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* Relevant problems in molecular biology and
medicine can be modeled through graphs

* The node labeling and ranking problem in
complex biological networks

* Merging local and global learning strategies: the
kernelized score functions algorithmic scheme

* Analysis of huge biological networks with off-the-
shelf machines: results and perspectives
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Drug repositioning

Given a cgllection of molecgles
\\S/OH 7
\O/ A\ o
0 HO I w/\
0 O

(A) (B) (C)

Find a meaningful way to express a similarity between them (i.e. binary

profiles indicating the presence/absence of substructures used as proxy for

the computation of a global similarity score between each pair of

The most similar nodes
(drugs) are candidates for
the development of novel
anticonvulsant drugs

< Seed node, a marketed
drug (i.e. anticonvulsant)

molecules).

Nodes: drugs
Edges: similarity bet-
ween drugs
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Automated Function Prediction (AFP)

Given a collection of proteins.

Find a meaningful way to express a similarity = = —

between them (i.e. binary profiles indicating the ﬁ =
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computation of a global similarity score between e e

each pair of ptoreins).

The most similar nodes
(proteins) are candidates
for the association to the
functional term associated
to the seeds

— Seed npde, associated to
a functional vocabulary
term (i.e. Gene Ontology)
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Disease gene networks

Given a collection of genes. Build a network whose nodes (genes) are
connected only if they are involved into disorders of the same class.
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Node labeling and ranking

Graph Semi-Supervised Learning (GSSL) problem
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\/ : proteins,genes,drugs,...

E : functional

similarities/relationships
W : similarity matrix
S . labeled nodes

U : unlabeled nodes

GOAL.: predict labels for unlabeled nodes (/abeling problem) or rank nodes
with respect to the class to be predicted (ranking problem)
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State-of-the-art node labeling/ranking methods in

computational biology

- Guilt by association (Marcotte et al., 1999, Oliver et al. 2000)

- Evaluation of functional flow in graphs (Vazquez et al. 2003)

- Hopfield network-based methods (Karaoz et al. 2004, Bertoni et al.
2011)

- Local learning and weighed integration (Chua et al 2007)

- Label propagation based on Markov fields (Deng et al. 2004)

- Kernel methods for semi-supervised learning and integration of
networks (7Tsuda et al. 2005, Borgwardt et al. 2011)

- Label propagation based on Gaussian random fields and ridge
regression (Mostafavi et al. 2008)

- Random walk-based algorithms (Kohler et al., 2008, Bogdanov
and Singh, 2010)
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Local learning strategy:

Guilt-by-association (Marcotte et al., 1999, Oliver et al. 2000)
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Global learning strategy:

Exploitation of the overall network topology

(Karaoz et al. 2004, Bengio et al. 2008, Borgwardt et al. 2011)
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Kernelized score functions: putting together local

and global learning strategies (re et al. 2012)

-~
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Example of a kernel well-suited to capture the topology

of the graph: the Random Walk Kernel (smola and Kondor, 2003)

Normalized

| / graph Laplacian
-~ 1 1

\ [q - step RW kernel
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Derivation of kernelized score functions
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Score functions are used to rank nodes in a undirected graph

1. Select a distance - score function

A modular approach:

2. Select a suitable kernel
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Kernelized score functions: a picture of the ranking method

A positive ————»
node

Augmented
connectivity
Original network Random walk kernel
high rank
? connected with 4 positives
] connected with 2 positives
Scoring of unlabeled nodes dﬁ
low rank
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Kernelized score functions : a drug repositioning case study

M. Re, and G. Valentini, Network-based Drug Ranking and Repositioning with
respect to DrugBank Therapeutic Categories, IEEE ACM Transactions on
Computational Biology and Bioinformatics 10(6), pp. 13569-1371, Nov-Dec 2013

. — : : Nodes — drugs
A network G=(V,E) connecting a large set of drugs: { Edges — similarities

e A subset V.V of drugs belonging to a given
therapeutic category C

[ Rank drugs vey w.r.t. to a given therapeutic category C}

Many strategies for drugs networks construction: pairwise
chemical similarity, bipartite network projection (projection in

drug space of drug-target networks : drugs connected if they
target the same protein/s).
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Kernelized score functions: experiments

* 1253 FDA approved drugs
* 51 DrugBank therapeutic classes

> 3 pharmacological networks:
- N_ . . pairwise chemical similarity ( Tanimoto

structSim "

coefficients)

- N gl projection from drug-target interactions
(from DrugBank 3.0)

- Ny oen: PTOjECHION from chemical interactions

(from STITCH 2.0)

Problem: inhomogeneous coverage in the 3
networks. Solution: networks integration.
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Kernelized score functions

Network construction by bipartite network projection
Drugs Targets

@
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(a) (b)

Bipartite network
(e.g. drug-target, One-mode drug network

drug-drug interaction)
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Kernelized score functions: experiments

High coverage Low coverage
100% e 50%
structSim drug Target drugChem

W . (1253 nodes, 13010 edges)

structSim 1
tructSim drugTarget W, (1253, 43827)
—>
structSim drugTarget drugChem W, (1253, 96711)

NB: networks integration increase the connectivity!
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A view of the integrated pharmacological network
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Kernelized score functions: results (AUC)

Kernelized score functions with random walk kernels compared with Random Walk (RW)

and Random Walk with Restart (RWR) algorithms:

@ 5-fold CV

@ Results averaged across 51 DrugBank therapeutic classes having more than 15 drugs:

Methods AUC P40R
Wi | W, | Wi Wi | Wi | Wi

Sav 3 steps 0.8332 | 0.9233 | 0.9372 || 0.5330 | 0.6497 | 0.6931
Senn 2 steps k=31 | 0.8373 | 0.9261 | 0.9361 || 0.5334 | 0.6480 | 0.7012
SNN 3 steps 0.8271 | 0.9067 | 0.9224 || 0.3803 | 0.4300 | 0.4653
RWR 0 =06 0.8078 | 0.9203 | 0.9299 || 0.5238 | 0.6278 | 0.6839
RW 1 step 0.8175 | 0.9201 | 0.9272 || 0.4910 | 0.6240 | 0.6799
GBA 0.8027 | 0.9028 | 0.9095 || 0.3273 | 04127 | 0.4634
RW 0.6846 | 0.5780 | 0.5334 || 0.2224 | 0.0608 | 0.0366

o W — W,— W, :AUC increments are statistically significant (Wilcoxon rank

sum test, a=0.01)
e SAV and SkNN

test, a=0.01)

Analysis of bio-molecular networks through semi-supervised graph-based learning methods

significantly better than the other methods (Wilcoxon rank sum
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Kernelized score functions: Exploring deeply the integrated
pharmacoloaical space vields better results

20
]

1 step
2 steps
3 steps
b steps
10 steps

BEEEOO

15

10

W, W W

Counts of the "wins” across the 1254 therapeutic classes for the average score
with 1, 2, 3, 5 and 10 steps random walk kernels
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Kern. score functions : a gene function prediction case study

M. Re, M. Mesiti, and G. Valentini, “A Fast Ranking Algorithm for Predicting Gene Functions in
Biomolecular Networks,” IEEE ACM Transactions on Computational Biology and Bioinformatics,
vol. 9, no. 6, pp. 1812—1818, 2012.
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Kern. score functions : a gene disease prioritization case
study

G. Valentini, A. Paccanaro, H. Caniza, A. Romero, M. Re, An extensive analysis of disease-
gene associations using network integration and fast kernel-based gene prioritization methods,
Artificial Intelligence in Medicine 61 (2) (2014)

Goals:

> An extensive analysis of gene-disease associations,
considering a large set of diseases (708 MeSH diseases)

» Finding novel gene-disease associations for unannotated
genes

» Analysis of the impact of network integration on gene
prioritization

Analysis of bio-molecular networks through semi-supervised graph-based learning methods G. Valentini
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Analysis of the impact of network integration on gene prioritization

-

vt ™| Network -

integration filtering \ e
N J \_ J N

Integrated and
T~ filtered network
: // 0

But also proper pre-processing and normalization
of the networks is fundamental ...

~
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Analysis of the impact of network integration on gene prioritization

Metwork Description Type Modes Edges Density
finet Obtained from multiple sources of evidence Binary 8449 271466 0.0038
hnnet Obtained from multiple sources of evidence Binary 8449 502222 0.0070
cmnet Metwork projections from cancer modules Binary 8449 3414722 0.0478
genet Metwork projections from CTD Binary 7649 1421298 0.0242
bgnet Metwork projections from BioGRID Binary 8449 120169 0.0016
dbnet Direct relationships obtained from BioGRID Binary 8449 3023084 0.0423
bpnet Semantic similarity network from GO BP Real valued 5923 44506147 0.9286
mfnet Semantic similarity network from GO MF Real valued 6145 26611887 0.7047
ccnet Semantic similarity network from GO CC Real valued 65693 39652637 0.8851
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A relevant computational biology problem:
Multi-species protein function prediction

Can we predict the functions of proteins belonging to different
species, by using graph based learning methods?

AN

4 N N

Can exisiting network-based
learning algorithms scale
with big protein networks?

- AN J

Y

UniprotKB/TrEMBL { ~520.000 species

How to construct multi-species
functional networks?

(November 2014) ~90 millions of sequences
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Possible approaches to the scalability problem

4 ~ -MapReduce framework (Dean
1) Parallel distributed and Ghemawat, 2004)
: < . :
com putat|on - Distributed graph parallel learning
_ (Gonzalez et al. 2012)
e Partitioning graphs across cluster nodes is hard
Problems: (Leskovec et al 2009)
- N - Debugging and optimization is difficult
- Requires cluster / cloud systems
. ~ /
4 . N
2) S - Graph Database technologies
) Secondary (Webber et al. 2012)
memory-based - Secondary memory-based systems for
com putation the analysis of big graphs (Kyrola et al.
2014)
Problems: - Design of novel data structures to store graphs on disks
' - Efficient I/O operations and graph processing on disk
. /

G. Valentini
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Our approach to big biological network analysis

M. Mesiti, M. Re, G. Valentini Think globally and solve locally: secondary
memory-based network learning for automated multi-species function
prediction, GigaScience, 3:5, 2014

“Local” implementation

+

analysis of big
biological graphs
on single PCs

“disk-based” computation

Analysis of bio-molecular networks through semi-supervised graph-based learning methods G. Valentini
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“local” implementation of network-based algorithms

O

\Aﬁﬁ )

\
J

Disk DRAM

.

)(

P

_

* We need DRAM to store only the neighborhood of a single node
» Vertex centric computational model.
translate “global” network-based methods to “local” implementation

The problem is: can we express a global GSSL algorithm as an iterative
computation involving each time only a single vertex and its neighborhood?

Analysis of bio-molecular networks through semi-supervised graph-based learning methods G. Valentini
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An example: the classical random walk algorithm

/ Random walk: the classical algorithm in “global” version:

W : weighted adjacency matrix of the graph

J

Probability update :  p""'=0Q" p’

o

D : diagonal matrix with d“:Z w.. Q:D‘1 W : the stochastic matrix
111 I

\

/

/ Random walk: the “local” vertex-centric implementation:

p'=0,p'=D"'W,p'=) d,w; D
;

For each vertex i we need only its neighbours (at worst the i"" column of W,
\\the diagonal of D" and the probabilities computed at the previous iteration)

~

But we need fast disk access ...

Analysis of bio-molecular networks through semi-supervised graph-based learning methods
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GraphChi (Kyrola et al. 2012)

GraphChi:
a disk-based system for the analysis
of big graphs on a single PC

y P

Methods for efficiently Efficient disk 1/0. Small
breaking large graphs number of non sequential
into small parts accesses to disk:
PSW system
Efficient management Asynchronous model
of evolving graphs of computation
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GraphChi: Parallel Sliding Windows (PSW)

Vertices Vertices Vertices Vertices

1 v, V]| 1..100 101..700 701..1000 1001..10000
interval(1) | interval(2) interval(P)

id

S

in-edges for vertices 1..100
orted by source_|

Vertices split in P intervals. To read each interval at most P E
For each interval: in-edges - non sequential reads (PSW A
stored in a shard, sorted by out-  method) D
edges
L S — S —_
Multi-thread asynchronous =) Parallel update of vertices and X
computatlon in main mem. edges in the memory shards c
o Atmost P T W
Blocks written back to disk =) At most P* non sequent|al R
reads/writes on disk/full pass |
on the graph E
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Experiments:

- 13 organisms
- 202,442 proteins
- 25,132,538 edges

- 50 classes

MLDM.it — AI*IA 2014, Pisa

M. Mesiti. M. Re, G. Valentini Think
globally and solve locally: secondary
memory-based network learning for
automated multi-species function
prediction, GigaScience, 3:5, 2014

5 folds CV. Learning method: classical random walk. Implementations: GraphChi,

Neo4j (a graph database)

Empirical time complexity :

Eukarya-net: Average per-term empirical time complexity betweenNeo4j andGraphChi implementations

16 Gb RAM machine

4 Gb RAM machine

server notebook
Algorithm Neo4j GraphChi Neo4dj GraphChi
RW - 1 step 189.60s 20.44s 2520.00s 21.46s
RW - 2 steps 367.82s 31.68s 4919.35s 33.19s
RW - 3 steps 549.84s 45.73s 7333.10s 46.69s

Analysis of bio-molecular networks through semi-supervised graph-based learning methods
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Experiments: Comparison of multi-species and single
species approaches

Table 9 Comparison of the average AUC, precision at 20%
recall (P20R) and precision at 40% recall between
multi-species and single-species approaches with 301
species of bacteria

Multi-species approach

Algorithm AUC P20R P40R
RW -1 step 0.8744 0.2264 0.1673
RW -2 steps 0.8590 0.1318 0.0893
RW - 3 steps 0.8419 0.1064 0.0713

Single-species approach

Algorithm AUC P20R P40R
RW -1 step 0.8263 0.1801 0.1176
RW -2 steps 0.8146 0.1059 0.0647
RW - 3 steps 0.8179 0.1009 0.0563

Analysis of bio-molecular networks through semi-supervised graph-based learning methods G. Valentini
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On going work on multi-species protein function
prediction (MAFP) with kernelized score function

1. GraphChi vertex-centric implementation of the
kernelized score functions

2. Construction of a big network including all the
core proteins of the STRING database:
- more than 400 organisms
- 1.5 millions of proteins
- hundreds of millions of edges
- -thousands of GO functional classes to be predicted

\

- Main goals:

» Showing that MAFP can be exploited on off-the-shelf computers

» Showing that multi-species functional prediction significantly
improves on single species functional prediction.

Analysis of bio-molecular networks through semi-supervised graph-based learning methods G. Valentini
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Conclusions:

* Semi-supervised graph-based methods are widely applied in several
relevant problems in computational biology and medicine

» Kernelized score functions is a flexible algorithmic framework that can be
applied in a broad range of interesting bioinformatics problems

» Kernelized score functions and the others state-of-the-art semi-
supervised learning methods for biological network analysis are affected
by serious scalability problems on big networks

* Local implementation of GSSL methods coupled with the usage of recent
secondary memory technologies can make feasible GSSL tasks on very
large (and dense) graphs, allowing novel biological insights from the
analysis of bio-medical networks.

Analysis of bio-molecular networks through semi-supervised graph-based learning methods G. Valentini
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Thank you for your attention!

And thanks also from Anacleto !
http://anacletolab.di.unimi.it

Analysis of bio-molecular networks through semi-supervised graph-based learning methods G. Valentini



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

