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Abstract. A large scale analysis of gene expression data, performed
by Segal and colleagues, identified sets of genes named Cancer Mod-
ules (CMs), involved in the onset and progression of cancer. By using
functional interaction network data derived from different sources of
biomolecular information, we show that random walks and label propaga-
tion algorithms are able to correctly rank genes with respect to CMs. In
particular, the random walk with restart algorithm (RWR), by exploit-
ing both the global topology of the functional interaction network, and
local functional connections between genes relatively close to CM genes,
achieves significantly better results than the other compared methods,
suggesting that RWR could be applied to discover novel genes involved
in the biological processes underlying tumoral diseases.

1 Introduction

The huge amount of data produced by large scale microarray experiments yielded
to the development of specialized data repositories for effectively mining gene
expression data related to cancer [1]. The availability of this unprecedented vol-
ume of data has, on the one hand, the potential to boost the research focused on
the elucidation of the molecular basis of cancer and, on the other hand, to accel-
erate the development of novel cancer therapies. In this context, gene expression
profiling proved to be effective for the discovery of subtypes of tumors [2], for
the prediction of patients outcome [3] and the prediction of the response to
chemotherapies [4].

In [5] expression profiles have been analyzed to identify sets of genes that act
in concert to carry out specific functions in different cancer types, and to con-
struct a collection of gene sets associated to specific Cancer gene Modules (CMs,
hereafter). Nevertheless, even if gene expression data are fundamental to iden-
tify CMs, they cannot detect genes involved, for instance, in post-transcriptional,
translational or post-translational misregulated processes underlying cancer. To
take into account these post-transcriptional events, we analyzed integrated func-
tional interaction networks obtained from curated databases and from protein-
protein and protein domain-domain interactions, from protein complexes and
from comparative genomics techniques [6, 7]. More precisely, we applied network



based algorithms to these functional interaction networks, in order to rank genes
with respect to their likelihood to belong to specific CMs. By successfully rank-
ing genes using functional interaction networks, we could in perspective discover
novel genes involved in cancer, not detectable using data limited to correlated
gene expression profiles.

Different algorithms to rank genes in biomolecular networks have been pro-
posed in the literature [8, 9, 10, 11]. In this context networks are usually repre-
sent through an undirected graph G = (V,E), where nodes υ ∈ V correspond
to genes, and edges e ∈ E are weighted according to the evidence of the func-
tional interaction between genes [6, 7]. By exploiting proximity relationships be-
tween connected nodes, these algorithms are able to transfer annotations from
previously annotated (labeled) nodes to unannotated (unlabeled) ones through
a learning process inherently transductive in nature [12]. They include guilt-
by-association methods and their extensions [9, 13], approaches based on the
evaluation of the functional flow in graphs [14], methods based on Hopfield net-
works [15], and label propagation algorithms based on Markov [16] and Gaussian
Random Fields [17].

Most of the cited approaches share the common feature of propagating known
gene labels across the network, by exploiting the weighted connections between
genes, until a certain criterion of convergence is satisfied. These approaches ex-
ploit the global topology of the network to rank genes, but in the context of
functional interaction networks they could suffer the common drawback of ex-
ploring too far similarities between genes, thus introducing noise in the ranking
process.

To deal with these problems in this work we apply random walk and random
walk with restart algorithms [18] to rank genes with respect to their likelihood
to belong to specific CMs. Indeed random walks can reduce the in-depth ex-
ploration of the network by limiting the number of allowed random steps, thus
avoiding to consider too loose similarities between genes; moreover random walk
algorithms have been recently successfully applied to the related problem of gene
prioritization of candidate disease genes [19]. We compared random walks algo-
rithms with other state-of-the-art gene ranking algorithms through an extensive
experimental analysis involving about 300 CMs and functional interaction net-
works with more than 8000 human genes and hundreds of thousands of edges
connecting genes.

2 Methods

In this section we introduce random walk (RW), random walk with restart (RWR)
and three variants of label propagation algorithms used in our experiments to
rank genes with respect to CMs.

All the methods described below refer to an undirected weighted graph G =
(V,E), where nodes i, j ∈ V correspond to genes, with |V | = n, and edges
(i, j) ∈ E are weighted according to the weight matrix W , whose elements wij



are the weights of the edges (i, j), and represent the“strength” of the functional
interaction between genes i and j.

2.1 Random walk and random walk with restart

A random walk (RW) on G is a reversible Markov chain with transition matrix
Q, whose elements qij satisfy the probabilistic constraint

∑
j qij = 1:

qij = wij/
∑
k

wik (1)

In the context of gene ranking with respect to CMs, RW algorithms [18] explore
and exploit the topology of the functional network, starting and walking around
from a subset VM ⊂ V of genes belonging to a specific Cancer ModuleM by using
a transition probability matrix Q = D−1W , where D is a diagonal matrix with
diagonal elements dii =

∑
j wij . The elements qij of Q represent the probability

of a random step from i to j. The initial probability of belonging to M can be
set to po = 1/|VM | for the genes i ∈ VM and to po = 0 for the genes i ∈ V \ VM .
If pt represents the probability vector of finding a “random walker” at step t
in the nodes i ∈ V (that is, pti represent the probability for a random walk of
reaching node i at step t), then the probability at step t+ 1 is:

pt+1 = QTpt (2)

and the update (2) is iterated until convergence. We can observe that in the
context of gene functional interaction networks, by running the algorithm in an
iterative way until, for a given t, pt = pt+1, we could progressively “forget”
the a priori information available for the Cancer Module M : in other words we
could explore nodes too far from the “core” nodes included in VM , thus introduc-
ing functional similarities between genes even when no functional interactions
are actually present between genes. To avoid these drawbacks, we can stop the
random walk before convergence, thus considering only meaningful functional
relationships between genes.

This approach requires to experimentally find the “optimal” number of ran-
dom steps, or simply to try with different number of predefined steps. An al-
ternative approach is represented by the random walk with restart (RWR) algo-
rithm [18]: at each step the random walker can move to one of its neighbours or
can restart from its initial condition with probability θ:

pt+1 = (1− θ) QTpt + θ po (3)

Fig. 1 shows the pseudocode of the RWR algorithm. With both RW and RWR
methods at the steady state we can rank the vector p to prioritize genes according
to their likelihood to belong to the CM under study.



�

�

�

�

Fig. 1. Random walk wih restart algorithm
Input:
- W : weight matrix of the graph
- VM ⊂ V : genes belonging to a cancer module M
- ε: convergence parameter
- θ: restart probability
begin algorithm

01: for each i ∈ VM poi := 1/VM

02: for each i /∈ VM poi := 0
03: for each i ∈ V dii :=

∑
j wij

04: Q := D−1W
05: t:=0
06: repeat

07: t := t + 1
07: pt = (1− θ) QTpt−1 + θ po

08: until (||pt − pt−1|| < ε)
09: for each i ∈ V
10: pti := pti/

∑
j p

t
j

end algorithm.
Output: the probability vector pt

2.2 Label propagation algorithms

These algorithms are characterized by the propagation of the information from
a “core” of labeled nodes to an usually larger set of the unlabeled nodes of
the graph under study, by a semi-supervised transductive learning process [12].
From this standpoint, this approach resembles random walks, and the process
is iterated until to convergence by minimizing a quadratic objective function.
For instance, the label propagation algorithm LP proposed in [20] minimizes the
following objective function

s∗ = argmin
s

∑
i

∑
j

wij(si − sj)
2 (4)

where s is the score vector used to rank the genes (similar to the probability
vector p of the random walks), and si is its ith component relative to the ith

gene. Eq. (4) represents the “internal coherence” of the network: it penalizes
connected genes (i.e. pairs of genes i and j with wij > 0) having different scores.
LP assures the coherence with respect to the initial score s0 by not allowing
any change of the scores si for the vertices i ∈ VM during the label propagation
process: the predicted scores si are set to s0i for each i ∈ VM . This algorithm
can be implemented through iterative techniques or in closed form by solving a
system of linear equations.

By minimizing a quadratic objective function that directly embeds a “fitting
term” representing the error between predicted and a priori known scores, we



can derive a regularized label propagation algorithm LPR proposed in [21]:

s∗ = argmin
s

α
∑
i

(si − s0i )
2 + (1− α)

∑
i

∑
j

wij(si − sj)
2 (5)

where s is the vector of the scores associated to the genes, s0 is the initial
vector of scores reflecting the a priori knowledge about the investigated genes, si
and s0i their ith components, and wij are the elements of the weight matrix W
of the graph G connecting the genes. Note that (5) is the convex combination
(0 ≤ α ≤ 1) of two terms, where the first one minimizes the error between
predicted and a priori known scores (the “fitting term”), while the second assures
the “internal coherence” of the network, and is analogous to (4).

A variant of LPR algorithm is represented by GeneMANIA [22], originally
proposed to predict gene functions. This algorithm introduces a simple but ef-
fective cost-sensitive technique (useful when the number of positive examples
is largely lower than the total number examples), and moreover minimizes (5)
through an efficient iterative algorithms based on conjugate gradient techniques.

3 Cancer Module genes ranking

In this section, at first we describe the Cancer gene Modules (CMs) proposed
in [5] and the functional interaction networks used in our experiments to rank
genes according to their likelihood to belong to specific CMs. Then we present
the experimental set-up and discuss the results obtained with the gene ranking
network-based methods introduced in Section 2.

3.1 Functional interaction networks and Cancer Modules

Segal and colleagues analyzed at genome-wide level the human gene expression
profiles of about 2000 arrays spanning 17 clinical categories represented by sev-
eral types of tumor. By considering about 3000 publicly available gene sets they
identified 456 statistically significant gene sets called Cancer Modules (CMs) by
the authors (see [5] for further details). The authors mapped coordinately over
or underexpressed modules to the clinical conditions associated to each array,
thus characterizing different types of tumor in terms of sets of altered functional
gene modules.

To rank genes with respect to the CMs we considered two types of functional
interaction networks: the first one is a functional protein interaction network
(FI) based on interactions provided by a Naive-Bayes classifier [6]; the second
is a functional human gene network (HumanNet) that has been used in several
tests to predict causal genes for human diseases and to increase the power of
genome-wide association studies [7]. More precisely FI is based on functional
interactions predicted by a Naive Bayes classifier (NBC) trained on pairwise re-
lationships extracted from Reactome[23] and other curated pathways databases,
and from uncurated pairwise relationships derived from physical protein-protein



interactions (PPI) in human and other species, from gene co-expression data,
proteins domain-domain interactions, protein interactions obtained via biomed-
ical text mining, and Gene Ontology annotations. HumanNet is characterized
by functional interactions derived from different species through comparative
genomics techniques, by which functional interactions are propagated from dif-
ferent model organisms to human by means of a comparative genomics approach
presented in [24].

3.2 Experimental set-up

To avoid singleton nodes in the functional networks (Sect. 3.1), we removed
genes with no functional interactions with any other gene in FI or HumanNet
networks. Moreover, to assure reasonably reliable predictions, we removed CMs
annotated with less than 20 genes, thus resulting in 298 CMs and a collection
of about 8500 human genes (nodes of the networks). Genes were ranked with
respect to each CM: for each of the 298 CMs we computed both the precision
at fixed recall rates and the area under the ROC curve (AUC), by adopting a 5-
fold stratified cross-validation (CV) technique. We compared the average results
across CMs obtained with random walks at 1, 2 and 3 steps, random walks with
restart, and with the label propagation algorithms summarized in Section 2.2.
In our experiments we set θ = 0.6 for RWR and α = 0.7 for LPR algorithms.

3.3 Results

Fig. 2 show the compared precision at recall rates varying from 0.1 to 1 by
0.1 steps obtained by the different methods. Note that the results are averaged
across the 298 CMs. At any recall rate RWR significantly outperforms any other
compared method with both the FI (Fig. 2, top) and HumanNet (Fig. 2, bottom)
networks. Note that at recall rates from 0.1 to 0.3 RWR achieves a precision
equal to 1 or very close to 1 with both FI and HumanNet networks, showing
that top ranked genes are all true positive genes for all the the considered CMs,
with no false positives. The second best method in term of precision/recall is
LP: indeed with FI and especially with HumanNet for recall levels from 0.1
to 0.5 obtains the best results, but for higher recall rates 2-steps RW achieves
slightly better results than LP. The worst performances have been obtained by
1 and 3-steps RW, while the other label propagation algorithms (GeneMANIA
and LPR) registered intermediate results between 2-steps RW and 1 and 3-steps
RW (Fig. 2). All the methods monotonically decrease their performance moving
toward high recall rates. The only exception is due to LP that at first increases
and then decreases precision rates (Fig. 2); this means that at low recall rates
(that is when we consider the top ranked positive genes) LP has a relatively
large rate of false positives (lower precision), but it achieves a better precision
at higher recall rates, that is LP better ranks positive genes that are just below
the top ranked genes.

These general trends are confirmed also by AUC results averaged across the
CMs (Fig. 3). RWR significantly outperforms all the other methods at 10−5



Fig. 2. Compared precision at a given recall level results. Top: FI network; Bottom:
HumanNet network. RW stands for random walk, RWR for random walk with restart,
LP for label propagation and LPR for label propagation regularized algorithms.

significance level, according to the Wilcoxon rank sum test, with both FI and
HumanNet networks. Quite interestingly, 2-steps RW is the second best method,
significantly better also than LP (Wilcoxon rank sum test, 10−5 significance
level): even if LP shows a better precision at low recall rates (Fig. 2), on the
average 2-steps RW ranks better positive genes (Fig. 3). The other methods
behave significantly worse, with GeneMANIA slightly better than its non cost-
sensitive counterpart LPR (CMs are quite unbalanced with on the average a
significant lower number of positive genes), and the worst method is 1-step RW
(Fig. 3).

These results altogether show that successful methods in this complex rank-
ing task are those able to exploit the functional relationships connecting genes
relatively close to the “core” of positive genes VM , but at the same time able to



Fig. 3. Compared AUC results. On the left side are grouped results relative to the
FI network, on the right results relative to the HumanNet network. RW stands for
random walk, RWR for random walk with restart, LP for label propagation and LPR
for label propagation regularized algorithms.

learn from the global topological characteristics of the functional networks. In-
deed, considering the RW algorithm, 2-steps RW achieves the best results, while
both 1-step and 3-steps RW behaves worse on this ranking task (and 4-steps also
worse than 3-steps RW, data not shown). Moreover if we run the RW algorithm
until to convergence, we achieve average AUC close to 0.5 (that is no learning).
This means that only functional relationships connecting genes relatively close
to the set VM of positive genes are useful to learn the CM. This fact is confirmed
also by the results obtained with the LP label propagation algorithm; indeed
we stopped it after 20 iterations, while the original algorithm [20] stops only at
convergence, and if we follow the original algorithm we obtain also in this case
an average AUC close to 0.5 (data not shown). This means that exploring genes
(nodes) too far from the set VM of positive genes, we may add noise to the label
ranking procedure: genes are considered similar even when paths are too long to
preserve a significant functional similarity between them. However, for several
CMs we obtained the best results with 2, 3 or in some cases also more steps (data
not shown), thus suggesting that for at least some CMs the overall topology of
the network is useful to rank genes. The RWR algorithm on the one hand takes
into account the nodes/genes close to the VM set of positive genes through the
“restart” mechanism, but on the other hand exploits also the overall topology of
the networks, by walking across the network until to convergence (Section 2.1).
We think that these features of the RWR algorithm fit well the characteristics



of the functional networks and can explain the good results obtained by this
method.

4 Conclusions

CMs were defined mainly with expression signatures obtained from gene ex-
pression data profiling [5]. We show that network-based algorithms can success-
fully rank genes with respect to CMs, by using functional interaction networks
constructed from physical protein-protein interactions, proteins domain-domain
interactions, and other sources of biomolecular information.

In particular random walk with restart algorithms significantly outperform all
the other compared methods based on limited steps random walks and state-of-
the-art label propagation algorithms, showing that we need learning algorithms
able to learn form both the global topology of the functional network and the
functional relationships closer to the set of positive genes. The very high precision
achieved at different levels of recall by the RWR algorithm with about 300 CMs
using two functional networks including more than 8000 human genes, suggests
that this method could be in perspective applied to discover novel genes involved
in the onset and progression of cancer.
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