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We compare two ensemble methods to classify DNA microarray data. The meth-
ods use different strategies to face the course of dimensionality plaguing these
data. One of them projects data along random coordinates, the other compresses
them into independent boolean variables. Both result in random feature extraction
procedures, feeding SVMs as base learners for a majority voting ensemble classi-
fier. The classification capabilities are comparable, degrading on instances that
are acknowledged anomalous in the literature.

1. Introduction

The traditional taxonomy of malignancies, based on their morphological,
histopathological, and clinical characteristics, may be sometimes ineffective
for a correct diagnosis and prognosis of tumors *.
diagnosis may be achieved exploiting the genome-wide bio-molecular char-
acteristics of tumors, using high throughput bio-technologies based on large
scale hybridization techniques (e.g. DNA microarray) °.

One of the main drawbacks that characterizes DNA microarray data
is represented by their very high dimensionality and low cardinality. In-
deed is well known that in these cases the curse of dimensionality problem
arises. Hence several works pointed out the importance of feature selection
methods to reduce the dimensionality of the input space 7. An alternative
approach is represented by data compression techniques that can reduce the

Indeed a more refined
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dimensionality of the data, while approximately preserving their informa-
tion content. As for their processing, several authors recently proposed to
apply ensemble methods for improving the performance of state-of-the-art
classification algorithms in the context of gene expression data analysis *.

In this paper we compare two ensemble methods based on data-
compression techniques for DNA-microarray-based diagnosis. The first one
exploits random projections to lower dimensional subspaces 8, while the
second performs data compression through a Boolean Independent Com-
ponent Analysis (BICA) algorithm 3. While the first method has just been
applied to gene expression data analysis 2, BICA has never been previously
applied to DNA microarray data analysis.

In the next two sections we introduce the methods, and in Sect. 4 we
experimentally analyze the effectiveness of the two approaches, applying
them to DNA microarray-bases diagnosis of tumors.

2. RSE: Random Subspace Ensemble

The reduction of the dimensionality in the context of supervised analysis of
data is usually pursued through feature selection methods. Many methods
can be applied, ranging from filter methods, wrapper methods, information
theory based techniques and ”embedded” methods (see e.g. 6 for a recent
review).

We recently experimented a different approach 3 based on random sub-
space ensemble methods . For a fixed n, n features (genes) are randomly
selected, according to the uniform distribution. Then the data of the orig-
inal d-dimensional training set is projected to the selected n-dimensional
subspace. The resulting data set is used to train a suitable base learner and
this process is repeated v times giving raise to an ensemble of v learning
machines trained on different randomly selected subsets of features. The
resulting set of classifiers are then combined by using majority voting.

This method avoids some computational difficulty of feature selection
(feature selection is an NP-hard problem), and a parallel implementation
can be provided in a natural way. Anyway feature selection methods can
explicitly select sets of relevant features, while this information cannot be
directly obtained through RS ensembles. On the other hand, with differ-
ent random projections of the data we can improve diversity between base
learners ?, while the overall accuracy of the ensemble can be enhanced
through aggregation techniques. As a consequence the performance of a
given classification algorithm may be enhanced. A high-level pseudo-code
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of the method is summarized in Fig. 1. In particular, Subspace_projection

Random Subspace Ensemble Algorithm
Input:
- Adataset D= {(x,t;)]1<j<m},x; € X CRY t; eC={1,...,k}
- a learning algorithm £
- subspace dimension n < d
- number of the base learners m

Output:
- Final hypothesis hrqn : X — C computed by the ensemble.
begin
fori=1tov
begin
D; = Subspace_projection(D, n)
hi = £(D;)
end
iran (%) = argmaxsec card({ilhi (x) = t})
end.
Figure 1. High-level pseudo-code of the RSE method
procedure selects a n-subset A = {a1,...,a,} from {1,2,...,d}, and re-
turns as output the new data set D; = {(Pa(x;),t;)|1 < j < m}, where
Pa(x1, . yxd) = (Tagy -1 o, )-

The new data set D; is then given as input to a learning algorithm £
which outputs a classifier h;. All the classifiers obtained are finally aggre-
gated through majority voting, where card() measures the cardinality of a
set.

3. BICA network

A suitable way of taking decisions based on data is to split the decision
process in two steps. The first is devoted to preprocessing data in a feasible
way such that they can be interpreted in the second one. As for the for-
mer, it mirrors real vectors into boolean ones, that should reflect relevant
features of the original data patterns. Stressing the fact that independence
is a property of the representation of the data that we use, we search for
this property precisely on a concise Boolean representation of them suitable
for their correctly partition into positive and negative inputs of our deci-
sion rule. Accordingly, we call the mirroring method Boolean Independent
Component Analysis, BICA for short.
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3.1. The architecture

We split the mirroring of the original data into the target Boolean vector in
two parts: a true mirroring of the patterns and a projection of a compressed
representation of them (obtained as an aside result of the first part) into
the space of Boolean assignments. The whole process is done by a neural
network with an architecture shown in Fig. 2 sharing the same input and
hidden layer with the two output segments A and B computing the Boolean
assignments and a copy of the input, respectively.

Part A: Part B:
Propositional Variable Mirroring of
Vector v = (v1,v2,...,0n) Pattern Vector

[ i |

V\/

I l

/ Hidden Layer \

I |

Pattern Vector x = (z1,x2,...,2Z4q)

Figure 2. Layout of the neural network mapping features to symbols.

3.2. The learning algorithm

We train this network with a backpropagation algorithm !° as follows.
Error backpropagation in part B. As customary with this functionality
1 we structured our network as a three-layer network with the same num-
ber of units in both input and output layers and a smaller number of units
in the hidden layer. Therefore the hidden layer constitutes a bottleneck
which collects in the state of its nodes a compressed representation of the
input. This part of the network is trained according to a quadratic error
function and usual formulas!?.

Error backpropagation in part A. Things are different for the units of
part A of the output. In this case we require that the network minimizes
the following error:

E,=In (H Z (1= zs,k)ﬂ%w) (1)
k=1
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Figure 3. Graph of the function Es with n = 2.

where z, ; is the output of the unit j upon presentation of s-th pattern.
This function, which we call the edge pulling function, has the shape of an
entropy measure that finds its minima in the vertices of the neural network
output space (see Fig. 3).

The error which is backpropagated from the units of part A is:

Os ke = f;ct(nets,k)as,k (2)

where net, ; is a weighted sum of the inputs to j-th unit on s-th pattern,
fact is the sigmoid function, and

aE’s Zs.k
sk = — =1 G L
sk 8zs,;€ n <1 — Zs,k) (3)

In addition,we insert a syntactic feedback into eq. 3 through an extra

term which has the form of a ‘directed noise’ 8, ;, added to the initial value
of o when we are not satisfied with the ‘correctness’ of the result. Namely,
when the Hamming distance between vectors corresponding to patterns
belonging to different classes falls below a given threshold, we assume pat-
terns with the minority label incorrect. Then, denoting 75 the specific
punishment to the neuron k for an incorrect pattern s, 6 j reads:

Qs,k = (1 — 2F(zs)k)) 7'5,}~C (4)

where T" is a threshold function. The first term in the brackets specifies
the sign of 6, so that the contribution to the network parameters is in
the opposite direction from the one the unit is moving in. Finally, using a
tuning parameter 74 to balance parts B and A, a, j reads:

Zs,k
s,k = gs 1 -
o M( ’k+“<1—z5,k>> (5)
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The joint goal of minimizing Es and maintaining patterns well sepa-
rated in two categories brings the Boolean assignments to figure as samples
of independent random variables, thus we may say that these variables
are expectedly independent. More precisely, the following lemma has been
proved in 13:

Lemma 3.1. With reference to the neural network and training algorithm
described above, if the neural network outputs are correct and all close to the
vertices of the Boolean hypercube then their values stretched to the vertices
constitute assignments to expectedly independent Boolean variables.

We repeat v times also this process getting different maps, as a consequence
of the random initialization of the network parameters, and different base
learners trained on the encoded training sets. Finally, we compute for each
sample of the training set the frequency with which base learners answer
1, and we gather frequencies corresponding to either positive or negative
samples. In the lose assumption that frequencies in each group follow a
Gaussian distribution we locate a threshold at the cross of their p.d.f.s ',
ie.
‘ e
o_+04

where i_ and 6_ are the sample estimate of parameter u_ and o_ of the
negative distribution; idem for the positive distribution. With this thresh-
old we classify test set records giving label 1 to those whose 1 frequency
according to trained base learners overcome the threshold.

4. Colon Tumor Classification
4.1. Experimental setup

In order to compare the two approaches, we applied the two ensemble meth-
ods to the classification of DNA microarray data relative to colon tumor
samples 2. The Colon adenocarcinoma data set is composed of 2000 genes
and 62 samples: 40 colon tumor samples and 22 normal colon tissue sam-
ples. We evaluated the generalization performances of the two ensembles
using multiple hold-out techniques: we randomly split the data in two
equally-sized training and test sets (i.e. 31 samples in the training and 31
samples in the test set), repeating this process 50 times. Then the average
error on the test set has been computed. In both ensembles we used 60
Support Vector Machines (SVMs) as base learners. With RS ensembles
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we applied different projections into random subspace with dimension from
16 to 1024, and used linear SVMs, tuning their regularization parameter.
With BICA network we mapped from R20% to {0, 1}20 space, and we used
a second order kernel SVMs, as a result of a model selection procedure.

4.2. Results and discussion

Comparing the results obtained with the ensemble methods with those ob-
tained with single SVMs, we can register a significant enhancement achieved
with the ensemble approach w.r.t. the single SVMs (Tab. 1). On the other

Table 1. Classification accuracy in single SVMs,
BICA and RSE ensembles.

single SVM RSE BICAe

test accuracy 0.67 0.828 0.792
o 0.07 0.05 0.09
train accuracy 0.80  1.000 0.98
o 0.07 0.00 0.02

hand, there is no a substantial difference between the performances of the
two ensemble approaches, with only a slight improvement obtained with
RSE ensembles. In order to understand if the errors of BICA and RSE
ensembles are approximately distributed on the same examples, we also
analyzed the frequencies of their errors in function of the pattern examined
across the 50 test sets used in the multiple hold-out experiments. Fig. 4 re-
ports the compared test error frequencies by patterns. Interestingly enough,
the two ensemble methods show their largest errors on the same examples
(apart a few discrepancies). The largest errors are concentrated on samples
45, 49, 51, 55 and 56 for both the ensemble methods. As explained in 2,
most normal samples are enriched in muscle cells, while tumor samples are
enriched in epithelial cells. The above samples consistently misclassified by
both ensemble methods present an ”inverted” tissue composition: normal
samples are rich in epithelial cells, tumor samples are rich in muscle cells.
This fact shows that the separation between normal and tumoral samples
is also made on the basis of tissue composition, as observed in 7.

The best results with RSE have been obtained through random pro-
jections into 64-dimensional subspaces. BICA requires only 20 bits. As a
matter of fact both encodings do not represent a real strong compression
of DNA data, since we need 60 different maps to obtain a satisfactory clas-
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Figure 4. Frequencies of error of BICA and RSE ensemble methods in function of the
pattern examined.
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]

sification. We note however that the 63% of the database is well classified
using a single SVM and 93% using only 3 SVMs. Moreover, only 14 vari-
ables are used by the mentioned single SVM involving in own turn only 151
features uniformly distributed within the topology of the bench of the 2000
features supplied by the micro-array.

These results suggest that BICA technique could be in perspective ap-
plied to discover genes relevant for tumor discrimination that may be vali-
dated by the RSE ensembles.
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