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Abstract. The Human Phenotype Ontology (HPO) provides a stan-
dard categorization of the phenotypic abnormalities encountered in hu-
man diseases and of the semantic relationship between them. Quite sur-
prisingly the problem of the automated prediction of the association
between genes and abnormal human phenotypes has been widely over-
looked, even if this issue represents an important step toward the charac-
terization of gene-disease associations, especially when no or very limited
knowledge is available about the genetic etiology of the disease under
study. We present a novel ensemble method able to capture the hierar-
chical relationships between HPO terms, and able to improve existing
hierarchical ensemble algorithms by explicitly considering the predictions
of the descendant terms of the ontology. In this way the algorithm ex-
ploits the information embedded in the most specific ontology terms that
closely characterize the phenotypic information associated with each hu-
man gene. Genome-wide results obtained by integrating multiple sources
of information show the effectiveness of the proposed approach.
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1 Background

The Human Phenotype Ontology (HPO) project [9] aims at providing a stan-
dard categorization of the abnormalities associated with human diseases and
the semantic relationships between them. Each HPO term does not represent
a disease, but rather it denotes individual signs or symptoms or other clini-
cal abnormalities that characterize a disease. The HPO contains approximately
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11,000 terms (still growing) and over 115,000 annotations to hereditary diseases.
Moreover the HPO provides a large set of HPO annotations to approximately
4000 common diseases. The HPO is structured as a direct acyclic graph (DAG),
where more general terms are found on the top levels of the hierarchy and the
term specificity increases moving from the root to the leaves. Figure 1 shows an
example of a small subset of the HPO, including all the HPO nodes that are an-
cestors of the Tryptophanuria term. In this example Tryptophanuria is the most
specific HPO term, its parent term Aminoaciduria is less specific, and following
the path toward the root term we find more general terms, such as Abnormality
of the urinary system, till to the root term Phenotypic abnormality.

Each HPO term belongs to one of the following five subontologies: Phe-
notypic abnormality, Clinical modifier, Mortality/Aging, Mode of inheritance
or Frequency. All the HPO relationships are is-a (class-subclass relationships)
and are governed by the true-path-rule (also known as annotation propagation
rule) [2] that can be summarized as follow: an annotation for a functional term is
transferred in a recursive way to its ancestors, whereas if a gene is unannotated
for a class, it cannot be annotated with its descendants.

Fig. 1. Ancestor view of the HPO terms Tryptophanuria (Phenotypic abnormality
subontology). Figure created by using OBO-Edit, an open source ontology editor.
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While the problem of the prediction of gene–disease associations has been
widely investigated [10], the related problem of gene–phenotypic feature (i.e.
HPO term) association has been largely overlooked, despite the quickly growing
application of the HPO to relevant medical problems [22, 16]. In principle in the
contest of gene–abnormal phenotype prediction, any “flat” method that predicts
labels independently of each other can be applied [21], but it may introduce
significant inconsistencies in the classification due to the violation of the true path
rule that governs the HPO taxonomy. Besides inconsistency, flat methods may
also loose important a priori knowledge about the constraints of the hierarchical
labeling that could enhance the accuracy of the predictions.

To overcome these limitations we recently proposed an ensemble method (Hi-
erarchical True path Rule for Directed Acyclic Graph - TPR-DAG) [13, 11] that
explicitly takes into account the hierarchical relationships between HPO terms,
and in [11] we showed that TPR-DAG achieves competitive results with respect
to state-of-the-art methods for HPO term prediction. More in general ensemble
methods have been successfully applied to several branches of bioinformatics,
ranging from genetic associations studies to pathogenic genetic variant predic-
tion [7, 15]. In this paper we propose a variant of the TPR-DAG algorithm,
that we named DEScendant Classifier ENSemble (DESCENS). The novelty of
DESCENS with respect to TPR-DAG consists in strongly considering the con-
tribution of all the descendants of each node instead of only that of its children,
since with the TPR-DAG algorithm the contribution of the descendants of a
given node decays exponentially with their distance from the node itself, thus
reducing the impact of the predictions made at the most specific levels of the
ontology [17]. On the contrary DESCENS predictions are more influenced by
the information embedded in the most specific terms of the taxonomy (e.g. leaf
nodes), thus putting more emphasis on the terms that most characterize the
gene under study, and that are those usually most informative and meaningful
from a bio-medical standpoint.

2 Materials and Methods

LetG =< V,E > a Directed Acyclic Graph (DAG) with vertices V = {1, 2, . . . , |V |}
and edges e = (i, j) ∈ E, i, j ∈ V . G represents the HPO taxonomy structured
as a DAG, whose nodes i ∈ V represent classes (terms) of the ontology and a di-
rected edge (i, j) ∈ E the hierarchical relationships between i (parent term) and
j (child term). A “continuous flat multi-label scoring” predictor f : X → [0, 1]
provides a score ŷi ∈ [0, 1] that can be interpreted as the likelihood or prob-
ability that a given gene belongs to a given node/HPO term i ∈ V of the
DAG G. The set of |V | flat classifiers provides a multi-label score ŷ ∈ [0, 1]|V |:
ŷ =< ŷ1, ŷ2, . . . , ŷ|V | >. We say that a multi-label scoring y is consistent if it
obeys the true path rule:

y is consistent ⇐⇒ ∀i ∈ V, j ∈ parents(i)⇒ yj ≥ yi (1)

According to this rule the score of a parent or an ancestor node must be larger
or equal than that of its children or descendants nodes.
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To process and provide flat scores of the proposed hierarchical ensemble
methods we used both a semi-supervised network-based approach (RANKS [18])
and a supervised machine learning method (Support Vector Machine – SVM).
In our experiments we applied RANKS with the average score function and the
random walk kernel at 1, 2 and 3 steps, i.e. kernels able to evaluate the direct
neighbors and those far away 2 and 3 steps from each gene in the network. It is
worth noting that RANKS returns a score and not a probability [12]. To make
the scores comparable across classes we normalized the scores in the sense of the
maximum (i.e. we divided the score values of each class by the maximum score
of that class) or according to the quantile normalization [3].

After the learning phase the “flat” predictions are modified by the DE-
SCENS algorithm, whose high-level pseudo-code is shown in Fig. 2. The block
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�

�

�

Fig. 2. DEScendant Classifier ENSemble for DAGs (DESCENS)
Input:
- G =< V,E >
- V = {1, 2, . . . , |V |}
- ŷ =< ŷ1, ŷ2, . . . , ŷ|V | >, ŷi ∈ [0, 1]
begin algorithm

01: A. dist := ∀i ∈ V ComputeMaxDist (G, root(G))
02: B. Per-level bottom-up visit of G:
03: for each d from max(dist) to 0 do

04: Nd := {i|disti = d}
05: for each i ∈ Nd do

06: ∆i := {j ∈ desc(i)|ȳj > ŷi}
07: ȳi := 1

1+|∆i|
(ŷi +

∑
j∈∆i

ȳj)
08: end for

09: end for

10: C. Per-level top-down visit of G:
11: ŷ := ȳ
12: for each d from 1 to max(dist) do

13: Nd := {i|disti = d}
14: for each i ∈ Nd do

15: x := minj∈parents(i) ȳj
16: if (x < ŷi)
17: ȳi := x
18: else

19: ȳi := ŷi
20: end for

21: end for

end algorithm

Output:
- ȳ =< ȳ1, ȳ2, . . . , ȳ|V | >
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A of the algorithm (row 1) computes the maximum distance of each node from
the root. To this end a method based on the Topological Sorting algorithm can
be applied [5]. The block B computes a per-level bottom-up visit of the graph
G (rows 2 to 9) to propagate the “positive” predictions across the hierarchy.
More precisely, according to the true path rule, only the “positive” descendants
of a certain node i (e.g. descendant nodes having scores larger than that of their
ancestor node i) influence the prediction for the node i itself (row 6 of Fig. 2). In
this way all the “positive” descendants of node i provide the same contribution
to the ensemble prediction ȳi, by modifying the flat predictions ŷi.

1. Threshold Free (TF) Strategy. We choose as “positive” descendants those
nodes that achieve a score higher than that of their ancestor node i:

∆i := {j ∈ desc(i)|ȳj > ŷi} (2)

This strategy leads to the DESCENS-TF algorithm (Fig. 2).
2. Adaptive Threshold (T) Strategy. The threshold is selected to maximize

some performance metricM(j, t) (e.g. F-score or AUPRC) estimated on the
training data for the class j with respect to the threshold t. The correspond-
ing set of positives ∀i ∈ V is:

∆i := {j ∈ desc(i)|ȳj > t∗j , t
∗
j = arg max

t
M(j, t)} (3)

For instance t∗j can be selected from a set of t ∈ (0, 1) through internal cross-
validation techniques. This strategy leads to the DESCENS-T algorithm,
simply by changing row 6 in Fig. 2 with eq. 3.

Moreover, by changing the line 7 of the algorithm in Fig 2, we can design the
“weighted” version of the DESCENS algorithm (DESCENS-W) merely adding
a weight w ∈ [0, 1] to balance the contribution between the node i and that of
its “positive” descendants:

ȳi := wŷi +
(1− w)

|∆i|
∑
j∈∆i

ȳj (4)

Another variant of DESCENS (named DESCENS-τ) balances the contribution
between the “positive” children of a node i and that of its “positive” descendants
excluding its children by adding a weight τ ∈ [0, 1]:

ȳi :=
τ

1 + |φi|
(ŷi +

∑
j∈φi

ȳj) +
1− τ

1 + |δi|
(ŷi +

∑
j∈δi

ȳj) (5)

where φi are the “positive” children of i and δi = ∆i \ φi the descendants of i
without its children. If τ = 1 we consider only the contribution of the “positive”
children of i, and if τ = 0 only the descendants that are not children contribute
to the score, while for intermediate values of τ we can balance the contribution
of φi and δi positive nodes.
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Independently of which variants of the DESCENS algorithm we decide to
use, “positive” predictions are “bottom-up” recursively propagated from the
parents towards the ancestors of each node. The bottom-up step does not assure
the consistency of the predictions. Therefore, this is guaranteed by the block
C of the algorithm (row 10 to 21), where the nodes are top-down processed by
level in an increasing order (from the least to the most specific terms) and the
“bottom-up” scores computed at the block B are hierarchically corrected to ȳ
according to the following simple rule:

ȳi :=

 ŷi if i ∈ root(G)
minj∈parents(i) ȳj if minj∈parents(i) ȳj < ŷi
ŷi otherwise

(6)

The aim of the top-down step consists in propagating the “negative” predictions
towards the children and in a recursive way towards the descendants of each
node. Considering the sparseness of the HPO, it is easy to see that the overall
computational complexity of DESCENS algorithm is O(|V |).

3 Results

We downloaded physical and genetic experimental interactions relative to 4970
proteins from BioGRID (v. 3.2.106, [4]) and the integrated protein-protein inter-
action and functional association data for 18,172 human proteins from STRING
(v. 9.1, [6]). Moreover, starting from the Gene Ontology annotations of the three
main sub-ontologies (Biological Process, Molecular Function and Cellular Com-
ponent) and from OMIM annotations [1], both represented as binary feature
vectors, we constructed 4 more networks by using the classical Jaccard index to
represent the edge weight (functional similarity) between the nodes (genes) of
the resulting network. In our context the Jaccard index of two genes measures
the ratio between the cardinality of their common annotations and the cardi-
nality of the union of their annotations. The rationale behind the usage of this
index is that two genes are similar if they share most of their annotations. All
these annotations were obtained by parsing the raw text annotation files made
available by Uniprot knowledge-base considering only its SWISSPROT compo-
nent. Finally the resulting n = 6 networks have been integrated by averaging
the edge weights wdij between the genes i and j of each network d ∈ {1, n} after

normalizing their weights in the same range of values wdij ∈ [0, 1] (Unweighted
Average (UA) network integration, [20]):

w̄ij =
1

n

n∑
d=1

wdij (7)

The resulting weighted adjacency matrix representing the obtained networks is
made up of 19,430 human proteins. From the HPO website we downloaded the
January 2014 release, by considering the Phenotypic Abnormality subontology,
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that is the main subontology of the HPO (the other subontologies are signif-
icantly smaller and amount to only some tens of terms). To avoid prediction
of HPO terms having too few annotations, for a reliable assessment we pruned
HPO terms having less than 10 annotations obtaining a final HPO-DAG com-
posed by 2154 HPO terms and 2641 between-terms-relationship.

The generalization performance of the methods were assessed through a clas-
sical 5-fold cross-validation procedure, whereas the results were evaluated by us-
ing the gene-centric metric Fmax (i.e. the maximum hierarchical F-score achiev-
able by “a posteriori” setting an optimal decision threshold [8]) and two term-
centric metrics: the classical Area Under the Receiver Operating Characteristic
Curve (AUROC) and the Area Under the Precision Recall Curve (AUPRC) to
take into account the imbalance of annotated vs. unannotated HPO terms.

Table 1 summarizes the results achieved by the hierarchical methods HTD-
DAG [19] and TPR-DAG [11] and by DESCENS, the novel ensemble variant
presented in this manuscript.

Table 1. Average AUROC and AUPRC across terms and average Fmax, Precision
and Recall across genes of HTD-DAG, TPR-DAG and DESCENS ensemble variants
using both RANKS and SVMs as base learner. Results of “flat” RANKS and SVMs
are also reported. Results are estimated through 5-fold cross-validation. Separately for
each metric and base learner the results significantly better than the others according
to the Wilcoxon Rank Sum Test (α = 10−9) are highlighted in bold.

Method AUROC AUPRC Fmax Precision Recall

RANKS (flat) 0.8493 0.0910 0.3106 0.2407 0.4377

HTD-RANKS 0.8506 0.1065 0.3411 0.2717 0.4583

TPR-TF-RANKS 0.8567 0.1166 0.3547 0.2880 0.4615

TPR-T-RANKS 0.8512 0.1338 0.3574 0.2929 0.4582

TPR-W-RANKS 0.8507 0.1264 0.3620 0.3025 0.4506

DESCENS-TF-RANKS 0.8554 0.1082 0.3679 0.3148 0.4426

DESCENS-τ -RANKS 0.8530 0.1360 0.3622 0.3021 0.4520

DESCENS-T-RANKS 0.8503 0.1087 0.3771 0.3227 0.4535

DESCENS-W-RANKS 0.8502 0.1223 0.3671 0.3071 0.4561

SVM (flat) 0.7128 0.0429 0.1205 0.1165 0.1247

HTD-SVM 0.8328 0.0888 0.2597 0.1898 0.4112

TPR-TF-SVM 0.7060 0.0525 0.2034 0.1633 0.2694

TPR-T-SVM 0.8297 0.1036 0.2611 0.1939 0.3997

TPR-W-SVM 0.7915 0.0909 0.2187 0.1827 0.2723

DESCENS-TF-SVM 0.7092 0.0561 0.2338 0.1877 0.3100

DESCENS-τ -SVM 0.7182 0.0666 0.2424 0.1927 0.3266

DESCENS-T-SVM 0.7940 0.0514 0.3102 0.2796 0.3483

DESCENS-W-SVM 0.7724 0.0948 0.2373 0.1815 0.3427

In every experiment the hierarchical ensemble methods are able to improve
the results of the flat methods used as base learner both in terms of AUROC,
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AUPRC and Fmax. More in detail looking at the results obtained using RANKS
as base learner, DESCENS-τ and DESCENS-T achieve better results than
all the other compared methods in terms of AUPRC and Fmax, while TPR-
TF achieves the best results in terms of AUROC, but HPO classes are highly
imbalanced, and in this setting it is well-known that AUPRC is a significantly
more reliable metric than AUROC [14]. Looking at the results obtained using
as base learner the SVMs, we can observe that, independently of the ensem-
ble method chosen, we achieve a significant strong improvement with respect
to the flat prediction, especially in terms of AUPRC and Fmax. Interestingly
enough, considering Fmax, the only hierarchical metric among those considered,
DESCENS achieves significantly better results both if we use RANKS or SVMs
as base learners.

Finally we can observe that the performances of hierarchical ensembles largely
depend on those of the flat base learners: for instance DESCENS-τ -RANKS
achieves a significantly higher precision at all recall levels with respect to DESCENS-
W-SVM, due to the better performance of the RANKS base learner (Figure 3).

Fig. 3. Compared precision at different recall levels averaged across 2153 HPO terms of
DESCENS-τ using RANKS and SVM as base learner.The results of the corresponding
flat methods, RANKS and SVM are also reported.

This is not surprising since the improvement introduced by hierarchical en-
semble methods also depends on the the predictions of the underlying flat base
learner: DESCENS can improve the flat predictions, but there is no guarantee of
a correct prediction if most of the base flat learners provide incorrect predictions
(Fig. 4).
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Phenotypic abnormality

Abnormality of the nervous system

Abnormality of nervous system physiology

Abnormality of higher mental function

Behavioral abnormality

Photophobia Visual impairment

Abnormality of vision

Abnormal eye physiology

Abnormality of the eye

A

B

C

SVM DESCENS-

FN

FNFN

TP

TPTP

Fig. 4. Flat (SVM) and hierarchical DESCENS-τ HPO predictions for the gene RGS9.
At the right side are displayed the correct TP and the incorrect FN predictions made
respective by flat-SVM and by hierarchical DESCENS-τ . In the A box are depicted
the predictions that the hierarchical method was able to correct with respect to flat
method (FN → TP ); in B are portrayed the correct predictions for both flat and
hierarchical methods and finally in C are shown the incorrect flat predictions that the
hierarchical method was not able to recover.

4 Conclusion

Genome and ontology wide experimental results show that the DESCENS al-
gorithm is able to improve the predictions of both semi-supervised flat methods,
such as the RANKS algorithm, that resulted one of the top ranked method in
the recent CAFA2 challenge for HPO term prediction [8], and of supervised
methods such as SVMs, in terms of AUROC, AUPRC and Fmax. Moreover
DESCENS further improves HTD-DAG, and TPR-DAG, two of the state-
of-the-art methods for HPO prediction, in terms of both AUPRC and Fmax.
Furthermore the proposed ensemble methods always provide consistent predic-
tions that obey the true path rule, a fundamental fact to assure biologically
coherent predictions among HPO terms.
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