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Abstract

Expression-based classification of tumors requires stable, reliable and variance re-
duction methods, as DNA microarray data are characterized by low size, high di-
mensionality, noise and large biological variability. In order to address the variance
and curse of dimensionality problems arising from this difficult task, we propose
to apply bagged ensembles of Support Vector Machines (SVM) and feature selec-
tion algorithms to the recognition of malignant tissues. Presented results show that
bagged ensembles of SVMs are more reliable and achieve equal or better classifica-
tion accuracy with respect to single SVMs, whereas feature selection methods can
further enhance classification accuracy.

Key words: Molecular classification of tumors; DNA microarray; bagging; Support
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1 Introduction

DNA microarray data provide a functional portrait of tumors, opening new
perspectives for the classification and diagnosis of malignancies at molecular
level [4].
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Several supervised methods have been applied to the analysis of cDNA mi-
croarrays and high density oligonucleotide chips [5,7,9]. In particular, Support
Vector Machines (SVM) have been recently applied to the analysis of DNA
microarray gene expression data in order to classify normal and malignant
tissues and multiple tumor types [6,10]. Other approaches pointed out the im-
portance of feature selection methods to reduce the high dimensionality of the
input space [8]. In recent works, combinations of binary classifiers (one-versus-
all and all-pairs) and Error Correcting Output Coding (ECOC) ensembles of
MLP, as well as ensemble methods based on resampling techniques, such as
bagging and boosting, have been applied to the molecular classification of
tumors [5,10]. Indeed variance problems arising from small samples and bi-
ological variability of the data can be addressed through ensemble methods
based on resampling techniques, while a possible way of dealing with the curse
of dimensionality is offered by feature selection algorithms.
In this work we deal with these problems, combining bagged ensembles of
SVMs and feature selection methods to enhance the accuracy and the relia-
bility of malignancy predictions based on gene expression data.

2 Bagged ensembles of SVMs

We can represent the output of a single experiment with a DNA microarray as
a pair (x, y), being x ∈ Rd a vector containing the expression levels for d se-
lected genes and y ∈ {−1, +1} a binary variable determining the classification
of the considered tissue. Denote with {Tb}B

b=1 a collection of B bootstrapped
samples with n elements, generated by choosing at random examples in the
training set T = {(xj, yj) : j = 1, . . . , n} according to a uniform probability
distribution. Since the elements from T are drawn with replacement, every
Tb may contain replicates. Suppose, without loss of generality, that the first
n+ pairs of T have yj = +1, whereas the remaining n− = n − n+ possess a
negative output yj = −1.

Let fb : Rd → R be the discriminant functions obtained by applying the
soft-margin SVM learning algorithm [3] on the bootstrapped samples Tb:

fb(x) = b +
n∑

j=1

αjyjK(xj, x) (1)

where the scalars αj and the bias b are obtained through the solution of
a quadratic programming problem. The symmetric function K(·, ·) must be
chosen among the kernels of Reproducing Kernel Hilbert Spaces [11] (e.g. a
polynomial or a Gaussian).

Every fb is associated with a decision functions hb : Rd → {0, 1} defined as
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hb(x) = sign(fb(x)). In this way a set of different classifiers (base learners) is
generated, thus exploiting the diversity of the bootstrapped samples Tb. The
generalization ability of these base learners can be improved by aggregating
them through the standard majority voting formula (for two class classification
problems) [2]:

hst(x) = sign

(
B∑

b=1

hb(x)

)
(2)

Different choices of discriminant function for the bagged ensemble are possible,
some of which lead to the standard decision function hst(x). The following
three expressions allow also to evaluate the quality of the classification offered
by the bagged ensemble:

favg(x) =
1

B

B∑

b=1

fb(x) fwin(x) =
1

|B∗|
∑

b∈B∗
fb(x)

fmax(x) = hst(x) ·max
b∈B∗

|fb(x)| (3)

where the set B∗ = {b : hb(x) = hst(x)} contains the indices b of the base
learners that vote for the class hst(x). Note that favg(x) is the average of
the fb(x), whereas fwin(x) and fmax(x) are, respectively, the average of the
discriminant functions of the classifiers having indices in B∗ and the signed
maximum of their absolute value.

The decision functions hwin(x) = sign(fwin(x)) and hmax(x) = sign(fmax(x))
are equivalent to the standard choice hst(x), where each base learner receives
the same weight. On the contrary, with havg(x) = sign(favg(x)) the decision
of each classifier in the ensemble is weighted via its prediction strength.

3 Quality assessment of classifiers

Besides the success rate

Succ =
1

2n

n∑

j=1

|yj + h(xj)| (4)

which is an estimate of the generalization error, several alternative measures
can be used to assess the quality and to evaluate the confidence of the classi-
fication performed by simple SVMs and bagged ensembles of SVMs.

By generalizing a definition introduced in [7,8], a first choice is the extremal
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margin Mext, defined as

Mext =
θ+ − θ−

max
1≤j≤n

f(xj)− min
1≤j≤n

f(xj)
(5)

being θ+ = min1≤j≤n+ f(xj) and θ− = maxn++1≤j≤n f(xj). It can be easily
seen that the larger is the value of Mext, more confident is the classifier. An
alternative measure, less sensitive to outliers, is the median margin Mmed:

Mmed =
λ+ − λ−

max
1≤j≤n

f(xj)− min
1≤j≤n

f(xj)
(6)

where λ+ and λ− are respectively the median value of f(x) for the positive
and negative class.

4 Numerical experiments

We applied SVM linear classifiers to separate normal and malignant tissues
with and without feature selection. Then we compared the results obtained
with single and bagged SVMs, using in all the cases the simple filter method
for feature selection described in [7].

The proposed approach has been tested on the Colon cancer data set [1]
constituted by 2000-dimensional samples including 22 normal and 40 colon
cancer tissues. The whole data set has been randomly split into a training
and a test set of equal size, each one with the same proportion of normal
and malignant examples. We also compared the different classifiers on the
Leukemia data set [7], which considers the problem of recognizing two variants
of leukemia by analyzing the expression level of 7129 different genes. It consists
of 72 examples, 47 cases of Acute Lymphoblastic Leukemia (ALL) and 25 cases
of Acute Myeloid Leukemia (AML), split into a training set of 38 tissues and
a test set of 34 tissues. Data preprocessing has been performed according
to [1,7].

Figg. 1 and 2 compare the results obtained through the application of bagged
ensembles of SVMs (for different choice of the decision function) with those
achieved by single SVMs. On the Leukemia data set, bagging seems not to
improve the success rate, even if the predictions are more reliable, especially
when a small number of selected genes is used (Figg. 1a,1b). On the contrary,
bagging improves the success rate scored on the Colon data set, both with
and without feature selection, in particular if the favg discriminant function is
used. (Fig. 2a).
Bagged ensembles show clearly larger median margins with respect to single
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Fig. 1. Leukemia data set. Comparison of the results obtained with single and bagged
SVMs, when varying the number of selected genes. Single SVM results are repre-
sented by continuous lines, while dotted and dashed lines represent bagged ensem-
bles. (a) Success rate, (b) Median margin.

SVMs, confirming a better overall reliability (Figg. 1b,2b). Similar results are
obtained with respect to the maximal margin (data not shown), both with the
Leukemia and the Colon data set; however in Colon we observe an opposite
behavior if the number of considered genes is relatively large.

The results show that bagged ensembles of SVMs are more reliable than single
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Fig. 2. Colon data set. Comparison of the results obtained with single and bagged
SVMs, when varying the number of selected genes. (a) Success rate, (b) Median
margin.

SVMs in classifying DNA microarray data. Moreover they obtain an equivalent
or a better accuracy, at least with Colon and Leukemia data sets. Anyway it
is difficult to establish if a statistically significant difference between the two
approaches does exist, given the small size of the available samples. Our results
show also that gene selection not always can enhance the recognition rate of
tumoral samples: according to [8], it plays a significant role in separating
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AML from ALL, while, with the Colon data set, bagging, rather than feature
selection, improves the accuracy and the reliability of SVMs.
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