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Abstract. The validation of clusters discovered in bio-molecular data is
a central issue in bioinformatics. Recently, stability-based methods have
been successfully applied to the analysis of the reliability of clusterings
characterized by a relatively low number of examples and clusters. Nev-
ertheless, several problems in functional genomics are characterized by a
very large number of examples and clusters. We present a stability-based
algorithm to discover significant clusters in hierarchical clusterings with
a large number of examples and clusters. Preliminary results on gene
expression data of patients affected by Human Myeloid Leukemia, show
how to apply the proposed method when thousands of gene clusters are
involved.

1 Introduction

The unsupervised discovery and validation of clusters underlying data is a central
issue in several branches of bioinformatics [1], as well as the proper visualization
of clustering results [2]. Different clustering validation techniques (see [3] for a
recent review), and software tools implementing classical validity indices (such
as the Dunn’s index and the Silhouette index) have been proposed [4].

Several recent methods to estimate the validity of the discovered clusterings
are based on the concept of stability: multiple clusterings are obtained by intro-
ducing perturbations into the original data, and a clustering is considered reli-
able if it is approximately maintained across multiple perturbations [5, 6, 7, 8].
Despite their successful application in several bioinformatics domains, they are
well-suited to unsupervised problems characterized by a relatively low number of
clusters and/or examples [9, 10]. Indeed if we try to apply them to the analysis of
a very high number of clusters, computational problems may arise. For instance,
to assess the reliability of clusters of N genes using DNA microarray data, we
usually deal with thousands of examples (genes) and with an exponential (2N )
number of potential clusters.



Considering that clusters of genes may show a hierarchical multi-level or-
ganization [11], we could reduce the computational complexity by examining a
linear number of clusters, computed by a hierarchical clustering algorithm.

The main idea of this work consists in the assessment of the reliability of the
clusters discovered by a hierarchical clustering algorithm, using a stability based
measure mutuated from our previous work [10]. Differently from our previous
approach, we do not need to know in advance the correct or the approximate
number of clusters, but we can directly apply a stability measure that estimates
the reliability of each individual cluster of the dendrogram computed by a hier-
archical algorithm, thus reducing the complexity to a linear number of clusters
with respect to the number of available examples.

In the next section we describe the proposed algorithm. In Sect. 3 we intro-
duce an application of the algorithm to the discovery of significant gene clusters
in patients affected by Human Myeloid Leukemia, by using DNA microarray
gene expression data prepared and analyzed by our research group using the
Affymetrix hgu133plus2 GeneChip. Then we discuss the advantages and the lim-
itations of the proposed method. In the conclusions we propose some research
lines for future work.

2 The algorithm

Our algorithm is founded on a stability based approach to discover the significant
clusters identified by a hierarchical clustering algorithm.

The main logical steps of the algorithm are the following:

1. Hierarchical clustering of the original data. A hierarchical clustering al-
gorithm is applied to the original data to discover the clusters whose relia-
bility will be evaluated through the steps listed below.

2. Multiple perturbation of the original data. The original data are per-
turbed by randomized projections [12], by subsampling or bootstrapping
procedures [13], or by controlled noise injection.

3. Multiple hierarchical clustering of the perturbed data. Multiple clus-
terings are obtained by applying the same hierarchical clustering algorithm
as in the step (1) to the perturbated data.

4. Construction of the similarity matrix. A similarity matrix that stores
the frequency by which each pair of examples falls into the same cluster in
the ”perturbed” clustering is built [14].

5. Computation of the stability indices. For each cluster obtained through
the hierarchical clustering of the original data (step 1), a stability index [10]
is computed using the similarity matrix constructed at step 4. The stability
index S (see line (11) of the pseudo-code of the algorithm) has values between
0 (low stability) and 1 (high stability).

6. Selection of the most reliable clusters. Using the stability indices com-
puted in the previous step, the most reliable clusters are selected. Several
approaches can be used; the easiest one consists in the selection of the clus-
ters whose stability is above a given threshold.



The pseudo-code of the algorithm is reported below:
Cluster stability algorithm:

Input:
- A data set D = {xi ∈ Rr, 1 ≤ i ≤ N}.
- A hierarchical clustering algorithm C.
- A number n on perturbations of the data.
- A procedure that realizes a randomized map µ : Rr → Rm,m < r.
Begin algorithm

(1) {A1, . . . , A2N−1} := C(D);
(2) C := {Ai|Ai is not a leaf or the root};
(3) M := 0 ;
(4) d := 0;
Repeat for j = 1 to n

(5) Dj := µ(D);
(6) {Bj

1, . . . , B
j
2N−1} := C(Dj);

(7) Cj := {Bj
i |Bj

i is not a leaf or the root };
(8) d := d+depth (C(Dj))− 1;
For each Bj

k ∈ Cj

For each (xt, xv) ∈ (Bj
k ×Bj

k)
(9) M(t, v) := M(t, v) + 1;

end For
end For

end Repeat
(10) M := M

d ;
For each Ak ∈ C

(11) S(Ak) := 1
|Ak|(|Ak|−1)

∑
(xt,xv)∈Ak×Ak

M(t, v);
end For

end algorithm.
Output:
- S = {s(Ai)|Ai ∈ C}.

In this algorithm a randomized map is applied to perturb the data. Note that
with abuse of notation we represent clusters and nodes with the same symbols, as
well as dendrograms and corresponding clusterings. At line (2), from the original
hierarchical clustering composed by 2N − 1 clusters (line (1)), only the internal
N − 2 nodes are selected. Indeed it is easy to see that all the singleton clusters
(the leaves of the dendrogram) and the ”root” cluster are always present in any
hierarchical clustering and as a consequence their stability is always 1 (maximum
stability).

The ”core” of the algorithm is represented by the Repeat loop. At each
iteration we obtain an instance of the perturbed (projected) data (step 5); then
a hierarchical clustering algorithm is applied to the perturbed data, considering
only the internal nodes (steps 6−7). After updating the cumulative depth of the
n dendrograms (8), the following two nested iterative loops update the similarity
matrix M , by adding 1 to the entry M(t, v) if the examples xt and xv are both



present in the cluster Bj
k. To maintain the value of each entry of the matrix M

between 0 and 1 we need to normalize it by d (step 10). Indeed each pair of
examples may belong to a number of clusters equal at most to the depth minus
one of the corresponding tree (step 8). The output of the algorithm consists in
the set of stability indices computed for each node of the hierarchical clustering
C.

3 Results and discussion

As an example of application of the proposed algorithm, we analyzed gene expres-
sion data of eight samples, including seven patients affected by Human Myeloid
Leukemia at diagnosis and one healthy donor as control. Samples were analyzed
using the Affymetrix hgu133plus2 GeneChip. Each gene on this chip is repre-
sented by 11 oligonucleotides, termed a “probeset”. The hgu133plus2 contains
54675 probe sets and it analyzes the expression level of 47400 transcripts and
variants including 38500 UniGene clusters at the time of array design.

During the laboratory procedures biotin-labeled RNA fragments are hy-
bridized to the probe array. The hybridized probe array is stained with strep-
tavidin phycoerythrin conjugated and scanned by the GeneChip Scanner 3000
Affymetrix. From the image files .cel files containing a single intensity value for
each probe cell delineated by the grid are obtained. We used Bioconductor [15]
packages to assess the quality level of the data, using standard Affymetrix tests,
as well as other quality check tests such as the Relative Log Expression (RLE)
plot and Normalization Unscaled Standard Error (NUSE) [16]. Fig. 1 shows the
MA plots of the expression levels of the seven samples using the healthy donor as
reference. All quality checks assured the high quality of the gene expression data.
Background correction, normalization and summarization have been performed
using the Robust Multi-array Average (RMA) procedure that summarizes the
probe level data to obtain gene expression levels [16] and the ”expresso” method
from the Affy Bioconductor package [17].

To reduce the high number of examples (54613 probe sets with the exclusion
of the Affymetrix chip control probes), we used a z-test to select the genes whose
gene expression levels significantly differ from the healthy donor control patient.
At a 0.1 significance level we selected 1007 genes. Using the algorithm described
in Sect. 2 and the classical average-linkage algorithm to perform the hierarchical
clusterings, we iterated 50 random projections from the original 7-dimensional
space to a lower 5-dimensional space, using Bernoulli random projections [11].

The results are showed in Table 1. Different thresholds 0 < α < 1 have
been considered, in order to select the set Rα of reliable clusters, among those
belonging to the clustering C in the original space:

Rα = {Ai ∈ C|S(Ai) > α}

The last column represents the ratio values with respect to the total number of
clusters (1005), obtained excluding the singleton and the ”root” clusters. From



Fig. 1. MA plots of the seven patients affected by Human Myeloid Leukemia using the
healthy donor as reference.

these results we may observe that 43 clusters show a stability larger than 0.8,
and only 5 clusters show a very high reliability (stability larger than 0.9).

The proposed approach shows several limitations that need to be carefully
considered for future work.

For instance, the algorithm has a bias versus very low sized and very large
sized clusters. Indeed it is easy to see that singleton clusters and the clusters
that contains all the examples are always present in every hierarchical clustering
algorithm, thus resulting in a stability equal to 1. All the other clusters lie in
between: hence it is necessary to include a proper correction with respect to the
cluster size.

Another relevant problem is the choice of the threshold α to select the sig-
nificant clusters. In the proposed algorithm the choice is somehow arbitrary: we
considered very reliable the 5 clusters selected with a threshold equal to 0.9, but
there is no reason to consider this threshold as a warranty of reliability. More-
over this problem is related to the previous one, because the threshold should
be related to the cardinality of the clusters.

The choice of classical hierarchical algorithms to discover the clusters of genes
may represents another limitation. Even if clusters of genes may show a hierar-
chical structure [18], a gene may belong to multiple nodes in different non-nested
subtrees of the hierarchical structure, and classical hierarchical clustering algo-
rithms cannot capture these characteristics of the data. To this end a possible
more consistent approach could be a fuzzy or probabilistic hierarchical cluster-



Table 1. Number of clusters of the original hierarchical classification with a stability
larger than α. The last row represents the ratio of the selected clusters with respect to
the total number of clusters.

α Number of clusters Ratio

0.1 1004 0.999

0.2 919 0.914

0.3 680 0.677

0.4 392 0.390

0.5 227 0.226

0.6 138 0.137

0.7 76 0.076

0.8 43 0.043

0.9 5 0.005

ing approach, in order to address the problem of “not-hierarchically-related”
clusters.

From a bioinformatics standpoint we need also to biologically validate the
clusters discovered as reliable by the proposed method. To this end we need a
careful biological and bio-medical analysis of the clusters of genes individuated
as significant. To support this bio-medical task functional enrichment methods
are often used to find if one or more of gene modules (e.g. Gene Ontology classes
or KEGG pathways) are significantly over-represented among the relevant genes
selected in the experiment [19, 20]. Over-representation of a given gene module
means that genes with a particular property have been activated or deactivated
in the experiment.

4 Conclusions

We presented an algorithm to discover reliable clusters in hierarchical clusterings
characterized by a large number of examples and clusters. The method proposes
a stability-based approach that uses multiple randomized projections of the orig-
inal data and a stability measure constructed through a similarity matrix that
summarizes multiple clusterings on the perturbed data. A preliminary applica-
tion to patients affected by Human Myeloid Leukemia discovered a relatively
small number of gene clusters that need to be biologically validated. The aim of
this preliminary work consists in showing the applicability of a stability-based
method to discover significant clusters when their number is relatively high and
classical stability-based methods are not applicable for computational complex-
ity reasons. Nevertheless in future works we need to address the problem of the
bias of the stability measure and we need also a principled method to choose
the threshold to select the set of significant clusters. We are working on a non-
parametric statistical test to solve both these open problems.
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