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Abstract. The availability of an ever increasing amount of data sources
due to recent advances in high throughput biotechnologies opens un-
precedented opportunities for genome-wide gene function prediction. Sev-
eral approaches to integrate heterogeneous sources of biomolecular data
have been proposed in literature, but they suffer of drawbacks and limi-
tations that we could in principle overcome by applying multiple classi-
fier systems. In this work we evaluated the performances of three basic
ensemble methods to integrate six different sources of high-dimensional
biomolecular data. We also studied the performances resulting from the
application of a simple greedy classifier selection scheme, and we finally
repeated the entire experiment by introducing a feature filtering step.
The experimental results show that data fusion realized by means of
ensemble-based systems is a valuable research line for gene function pre-
diction.

1 Introduction

The integration of multiple sources of heterogeneous biomolecular data is a key
item for the prediction of gene function at genome-wide level. More in gen-
eral, functional classification of unannotated genes is a central problem in mod-
ern functional genomics and bioinformatics [1]. The ever increasing amount of
biomolecular data produced in last years as effect of recent advances in high-
throughput biotechnologies did not result into a corresponding improvement in
gene function prediction accuracy, because the additional complexity introduced
by the need to integrate heterogeneous data sources constitutes a serious limiting
factor [2]. To deal with this problem, several approaches have been proposed in
literature. A first one is based on a direct ”vector-space integration” by which
different vectorial data are concatenated [3]. Modelling interactions between gene
products using graphs and functional linkage networks is another valuable re-
search line, as well as the application of probabilistic graphical models [4]. Ker-
nel methods, by exploiting the closure property of kernels with respect to the
sum and other algebraic operators, represent another interesting approach for
the integration of biomolecular data [5]. Nevertheless, all these methods suffer
of limitations and drawbacks, due to their limited scalability to multiple data



sources (i.e. Kernel integration methods based on semidefinite programming [5]),
to their limited modularity when new data sources are added (i.e. vector-space
integration methods), or when the available biomolecular data are characterized
by different structural features (i.e. functional linkage networks and vector-space
integration).

A new possible approach is represented by ensemble methods, but not much
work has been done to apply classifier integration to gene function prediction [2].
To our knowledge, only few works have been proposed, such as the ”late inte-
gration” of kernels trained on different sources of data [6], or the Naive-Bayes
integration of the outputs of SVMs in the context of the hierarchical classifi-
cation of genes [7]. Ensemble-based data fusion techniques have been success-
fully applied in several domains, ranging from biomedical applications [8] to
the classification of multisource remote-sensing images [9]. However, there are
several reasons to apply ensemble methods in the specific context of genomic
data fusion for gene function prediction. At first, biomolecular data differing
for their structural characteristics (e.g. sequences, vectors, graphs) can be easily
integrated, because with ensemble methods the integration is performed at the
decision level, combining the outputs produced by classifiers trained on differ-
ent datasets. Moreover, as new types of biomolecular data, or updates of data
contained in public databases, are made available to the research community,
ensembles of learning machines are able to embed new data sources or to update
existing ones by training only the base learners devoted to the newly added or
updated data, without retraining the entire ensemble. Finally most ensemble
methods scale well with the number of the available data sources, and problems
related to the addition of newly available sources of biomolecular data can be
easily managed.

In this contribution we investigate the effectiveness of different types of en-
semble systems in gene function prediction. We also evaluate the effect on the
quality of predictions due to the introduction of a simple base classifier selec-
tion scheme. We finally repeat the entire experiment introducing a feature se-
lection step. The results are then compared with baseline methods to provide
an overview of the potentialities of multiple classifier systems in gene function
prediction.

2 Methods

In our experiments, to integrate different sources of biomolecular data, we chose
relatively simple methods, such as weighted average combination methods and
decision templates. As a second step we considered ensembles based on base
learner selection, according to the test-and-select approach, and finally we ap-
plied ensembles combined with simple feature filtering methods to reduce the
high dimensionality that characterize biomolecular data.



2.1 Ensemble Methods for Biomolecular Data Fusion

Data fusion can be realized by means of an ensemble system composed by learn-
ers trained on different ”views” of the data and then combining the outputs of
the component learners. Each type of data may capture different and comple-
mentary characteristics of the objects to be classified and the resulting ensemble
may obtain better prediction capabilities through the diversity and the anti-
correlation of the base learner responses.

In particular, each type of biomolecular data B1, B2, . . . , BT is characterized
by different features f1, f2, . . . , fT , where T is the number of the available data
sources. Thus, an example x is characterized by different sets of features:

x =< xf1 ,xf2 , . . . ,xfT
> (1)

where xft represents the data relative to the features ft of a specific data set
Bt ⊂ Xt.

A classifier trained on data Bt computes a function dt,j : Xt → [0, 1] that
estimates the support (e.g. the probability) that a given example x belongs to a
specific class ωj . In our experiments we applied a sigmoid fitting to the output
of SVMs, to obtain an estimate of the probability that a given example belongs
to a given class [10]. An ensemble combines the outputs of T base learners,
each trained on a different type of biomolecular data, using a suitable combining
function g to compute the overall support µj for a given class ωj :

µj(x) = g(d1,j(xf1), d2,j(xf2), . . . , dT,j(xfT
)) (2)

At first, we combine the base classifiers through the classical weighted average
rule:

µj(x) =
T∑

t=1

wtdt,j(xft) (3)

In our experiments we computed the weights according to a convex combination
rule (wc

t) and a logarithmic transformation (wlog
t ):

wc
t =

Ft∑T
t=1 Ft

w
log
t ∝ log

Ft

1− Ft
(4)

In both cases we use the F-measure Ft, i.e. the harmonic mean between precision
and recall, instead of the classical accuracy, since the gene functional classes are
largely unbalanced (positive examples are largely less than negative ones). Ft

measures are obtained by ”internal“ cross-validation on the training data. The
ensemble chooses the class ωj , according to the estimated probability µj (eq. 3):

Dj(x) =

{
1, if µj(x) > h

0, otherwise
(5)

where output 1 corresponds to positive predictions for ωj and 0 to negatives. A
reasonable value for the threshold h is 0.5 (if µj estimates probabilities). Note



that in this setting an example x may belong to more than one class (eq. 5), thus
modeling the multilabel classification problem that characterizes gene function
prediction.

Some base learners trained on specific biomolecular data may incorrectly
predict the examples for a given gene functional class for several reasons. For in-
stance certain types of biomolecular data can be informative for some functional
classes, but uninformative for others. In order to take into account systematic
incorrect answers of certain base learners, Decision Templates [11] can represent
a valuable approach. In this approach the decision profile DP(x) for an instance
x is a matrix composed by the dt,j ∈[0,1] elements representing the support
given by the tth classifier to class ωj . Decision templates DTj are the averaged
decision profiles obtained from Xj , the set of training instances belonging to the
class ωj :

DTj =
1
|Xj |

∑

x∈Xj

DP (x) (6)

The similarity S between the decision template DTj for a class ωj , 1 ≤ j ≤ C,
and the decision profile for a given test instance x is:

Sj(x) = 1− 1
T × C

T∑
t=1

C∑

k=1

[DTj(t, k)− dt,k(x)]2 (7)

and the final decision of the ensemble is computed by assigning the test instance
to the class with the largest similarity:

D(x) = arg max
j
Sj(x) (8)

For gene prediction we consider two-classes problems, because a gene may
belong or not to a given functional class. To simplify the notation, we denote the
positive class by 1 and the negative by 2. In this context, exploiting the fact that
dt,2(x) = 1 − dt,1(x), the similarity S (eq. 7) for the positive and the negative
class class becomes:

S1(x) = 1− 1
T

T∑
t=1

[DT1(t, 1)− dt,1(x)]2 (9)

S2(x) = 1− 1
T

T∑
t=1

[DT2(t, 1)− dt,1(x)]2 (10)

and the final decision of the ensemble is:

D(x) = arg max(S1(x),S2(x)) (11)

2.2 Feature Filtering

Feature selection methods can select the most significant features and can reduce
the high dimensionality that characterize most biomolecular data.



To reduce the computational complexity we introduce a simple filtering
method based on the t-test statistic: More precisely, we applied the two-sample
Welch t-test to verify the null hypothesis Hj of no difference between the means
of feature values of the two given positive and negative sets of genes at a given
significance level α. Since the number of features for each data set is in the order
of thousands, we need to restate the problem in a multiple hypothesis test set-
ting. In particular we applied the Benjamini and Hochberg (BH) [12] procedure
to control the false discovery rate FDR (that is the expected proportion of false
positives among the rejected hypotheses). This procedure is applied separately
for each data set.

2.3 Base Learner Selection

According to the test and select methodology [13], we apply a variant of the“choose
the best” technique [14] to select a subset of “optimal” classifiers. More precisely
we select the “best” subset of base classifiers (each one trained on a different
source of biomolecular data) according to the F-measure estimated by internal
cross-validation on the the training set. A high level scheme of the adopted “test
and select” procedure is reported below:

1. Separately for each available data, select the most significant features us-
ing the two-sample t-test with Benjamini and Hochberg p-value correction
(Sect. 2.2).

2. Train the base learners on the heterogeneous data sets filtered according to
step 1.

3. Select the n learners with the best F-measure estimated by internal cross-
validation on the training set

4. Evaluate the ensembles with the n best learners on a separated test set.

We applied the “test and select” procedure with and without the first step
(feature filtering with “corrected” t-test). Note that at step 2 and 3 a base learner
model selection can also be performed using cross-validation on the training data.
Weighted average rule and decision templates (Sect. 2.1) are the aggregation
strategies adopted to combine the output of the base learners.

3 Experimental Setup

We collected several sources of biomolecular data to classify genes of the yeast,
an eukaryotic unicellular model organism. In particular we used protein-protein
interaction data collected from BioGrid [15] and STRING [16], a collection of
physical and genetic interactions obtained from different types of biological ex-
periments and from literature. Moreover we included data to register the pres-
ence/absence of a particular protein domain in the proteins encoded by genes
comprised in the dataset [17] and the E-value assigned to each gene prod-
uct to a collection of profile-HMMs computed through the HMMR software



Table 1. Datasets

Code Dataset examples features description

D1 Protein domain binary 3529 4950 protein domains obtained from Pfam
database [17]

D2 Protein domain log-E 3529 5724 Pfam protein domains with log E-values com-
puted by the HMMER software toolkit

D3 Gene expression 4532 250 merged data of Spellman and Gasch experi-
ments [18] [19]

D4 PPI - BioGRID 4531 5367 protein-protein interaction data from the Bi-
oGRID database [15]

D5 PPI - STRING 2338 2559 protein-protein interaction data from [16]
D6 Pairwise similarity 3527 6349 Smith and Waterman log-E values between all

pairs of yeast sequences

toolkit (http://hmmer.janelia.org ). We considered also homology relation-
ships data using pairwise Smith-Waterman log E values between all pairs of yeast
sequences. Finally we included into our experiment a dataset obtained by the
integration of microarray hybridization experiments published in [18] [19]. The
main characteristics of the data sets used in the experiments are summarized
in Tab. 1. The genes represented in the datasets under investigation have been
associated to functional classes using the functional annotations collected in the
Functional Catalogue (FunCat) database version (2.1) [20].

In our experiments we considered only the first level of the hierarchy of
FunCat classes, that is the most general and wide 15 functional classes of the
overall taxonomy.

We considered the intersection between all the datasets, resulting into a final
collection of 1910 yeast genes. In other words we used in our experiments only
the genes for which experimental measures were available for all the types of
data. Each resulting dataset was randomly split into a training set and a test
set (composed, respectively, by the 70% and 30% of the available samples). We
performed a 3-fold stratified cross-validation on the training data for model
selection, using gaussian SVMs as base learners. We chose the F-measure for
both model selection and to evaluate the performances on the separated test
set, because most FunCat classes are unbalanced, with positive examples largely
lower than negatives.

We then applied a test and select procedure, by choosing the best 2, 3 or
4 classifiers according to the F-measure evaluated by cross-validation on the
training set (Sect.2.3). The test and select procedure has been applied with and
without feature selection according to a two-sample t-test and a Benjamini and
Hochberg correction at 0.05 significance level (Sect.2.2).

4 Results

Tab. 2 summarizes the averages across the performed 15 dichotomic learning
tasks of the F-measure, recall, precision and specificity computed on the test
sets using respectively:



1. the ensemble methods described in Sect. 2.1 using all the available data sets
and base learners

2. the test-and-select procedure outlined in Sect. 2.3.
3. the feature filtering step added before the test-and-select procedure (Sect. 2.2).

Lbest refers to the best single learner (trained on the D2 protein domain data
set, Tab. 1), and Lavg to the average results of the single SVMs across all the 6
data sets.

As reported in Tab. 2 A), the performances averaged across all the performed
learning tasks are increased by the basic ensemble-based data fusion approaches
involving the combination of all the component classifiers. The investigated com-
bination strategies are able, on the average, to outperform the single learners. In
particular the Decision Template combiner outperforms the single best classifier
in the evaluation of the test set. The simple greedy strategy to test and select
the “best” base learners for each classification task significantly enhances the
performances of weighted average combination methods (from 0.41 to 0.54 with
Elog), but also Decision templates gain from this approach (Tab. 2 B). By adding
a simple feature selection step to the test and select methods we can observe
that only Decision templates are able to improve their performances (Tab. 2

Table 2. Summary of ensemble results. Lbest refers to the best single learner, Lavg

to the average results of single SVMs; Elin and Elog to weighted average combination
with respectively linear and logarithmic weights; EDT stands for decision templates
ensembles.

A) Results using all the
available base learners

Metric Lbest Lavg Elin Elog EDT

F 0.4816 0.3470 0.4403 0.4112 0.5302

rec 0.3970 0.2859 0.3304 0.2974 0.4446

prec 0.6785 0.5823 0.8179 0.8443 0.7034

spec 0.9516 0.9533 0.9798 0.9850 0.9594

B) Results with test and
select procedures

Metric Lbest Lavg Elin Elog EDT

F 0.4816 0.3470 0.5436 0.5441 0.5698

rec 0.3970 0.2859 0.4793 0.4778 0.5164

prec 0.6785 0.5823 0.6723 0.6591 0.6435

spec 0.9516 0.9533 0.9538 0.9573 0.9447

C) Results with test and select
and feature filtering

Metric Lbest Lavg Elin Elog EDT

F 0.4893 0.2638 0.5175 0.4912 0.6310

rec 0.3841 0.1927 0.3987 0.3711 0.5667

prec 0.7278 0.6141 0.8708 0.9042 0.7439

spec 0.9639 0.9775 0.9841 0.9871 0.9552



C). Indeed on the average the performances of single learners largely decrease
(the F-measure falls from from 0.34 to 0.26), as well as the performances of
weighted average ensembles, even if the relative decrement of the latter is lower.
In all cases, independently of the adopted ensemble method and with or with-
out feature selection, the ensembles of learning machines largely outperform the
average results of the single SVMs. Moreover in most cases ensemble methods
outperform also the best single SVM, and in particular decision templates obtain
better results than the best single SVM on all the gene function prediction tasks
(Fig. 1). It is worth noting that ensemble methods achieve a very high precision
(Tab. 2): this is of paramount importance to drive the biological validation of
novel predicted genes whose function is unknown or only partially known, in
order to reduce the costs of possible false positives.

Each type of biomolecular data set captures different characteristics of genes,
and can be informative for some classes but uninformative for the prediction of
other classes of genes. From this standpoint we can understand the reasons why
simple decision fusion techniques may improve gene function prediction. In par-
ticular decision templates seem to better exploit the different characteristics of
the available source of biomolecular data. Indeed, through the decision tem-
plates, also relatively uncertain or wrong responses of base learners can provide
useful information for the decision of the ensemble, especially if this behaviour is
consistently maintained across the data. This is confirmed also by the fact that
test and select methods with decision templates to combine the output of the se-
lected base learners require on the average more learners than weighted average
ensembles (data not shown). Decision templates are thus able to exploit also the
characteristics of the less informative base learners to improve the predictions of
the overall ensemble.

5 Conclusions

In this work we investigated the effectiveness of ensemble-based data fusion
methods on the functional classification of yeast genes. The ensembles are able
to outperform the averaged performances of single SVMs in all the gene func-
tion prediction tasks, achieving the best results in terms of precision and recall.
The performances are further improved by a simple ”choose the best” selection
strategy, and a feature filtering method is able to enhance the results of decision
templates. Considering the F-measure that summarizes both precision and recall,
the experimental results show that data fusion realized by means of ensemble
systems is a valuable research line in gene function prediction and that Decision
Templates may represent a good choice for biomolecular data integration.
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Fig. 1. Per class F-measure results of ensemble methods with base learner selection
and feature filtering. For each FunCat class, the first six shaded gray bars refer to
single learners with feature filtering (from L1 to L6); the last three bars (filled with
patterns) correspond respectively to weighted average combination with linear (Elin)
and logarithmic (Elog) weights and decision template (EDT ) ensembles. a) Funcat
classes 01, 02, 10, 11, 12; b) 14, 16, 18, 20, 30; c) 32, 34, 40, 42, 43.
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