). Instead experimental data show that
the rate of change is markedly less than this, thus providing evidence that auditory filters are not even
approximately rectangular.

A first hint at the shape of the auditory filters is given by the so-called psychophysical tuning curves
(PTC). In Sec. 5.3.2 we have used the four variables of masking experiments (probe and masker fre-
quency and level) to plot masking curves, that represent the threshold level of the probe in the presence
of a masker of given level and frequency, as a function of probe frequency. We can use these variables in
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Figure 5.14: Qualitative psychophysical tuning curves for six different probe signals (probe frequencies
and levels are indicated by circles), as a function of masker frequency.

a different way: namely, we can plot the masker level needed in order to mask a probe of given level and
frequency, as a function of the masker frequency. The curves that we obtain in this way are the PTCs.

The masker can be either a sinusoid or narrow-band noise, but noise is generally preferred to estimate
PTCs, because it reduces beating effects. Moreover, low levels are generally used to ensure that activity
will be produced primarily in a single auditory filter. A qualitative example of PTCs is displayed in
Fig. 5.14. Two aspects are typical for these curves: the slope towards low frequencies is shallower
than the slope towards higher frequencies, and the minimum is reached at a masker frequency a little
bit above the frequency of the probe. Note that these curves are in good agreement with physiological
tuning curves discussed in Sec. 5.2.2.

According to the power-spectrum model, at threshold the masker produces a constant output from the
corresponding auditory filter, in order to mask the fixed probe. Thus the PTC indicates the masker level
required to produce a fixed output from the corresponding auditory filter, as a function of frequency. If
we mantain the assumption that the auditory filter are approximately linear with respect to masker level,
we can conclude that the shape of the auditory filter can be obtained by inverting the PTC, because what
we are doing is plotting the input required to give a fixed filter output.

5.3.3.2 Estimating the auditory filter shape

PTCs only give a qualitative idea of the shape of auditory filters, since they suffer from two main limita-
tions. First, it is not strictly true that only one auditory filter is involved in the determination of a PTC,
and instead “off-frequency” listening occur. Second, it is not strictly true that auditory filters are linear
with respect to masker level, so that the underlying filter shape changes as the masker is altered.

If we consider a generic non-rectangular magnitude response W (f) of the auditory filter, the follow-
ing equation would hold for the threshold level Lth of a sinusoidal probe masked by broadband white
noise with level density Lmask:

Lth = K

∫ +∞

0
W (f)Lmask(f)df, (5.14)

where K is the signal-to-noise ratio at threshold, as in Eq. (5.13). Some experiments indicate that K
is typically about 0.4 and varies with center frequency, increasing markedly at low frequencies. By
manipulating Lmask(f) and measuring the corresponding changes in Lth it is possible to infer the filter
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Figure 5.15: Auditory filter estimation through a notched-noise experiment; (a) magnitude responses
of sinusoidal probe, notched-noise masker, and auditory filter; (b) measured masking threshold as a
function of notch half-bandwidth ∆f .

shape W (f). The masker used to perform measures should be such that the assumptions of the power-
spectrum model are not strongly violated. An approach used in the literature is the “notched-noise
method”, which employs a broadband white noise masker with a notch around the probe frequency f0.
The filter shape can then be estimated by measuring the masking threshold as a function of the width
of the notch. Figure 5.15(a) illustrates a notched noise experiment, in which the notch is symmetrical
around f0 and has a width of 2∆f . In this case from Eq. (5.14) one can write

Lth = KLmask

∫ f0−∆f

0
W (f)df +KLmask

∫ +∞

f0+∆f
W (f)df. (5.15)

The two integrals on the right-hand side represent the shaded areas in Fig. 5.15(a). Assuming that the
filter is also symmetrical about f0 (which is not too wrong for low noise levels) the two areas are equal.
Thus, the threshold function provides a measure of the integral of the auditory filter.

If one assumes an analytical form of the auditory filter shape, then the integrals in Eq. (5.15) can be
also solved analytically. Many investigators have used a family of such analytical forms, constructed as
an exponential with a rounded top, and called roex for brevity. The simplest of these forms, the roex(p)
filter, can be written as

W (g) = (1 + pg) · exp(−pg), with g = | f − f0 | /f0. (5.16)

The new variable g represents normalized frequency deviation from f0, while the parameter p determines
both the bandwidth and the slope of the skirts of the auditory filter. The higher the value of p, the
more sharply tuned is the filter. Moreover, asymmetric filter shapes can be described if two different p
values pl, pu, are used independently for the lower and upper frequency filter skirts. Using roex models,
Eq. (5.15) can be solved analytically and standard minimization procedures can be used to find the values
of pl, pu that best fit experimental data.

5.3.3.3 Barks and ERBs

Using results from notched-noise masking experiments (or from other experiments that use different
approaches) one can estimate the critical bandwidth as a function of frequency. Figure 5.15(b) provides
a qualitative example of experimental data for f0 = 2 kHz Lmask = 50 dB. The masking threshold
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Figure 5.16: (a) Critical bandwidths, Eq. (5.17), and equivalent rectangular bandwidths, Eq. (5.19), as
functions of center frequency; (b) the critical-band rate scale, Eq. (5.18), that maps Hz into Barks.

curve stays almost constant for small ∆f and decreases for ∆f larger than a critical value, which can be
assumed as a measure of the critical bandwidth at 2 kHz.

By collecting data from many subjects an estimate of the critical bandwidth can be obtained. In
general it is found that the CB remains almost constant (CB ∼ 100 Hz) up to a frequency of about
500 Hz, increases slightly little less-than-linearly up to 3 kHz, and slightly more-than-linearly above
3 kHz. This behavior can be reasonably approximated by assuming constant CB = 100 Hz up to
500 Hz, and a CB increase of 20% of the center frequency above 500 Hz. For an average listener, CB is
conveniently approximated as

CB(f) = 25 + 75 ·

[
1 + 1.4

(
f

1000

)2
]0.69

. (5.17)

The plot of this function is shown in Fig. 5.16(a).
Although the function is continuous, it is useful when building practical systems to treat the ear as

a discrete set of bandpass filters that conforms to Eq. (5.17). A particular filter set can be iteratively
constructed as follows: given one filter, the next one is chosen in such a way that the upper limit of the
CB of the current filter corresponds to the lower limit of the CB of the next one. This procedure leads to
the so-called scale of critical-band rate. The first CBs span the ranges [0, 100] Hz, [100, 200] Hz, etc.,
up to 500 Hz where they start to increase. The critical-band rate function can be described as

z(f) = 13 · arctan (0.00076 · f) + 3.5 · arctan

[(
f

7500

)2
]

(Bark). (5.18)

Distance between critical bands along this scale is conventionally measured according to a new unit of
measure, called Bark: a distance of one CB is “one Bark”. The plot of the critical-band rate function
z(f) is shown in Fig. 5.16(b), while Table 5.1 provides values for a filter-bank based on the critical-band
rate. The corresponding numbered points in Fig. 5.16(b) illustrate that the nonuniform Hz spacing of the
filter bank is actually uniform on a Bark scale.

A characterization alternative to the critical-band rate and the Bark unit is the so-called ERB scale.
The acronym ERB stands for Equivalent Rectangular Bandwitdth, and refers to a general way of char-
acterizing the bandwidth of a bandpass filter W (f). The ERB of W (f) is defined as the bandwidth
of a filter with rectangular magnitude response, constructed as follows: its center-frequency f0 is the
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Band
no.

Center
freq. (Hz)

Bandwidth
(Hz)

Band
no.

Center
freq. (Hz)

Bandwidth
(Hz)

Band
no.

Center
freq. (Hz)

Bandwidth
(Hz)

1 50 0-100 10 1175 1080-1270 19 4800 4400-5300
2 150 100-200 11 1370 1270-1480 20 5800 5300-6400
3 250 200-300 12 1600 1480-1720 21 7000 6400-7700
4 350 300-400 13 1850 1720-2000 22 8500 7700-9500
5 450 400-510 14 2150 2000-2320 23 10500 9500-12000
6 570 510-630 15 2500 2320-2700 24 13500 12000-15500
7 700 630-770 16 2900 2700-3150
8 840 770-920 17 3400 3150-3700
9 1000 920-1080 18 4000 3700-4400

Table 5.1: Center frequencies and bandwidths for a critical-band filter bank, based on Eq. (5.17).

same as that of W , its constant spectral density within the passband is equal to W (f0) = Wmax, and its
bandwidth ∆fERB is chosen so that the power in the rectangular band is equal to the power in the real
band:

∆fERBWmax =

∫
W (f)df. (5.19)

In the context of critical band characterization, the use of the ERB scale emerged in particular in notched-
noise masking experiments with roex filters. In fact it can be shown easily that the ERB of a roex filter is
ERBroex(p) = 4f0/p. Given a collection of ERB measurements on center frequencies across the audio
spectrum, a curve fitting on the data set yields the following expression:

ERB(f) = 24.7

(
4.37

f

1000
+ 1

)
. (5.20)

The plot of this function is shown in Fig. 5.16(a), together with the critical-band rate scale. It can be noted
that the two scales are quite different. In particular, the ERB scale implies that auditory filter bandwidths
decrease below 500 Hz, whereas the critical bandwidth remains essentially flat. The apparent increased
frequency selectivity of the auditory system below 500 Hz has implications for optimal filter bank design,
particularly in perceptual coding applications, as we will see.

5.3.4 Pitch

Pitch may be defined as that attribute of auditory sensation in terms of which sounds may be ordered on a
musical scale extending from high to low. Like loudness and timbre, it is a subjective attribute of sound,
that cannot be expressed in physical units or measured by physical means.

Pitch perception is a complex phenomenon, of which sound frequency content is just one related
aspect. Intensity, duration, and temporal envelope also have a well recognized influence on pitch, and
cognitive aspects are also involved. As we will see, psychophysical experiments provide evidence that
pitch coding does not occur in the peripheral auditory system, and instead is the result of high-level
processing in the central auditory system: in Chapter From audio to content we will examine computational
models of pitch.

Different types of stimuli (sinusoids, harmonic sounds, inharmonic sounds, noises) elicit perception
of pitch in different ways, not only along a scale from low to high, but also along a scale of “pitch
strength”. Without entering into details, more or less the sensation of pitch strength becomes progres-
sively fainter when going from pure sinusoids to harmonic sounds, narrow-band noise, harmonic sounds
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Figure 5.17: Constructing the mel scale: (a) relation between frequency f1 of reference sinusoid and
frequency f2 of a comparison sinusoid producing half pitch sensation (solid curve), and absolute “ratio
pitch” sensation as a function of frequency (the dashed line is the line f2 = 1.5 · f1); (b) absolute “ratio
pitch” sensation as a function of frequency in linear scales.

with low harmonics missing, down to various types of noise. As an example, a sinusoid at 1 kHz pro-
duces a very distinct strong pitch sensation, whereas a high-pass noise with a cut-off freq. of 1 kHz
produces an extremely faint pitch, although both stimuli produce approximately the same pitch sensation
in terms of height.

5.3.4.1 Sinusoids and the mel scale

There are various procedures to measure the pitch of sinusoidal sounds with respect to their frequency.
Typical methods are “halving (or doubling) procedures”, in which subjects are presented with a reference
sinusoid at frequency f1 and have to adjust the frequency f2 of a comparison sinusoid until it is perceived
half (or twice) as high as the first one. At low frequencies (roughly, below 1−2 kHz), the halving of pitch
sensation corresponds approximately to a ratio of 2 : 1 between sinusoid frequencies. This result is not
surprising, since in musical terms it corresponds to the octave interval. For higher values of f1, however,
some unexpected results are found: a frequency ratio larger than 2 : 1 is necessary for the perception of
half pitch. This relation is illustrated in Fig. 5.17(a): the solid curve represents averaged data obtained
from half pitch and double pitch experiments (with the appropriate interchange of axes).

This curve is determined from experiments with halving and doubling of sensations rather than ab-
solute values, by choosing an arbitrary pitch reference point. We can construct an absolute scale that
defines the sensation “ratio pitch” as function of frequency. If we choose the reference point at low fre-
quencies, where f1 and f2 are proportional, and assume that the constant of proportionality is 1, then we
can trace the dotted line in Fig. 5.17(a), by shifting the solid line by a factor of 2 towards the left. This
dotted line indicates that at low frequencies values of ratio pitch are identical to values in Hz, while at
high frequencies values in Hz and values of ratio pitch deviate substantially from another.

The unit of this absolute ratio pitch sensation is called mel, since ratio pitch determined this way
is related to our sensation of melodies. As an example the dotted line in Fig. 5.17(a) shows that 8 kHz
correspond to 2100 mel, while 1300 Hz correspond to 1050 mel, which confirms our previous observation
that a tone of 1300 Hz produces half the pitch of an 8 kHz tone. Figure 5.17(b) shows the same relation
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using linear scales. Possible parametrizations of the mel scale are the following:

m = 1127 · ln
(
1 +

f

700

)
, or m = 1000 · log2

(
1 +

f

1000

)
, (5.21)

where the first one is the most commonly used. The similarity between the curve in Fig. 5.17(b) and the
one in Fig. 5.16(b) suggests that there is a relationship between the mel scale and the critical-band scale
of Eq. (5.18). This is not so surprising if one assumes pitch to be determined by the center of excitation
activity along the basilar membrane, which is also reflected in the Bark scale.

As mentioned before, the pitch of sinusoids depends not only on frequency but also on other param-
eters. Two particularly relevant factors are sound pressure level and partial masking. Psychophysical
experiments show that pitch decreases with increasing sound pressure level for frequencies below 1 kHz,
is quite independent on sound pressure level for frequencies in the range 1 − 2 kHz, and tends to rise
with increasing sound pressure level for higher frequencies. As far as partial masking is concerned, its
effects on pitch can be roughly summarized as follow: a masker with a lower frequency content than the
probe yields positive probe pitch shifts, whereas a masker with a higher frequency content than the probe
produce negative pitch shifts. In terms of the corresponding excitation patterns, the pitch of the probe is
“shifted away” from the spectral slope of the partial-masking sound.

A final important measure of pitch of pure sinusoids is the JND (just noticeable difference) between
the pitch of two sinusoidal sounds with different frequencies presented sequentially. There is some
smallest frequency difference below which listeners can no longer tell consistently which of the sounds
is higher: the JND is usually defined as the frequency difference that produces 75% correct responses
in a “forced-choice” experiment. The pitch JND depends on frequency, intensity, and tone duration.
Typically it is found to be about 1/30 of the critical bandwidth at the same frequency.

5.3.4.2 Harmonic sounds and pitch illusions

With respect to sinusoids, harmonic sounds produce a much less univocal pitch percept. The specific
spectral characteristics of a harmonic sound can produce different results in terms of perceived pitch.

If the lowest harmonic component (the fundamental) is present, then the perceived pitch will usually
correspond to the frequency of this component, as one would expect. However if the fundamental is
missing and only higher harmonic components are present, the pitch perceived by a listener is still that
of this missing fundamental. A familiar example of the occurrence of such a virtual pitch phenomenon
is that of a low pitched sound emitted by a very small loudspeaker (e.g., a voice emitted by the speaker
of a laptop pc). Although such a loudspeaker radiates negligible power in the frequency range where the
fundamental is located, listeners are still able to recognize the pitch.

The virtual pitch phenomenon does not always occur, only specific combinations of fundamental
frequency and of the frequency of the lowest component are able to produce it. The existence region of
virtual pitch can be defined as a close region in a cartesian plane whose axes are the lowest harmonic
component of the sound and the (missing) fundamental frequency. This region represents the area in
which spectral components of incomplete harmonic spectra have to be contained in order to produce
a virtual pitch. Figure 5.18 shows a qualitative plot of such an existence region (detailed shapes vary
depending on the stimulus type, in particular the number of harmonic components). This figure indicates
that a harmonic sound with its lowest frequency component above 5 kHz will hardly produce any virtual
pitch, whatever the missing fundamental frequency.

The missing fundamental phenomenon has been observed experimentally by many researchers since
the 1840’s. The debate about its explanation has generated two alternative theories, one explaining the
pitch sensation associated to the missing fundamental as a nonlinear difference tone generated at the
auditory periphery, the second explaining the phenomenon as a result of processing operated by the
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Figure 5.18: Qualitative plot of the existence region for virtual pitch.

central auditory system (with no involvement of the peripheral system). In particular some experiments
have shown that two successive harmonic partials (say with frequencies f1 = nf0 and f2 = (n +
1)f0, where f0 is the missing fundamental), presented simultaneously to different ears, evoke an equally
effective fundamental pitch percept as a monaural presentation of the same two harmonics. Clearly, if
each of the two harmonic partials is delivered to a different ear, there can not be any physical interference
at the level of the basilar membrane. This kind of experiments then suggest that the pitch of complex
tones is mediated primarily by a central mechanism that operates on neural signals derived from those
stimulus harmonics spectrally resolved in the cochlea.

Another well known auditory illusion in the perception of pitch is the so-called phenomenon of
circular pitch. The illusion is generated by constructing a harmonic sound made of sinusoidal compo-
nents with equal amplitudes and frequencies fk separated by octave intervals (i.e. f2 = 2f1, . . . fk =
2kf1, . . .). This harmonic spectrum is passed through a filter with a fixed, band-pass shaped amplitude
response (e.g. a cosinusoidal or a gaussian shape). Then the frequencies fk are shifted upwards or
downwards, either in discrete steps of a musical semitone, or in a continuous fashion.4 The perceptual
result is that of a scale or a tone which possesses a continually ascending (or descending) pitch, and yet
ultimately seems to go no higher or lower, i.e. it possesses a circular pitch. This is often regarded as
a kind of auditory analog to visual effects where 2-D perspectives can create illusions of “impossible”
geometries.5

5.3.4.3 Inharmonic sounds

Pitch perception of inharmonic sounds has also been studied. Consider a harmonic sound having strong
partials with frequencies of 800, 1000, and 1200 Hz. This will have a virtual pitch corresponding to
the missing fundamental at 200 Hz. If each of these partials is shifted upward by a small amount of
Hz, however, they are no longer in exact harmonic relationship and do not have a common fundamental
frequency. However listeners will typically still interpret this sound as being “nearly harmonic”, and will
identify a virtual pitch of approximately 204 Hz. This pitch sensation can be interpreted as a result of
looking for a “nearly common factor”: 1/[(820/4) + (1020/5) + (1220/6)] ∼ 204.

4In the former case, the resulting sound is known as the Shepard scale, in the latter it is known as the Risset tone.
5Some famous and striking examples of impossible perspectives, like ever-ascending stairs, can be found in the work of

dutch graphic artist M. C. Escher.
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5.4 Commented bibliography

Review of distal, medial, proximal theories by Bullot et al. [2004].
General reference in psychoacoustics. Classic book by Fastl and Zwicker [2007]. Also check Moore

[1995]. Georg von Békésy, the Nobel laureate, was one of first to study the inner ear and the cochlea.
His pioneering observations established concepts of the traveling wave and the CF for different places
along the cochlea. He described his observations in [von Békésy, 1960].

Physiology and mechanics of the inner ear and cochlea: review paper by Robles and Ruggero [2001],
with a strong focus on experimental measurements. Another review paper on the cochlea, more focused
on the cochlear amplifier and modeling approaches, is [Nobili et al., 1998]. The cochlear model reported
in Eqs. (5.3-5.7) is based on this paper.

Loudness and equal-loudness contours: a recent and interesting review of the topic is provided by
Suzuki and Takeshima [2004], which has led to the revision of the ISO226 standard. Our fig. 5.8(b) is
based on the data contained in this work.

Perceptual coding: an extensive review is provided by Painter and Spanias [2000].

References
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