
Model order selection for clustered
bio-molecular data

Alberto Bertoni, Giorgio Valentini

DSI - Dipartimento di Scienze dell’Informazione,
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1 Introduction

Cluster analysis has been widely applied for investigating structure in bio-molecular
data: for instance, unsupervised learning methods, exploiting the overall gene ex-
pression profile of a patient, may research and discover subclasses of pathologies
that cannot be detected with traditional biochemical, histopathological and clin-
ical criteria [1]. Unfortunately, clustering algorithms may find structure in the
data, even when no structure is present instead. Hence we need methods for as-
sessing the validity of the discovered clusters to test the existence of biologically
meaningful clusters.

Recently, several methods based on the concept of stability have been pro-
posed to estimate the ”optimal” number of clusters in complex bio-molecular
data [2, 3]. In this conceptual framework multiple clusterings are obtained by
introducing perturbations into the original data, and a clustering is considered
reliable if it is approximately maintained across multiple perturbations. In par-
ticular, Ben-Hur, Ellisseeff and Guyon proposed to perturb the original data
through subsampling procedures, applying then a suitable clustering algorithm
to the subsampled data; after estimating the stability of the obtained solutions
through a pairwise clustering similarity measure, they assessed the ”optimal”
number of clusters by means of a visual inspection of the similarity measures
across different numbers of clusters [4].

In this paper we propose an improvement of the Ben-Hur algorithm to assess
the significance level of the solutions, by introducing a quantitative approach and
a statistical test based on the distribution of suitable similarity measures between
pairs of clustered projected data. Moreover we propose also a new way to perturb
the data, based on random projections into lower dimensional subspaces, that
seems to be well-suited to the characteristics (high-dimensionality, redundancy,
noise) of genomic and proteomic data.

2 Model Order Selection by Randomized Maps

The proposed MOSRAM (Model Order Selection by RAndomized Maps) algo-
rithm perturbs the original data using a randomized mapping µ : Rd → Rd′ ,
with d′ < d. A key problem with high dimensional genomic data consists in



finding a d′ such that for every pair p, q ∈ Rd, the distances between points in
the embedded and original metric space are approximately preserved:

1
1 + ε

≤ ||µ(p)− µ(q)||2
||p− q||2 ≤ 1 + ε (1)

In [5] we proposed to choose d′ according to the Johnson-Lindenstrauss (JL)
lemma [6]: Given a data set D with |D| = n there exists a 1 + ε-distortion
embedding into Rd′ with d′ = c log n/ε2, where c is a suitable constant. As a
consequence, using randomized maps that obey the JL lemma, we may perturb
the data introducing only bounded distortions, approximately preserving the
structure of the original data [5]. The MOSRAM algorithm can be summarized
as follows:
MOSRAM algorithm:
Input:

D : a dataset; kmax: max number of clusters; n : number of pairs of random
projections; µ a randomized map; C: a clustering algorithm;
sim : a clustering similarity measure.

Output:
M(i, k): list of similarity measures for each k (1 ≤ i ≤ n, 2 ≤ k ≤ kmax)

begin
for k := 2 to kmax

for i := 1 to n
proja := µ(D)
projb := µ(D)
Ca := C(proja, k)
Cb := C(projb, k)
M(i, k) := sim(Ca, Cb)

end.
For each number of clusters k, n similarity measurements between two clus-

terings Ca and Cb, obtained by applying a suitable clustering algorithm C to
the projected data proja and projb, are computed. It is worth noting that we
make no assumptions about the shape of the clusters and in principle any clus-
tering algorithm C, randomized map µ, and clustering similarity measure sim
may be used. According to [4] a visual inspection of the empirical distributions
of the similarity measures stored in M for different values of k may be used to
estimate the optimal number of clusters. Anyway this qualitative approach may
lead to subjective decisions, especially when the differences betwen the observed
distributions are not clearly defined.

To overcome this problem, we propose a quantitative approach that allows
us to estimate the significance of the solutions. We define Sk s.t. 0 ≤ Sk ≤ 1 as
a random variable that represents the similarity between two k-clusterings (e.g.
Fowlkes and Mallows similarity). If Sk values are close to 1 the two clusterings
are very similar, if close to 0 very dissimilar. Let be f(Sk) its density function,
and

F (s̄k) =
∫ s̄k

−∞
f(Sk)dSk (2)



its cumulative distribution function. We define g(k) as the integral of the cumu-
lative distribution function:

g(k) =
∫ 1

0

F (Sk)dSk (3)

Intuitively g(k) represents the ”concentration” of the similarity values close to 1;
that is, if g(k) ' 0 then the distribution of the values of Sk is concentrated near
1, or, in other words, the k-clustering is stable. On the other hand, if g(k) ' 1
then the clusterings are totally unstable, while if the distribution is close to the
uniform distribution, we have g(k) ' 1/2. We may directly estimate eq. 3 by
numerical integration, or we may more easily obtain g(k) from the estimate of
the expectation E[Sk]:

E[Sk] =
∫ 1

0

SkF ′(Sk)dSk = 1−
∫ 1

0

F (Sk)dSk (4)

Hence from eq. 4 we may easily compute g(k):

g(k) =
∫ 1

0

F (Sk)dSk = 1− E[Sk] (5)

Eq. 5 shows also more clearly that we have a very stable and reliable clustering
(E[Sk] close to 1), if and only if g(k) is close to 0.

Consider a set of k-clusterings k ∈ K, where K is a set of numbers of clusters
and the corresponding set of integrals computed according to eq. 3. Then we
obtain a set of values G = {gk|k ∈ K}. We can sort G obtaining Ĝ with values
ĝi in ascending order. For each k-clustering we consider two groups of pairwise
clustering similarities values separated by a threshold to 1. Thus we may obtain:
P (Sk > to) = 1 − F (Sk = to), where F (Sk = to) is computed according to
eq. 2. If n represents the number of trials for estimating the value of Sk then
xk = P (Sk > to)n is the number of times for which the similarity values are
larger than to. The xk may be interpreted as the successes from |K| binomial
populations with parameters θk. If the number of trials n is sufficiently large,
and setting Xk as a random variable that counts how many times Sk > to, we
have that the random variables

Xk − nθk√
nθk(1− θk)

∼ N(0, 1) and hence
∑

k∈K

(Xk − nθk)2

nθk(1− θk)
∼ χ2

Considering the null hypothesis H0: all the θk are equal to θ, where the unknown
θ is estimated through its pooled estimate θ̂ =

P
k∈K xk

|K|·n , then the null hypothesis
may be evaluated against the alternative hypothesis that the θk are not all equal
using the statistic

Y =
∑

k∈K

(xk − nθ̂)2

nθ̂(1− θ̂)
∼ χ2

|K|−1 (6)

1 In our experiments we set to = 0.9.
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Fig. 1. Synthetic sample: data projected into the two components with highest vari-
ance, by means of Principal Component Analysis.

If Y ≥ χ2
α,|K|−1 we may reject the null hypothesis at α significance level, that

is we may conclude that with probability 1 − α the considered proportions are
different, and hence that at least one k-clustering significantly differ from the
others. Using the above test we start considering all the k-clustering. If a signif-
icant difference is registered according to the statistical test we exclude the last
clustering (according to the sorting of G). This is repeated until no significant
difference is detected: the set of the remaining (top sorted) k-clusterings repre-
sent the set of the estimate stable number of clusters discovered (at α significance
level).

It is worth noting that the above χ2-based procedure may be also applied
to automatically find the optimal number of clusters using the the similarity
measures generated according to the cited Ben-Hur et al. algorithm.

3 Experiments with synthetic and gene expression data

We performed experiments with high dimensional synthetic and real gene ex-
pression data to assess the effectiveness of the proposed method.

We considered different high dimensional synthetic data sets, and in any
case the correct number of clusters has been detected. To show the ability of our
method to discover multiple structures simultaneously present in the data, we
propose an experiment with a 1000-dimensional synthetic multivariate gaussian
data set, characterized by a two-level hierarchical structure, highlighted by the
projection of the data into the two main principal components (Fig. 2): indeed a
two-level structure, with respectively 2 and 6 clusters is self-evident in the data.
Accordingly, two clusterings (using the Prediction Around Medoid algorithm)
are detected at 0.001 significance level by our proposed method, using Plus-
Minus-One random projections [5] from a 1000 to a 479-dimensional subspace
(ε = 0.2). Indeed Fig. 2 shows that the histograms of the similarity measures for
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Fig. 2. 1000-dimensional synthetic sample: histograms of the similarity measure dis-
tributions for different numbers of clusters.

k = 2 and k = 6 clusters are tightly concentrated near 1, while for other values
of k the similarity measures are spread across multiple values.

Fig. 3 shows the empirical cumulative distribution functions for different
numbers of clusters with the Leukemia data set [7]. For these experiments we
used the classical c-mean clustering algorithm and Plus-Minus-One random
projections [5] with ε = 0.1 (corresponding to projections from 3574 to 1711-
dimensional subspaces, according to the JL lemma). Fig. 3 shows that clusterings
with k = 2 and k = 3 clusters have the smaller area under the empirical cumu-
lative distribution of the similarity values (that is the estimated lowest value of
g(k), eq. 3). Our proposed χ2-based test predicted 2 clusters as the most reliable,
with α = 10−5 significance level, and the corresponding integral g(2) = 0.1125
(eq. 3). Anyway at α = 10−12 significance level also 3 clusters are judged quite
reliable (g(3) = 0.2328). The other numbers of clusters are considered highly
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Fig. 3. Leukemia: empirical cumulative distribution functions of the similarity mea-
sures for different number of clusters k, 2 ≤ k ≤ 10.

unreliable. This perfectly match with the fact that two biologically meaningful
groups (ALL, acute lymphoblastic leukemia and AML, acute myeloid leukemia)
are present in the data; furthermore ALL can be subdivided into B-cell and T-
cell ALL obtaining in this way 3 distinct clusters. Experiments with other DNA
microarray data sets confirmed the effectiveness of our approach.
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