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Abstract. In the framework of decomposition methods for multiclass
classification problems, error correcting output codes (ECOC) can be
fruitfully used as codewords for coding classes in order to enhance the
generalization capability of learning machines. The effectiveness of error
correcting output codes depends mainly on the independence of code-
word bits and on the accuracy by which each dichotomy is learned.
Separated and non-linear dichotomizers can improve the independence
among computed codeword bits, thus fully exploiting the error recov-
ering capabilities of ECOC. In the experimentation presented in this
paper we compare ECOC decomposition methods implemented through
monolithic multi-layer perceptrons and sets of linear and non-linear inde-
pendent dichotomizers. The most effectiveness of ECOC decomposition
scheme is obtained by Parallel Non-linear Dichotomizers (PND), a learn-
ing machine based on decomposition of polychotomies into dichotomies,
using non linear independent dichotomizers.

1 Introduction

Error correcting output codes (ECOC) [3] can be used in the framework of
decomposition methods for multiclass classification problems to enhance the
generalization capability of learning machines.

In [5, 6], Dietterich and Bakiri applied ECOC to multiclass learning problems.
Their work demonstrated that ECOC can be useful used not only in digital trans-
mission problems [12], but also can improve the performances of generalization
of classification methods based on distributed output codes [20]. In fact, using
codewords for coding classes leads to classifiers with error recovering abilities.
The learning machines they proposed are multi-layer perceptrons (MLP) [19]
or decision trees [10] using error correcting output codes and with implicit di-
chotomizers learning in a way dependent on the others. We will call classifiers
of this kind as monolithic classifiers.

In this paper we outline that on one hand the approach based on monolithic
classifiers reduces the accuracy of the dichotomizers, and on the other hand



the dependency among codeword bits limits the effectiveness of error correcting
output codes [18]. On the contrary, we show that the correlation among codeword
bits can be lowered using separated and independent learning machines. In fact,
the error recovering capabilities of ECOC can be used in the framework of the
decomposition of polychotomies into dichotomies, associating each codeword bit
to a separated dichotomizer and coming back to the original multiclassification
problem in the reconstruction stage [15,13]. However, in real applications, the
decomposition of a polychotomy gives rise to complex dichotomies that in turn
need complex dichotomizers. Moreover, decompositions based on error correcting
output codes can sometimes produce very complex dichotomies.

For these reasons, in this paper we propose to implement decomposition
schemes generated via error correcting output codes using Parallel Non-linear
Dichotomizers (PND) model [21,14] that is a learning machine based on de-
composition of polychotomies into dichotomies making use of dichotomizers non-
linear and independent on each other. In this way we can combine the error
recovering capabilities of ECOC codes with a high accurate dichotomizers.

In the next section we introduce the application of ECOC to polychotomy
problems. In Sect.s 3 and 4, an experimental comparison of monolithic and
decomposition based classifiers is reported and discussed. Conclusions are given
in Sect. 5.

2 ECOC for multiclass learning problems

In classification problems based on decomposition methods!, usually we code
classes trough binary strings, or codewords. ECOC coding methods can improve
performances of the classification system, as they can recover errors produced
by the classification system [3].

Let be a K classes polychotomy(or K-polychotomy) P : X — {C4,...,Ck},
where X is the multidimensional space of attributes and Cy,...,C) are the
labels of the classes. The decomposition of the K-polychotomy generates a set of
L dichotomizers f, ..., fr.. Each dichotomizer f; subdivides the input patterns in
two complementary superclasses C;r and C; , each of them grouping one or more
classes of the K-polychotomy. Let be also a decomposition matriz D = [d;] of
dimension L x K represents the decomposition, connecting classes C,...,Cy to
the superclasses Cj and C; identified by each dichotomizer. An element of D is
defined as:

g — {+1ifckgcj
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When a polychotomy is decomposed into dichotomies, the task of each di-
chotomizer f; : X — {—1,1} consists in labeling some classes with +1 and
others with —1. Each dichotomizer f; is trained to associate patterns belonging
to class Cy with values d;; of the decomposition matrix D. In the decomposition

! A more detailed discussion of decomposition methods for classification is presented
in [13].



matrix, rows correspond to dichotomizers tasks and columns to classes. In this
way, each class is univocally determined by its specific codeword. Using ECOC
codes as codewords we can achieve a so-called ECOC decomposition (Fig. 1).

[ +1 1 41 -1
+1 41 -1 41
+1 +1 -1 -1
+1 -1 41 41
1 -1 41 -1
+1 -1 -1 41

\ 1 -1 1 -1

Fig. 1. ECOC decomposition matrix for a 4 classes classification problem.

After the a-priori decomposition, the dichotomizers f; are trained to associate
patterns belonging to class C}, with values d;;, of the decomposition matrix D,
their outputs are used to reconstruct the polychotomy in order to determine
the class C; € {C1,...,Cy} of the input patterns, using a suitable measure of
similarity. The polychotomizer then chooses the class whose codeword is the
nearest to that computed by the set of dichotomizers:

classgy; = arg max Sim(F, ¢;) (1)

where class,y; is the class computed by the polychotomizer, ¢; is the codeword
of class C;, the vector F' is the codeword computed by the set of dichotomizers,
and Sim(z,y) is a general similarity measure between two vectors z and y,
e.g. Hamming distance or L; or Ly norm distances for dichotomizers with are
continuous outputs.

It is worth noting that classifiers based on decomposition methods and clas-
sifiers based on ensemble averaging methods [17,9] share the idea of using a set
of learning machines acting on the same input and recombining their outputs
in order to make decisions; the main difference lies in the fact that in classifiers
based on decomposition methods the task of each learning machine is specific
and different from that of the others.

There are two main approaches to the design of a classifier using ECOC
codes:

— The first codes directly the outputs of a monolithic classifier, such us a MLP,
using ECOC [5, 6].



— The second is based on the usage of ECOC in the framework of decomposi-
tion of polychotomies into dichotomies, and leads to the distribution of the
learning task among separated and independent dichotomizers. In this case,
we call the resulting learning machines Parallel Linear Dichotomizers (PLD)
if the dichotomizers used for implementing the dichotomies are linear (as
in [1]), or Parallel Non-linear Dichotomizers (PND ) if the dichotomizers
are non-linear [21, 14].

Parallel Non-linear Dichotomizers (PND) are multiclassifiers based on the
decomposition of polychotomies into dichotomies, using dichotomizers solving
their classification tasks independently from each other [21, 14]. Each dichotomizer
is implemented by a separate non-linear learning machine, and learns a different
and specific dichotomic task using a training set common to all the dichotomiz-
ers. In the reconstruction stage a L; norm or another similarity measure between
codewords is used to predict classes of unlabeled patterns.

Parallel Linear Dichotomizers (PLD) are also multiclassifiers based on de-
composition of polychotomies into dichotomies, but each dichotomizer is imple-
mented by a separate linear learning machine (see, e.g., [1]).

Error correcting codes are effective if errors induced by channel noise on sin-
gle code bits are independent. In [18], Peterson showed that if errors on different
code bits are correlated, the effectiveness of error correcting code is reduced.
Moreover, if a decomposition matrix contains very similar rows (dichotomies),
each error of an assigned dichotomizer will be likely to appear in the most cor-
related dichotomizers, thus reducing the effectiveness of ECOC.

Monolithic ECOC classifiers implemented on MLPs show an higher corre-
lation among codeword bits compared with classifiers implemented using par-
allel dichotomizers. In fact, outputs of monolithic ECOC classifiers share the
same hidden layer of the MLP, while PND dichotomizers, implemented with
a separated MLP for each codeword bit, have their own layer of hidden units,
specialized for a specific dichotomic task.

Moreover, concerning decomposition methods implemented as PLD [1], we
point out that this approach reduces the correlation among codeword bits, but
error recovering capabilities induced by ECOC are counter-balanced by higher
error rates of linear dichotomizers.

In next section, we will experimentally test the following hypotheses about
the effectiveness of ECOC:

Hypothesis 1 Error correcting output codes are more effective for PND clas-
sifiers rather than monolithic MLP classifiers.

Hypothesis 2 In PLD error recovering induced by ECOC is counter-balanced
by the higher error rate of the dichotomizers.



Table 1. Data sets general features. The data sets glass, letter and optdigits data sets
are from the UCI repository [16].

Data set Number of Number of = Number of Number of
attributes classes training samples testing samples

p6 3 6 1200 1200

P9 5 9 1800 5-fold cross-val

glass 9 6 214 10-fold cross-val

letter 16 26 16000 4000

optdigits 64 10 3823 1797

3 Experimental results

In order to verify the hypotheses stated above, we have compared classification
performances of Parallel Non-linear Dichotomizers (PND), Parallel Linear Di-
chotomizers (PLD) and monolithic classifiers implemented by MLP, using both
ECOC and one-per-class (OPC)? decomposition methods.

PND are implemented by a set of multi-layer perceptrons with a single
hidden layer, acting as dichotomizers, and PLD are implemented by a set of
single layer perceptrons.

Monolithic MLP are built using a single hidden layer and sigmoidal acti-
vation functions, both in hidden and output neurons. The number of neurons
of the hidden layer amounts roughly from ten to one hundred according to the
complexity of the data set to be learned.

The programs used in our experiments have been developed using NEU-
RObjects [22], a C++ library for neural networks development. We have used
different data sets, both real and synthetic, as shown in Tab. 1. The data sets
p6 and p9, are synthetic and composed by normal distributed clusters associ-
ated. p6 contains 6 class with connected regions, while the regions of the 9 classes
of p9 are not connected. glass, letter and optdigits data sets are from the UCT
repository [16].

In the experimentation we used resampling methods, using a single pair of
training and testing data set or the k-fold cross validation [4]. In particular the
first (an simpler) form has been used for the data sets p6, letter, optdigits, and
cross validation for the data sets p9 and glass. For testing the significance of
differences in performances of two different classification systems applied to the
same data set, we have used Mc Nemar’s test [8] and the k-fold cross validated
paired t test 7).

% In One-Per-Class (OPC) decomposition scheme (see, e.g., [2]), each dichotomizer f;
have to separate a single class from all the others. As a consequence, if we have K
classes, we will use K dichotomizers.
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Fig. 2. Comparisons of classification expected error estimates over different data sets.

Fig. 2, shows the comparison the performances in classification of MLP, PLD
and PND over the considered data sets.

Concerning monolithic MLP standard (OPC) and ECOC MLP, over data sets
p6, p9 and glass does not exist statistically significant difference between, but
over letter and optdigits standard MLP performs better. In other words, ECOC
MLP monolithic classifiers do not outperform standard MLP. This result is in
contrast with Dietterich and Bakiri’s thesis [6] stating that ECOC MLP outper-
form standard MLP. Note that, however, Dietterich and Bakiri themselves, in
the experimentation over the same data set letter we have used, obtains better
performances for standard MLP.

Concerning PLD, over data sets p6, p9, and optdigits there is no significant
statistical difference among OPC and ECOC decomposition, while over glass
PLD ECOC outperforms all other types of polychotomizers, but with letter
PLD OPC achieve better results.

Considering PND, for data sets p6 and optdigits no significant differences
among OPC and ECOC PND can be noticed. Over the p9 data set, ECOC
shows expected errors significantly smaller than OPC. Expected errors over glass




and letter data sets are significantly smaller for ECOC compared with OPC. So
we can see that EFCOC PND show expected error rates significantly lower than
OPC PND.

We can remark that, on the whole, expected errors are significantly smaller
for PND compared with direct monolithic MLP classifiers and PLD. Moreover,
PLD shows higher errors over all data sets, and in particular it fails over p9
that is an hard non-linearly separable synthetic data set.

We have seen that ECOC MLP classifiers do not outperform standard MLP;
moreover ECOC PND show expected error rates significantly lower than OPC
PND. Also, ECOC PND largely outperform ECOC PLD. It follows that Error
correcting output codes are more effective for PND classifiers rather than direct
MLP and PLD classifiers. Then hypotheses 1 and 2 have been validated by the
shown experiments.

4 Discussion

In [11], on the basis of geometrical arguments, it has been shown that, using
ECOC codes, decision boundaries among classes are learned several times, and
however at least a number of times equal to the minimal Hamming distance
among codeword of the classes, while standard classifiers learn decision bound-
aries only two times. In this way ECOC classifiers can recover errors made by
some dichotomizers. Moreover, in [5, 11] it has been stated that ECOC classifiers
should be preferred to directs standard classifiers, as they reduce error bias and
variance more than standard classifiers and present experimental results con-
firming these hypotheses, with the exception of some cases over complex data
sets (such us letter from UCI repository) where standard MLP classifiers perform
better than ECOC MLP.

Our experimentation has pointed out that not always ECOC MLP outper-
form standard MLP classifiers, while we found a significant difference between
ECOC and OPC PND performances (fig. 2).

ECOC codes have been originally used to recover errors in serial transmission
of messages coded as bits sequences [3], supposing that channel noise induces er-
rors in random and not correlated positions of the sequence. On the contrary, in a
classification problem, each codeword bit corresponds to a particular dichotomy,
and then similar dichotomizers can induce correlations among codeword bits.
As shown by Peterson [18], the effectiveness of error correcting output codes de-
creases, if the errors on different codeword bits are correlated. ECOC algorithms
used to recover errors in serial data transmission do not care about any corre-
lations among codeword bits, and then a transformation of these algorithms for
classification problems must at least provide for a control to avoid the genera-
tion of identical dichotomizers. More specifically, effectiveness of ECOC codes
applied to classification systems depends mainly on the following elements:

1. Error recovering capabilities of ECOC codes.
2. Codeword bits correlation.
3. Accuracy of dichotomizers.



Error recovering capabilities of ECOC codes depends on the minimal Hamming
distance among codeword of classes, and it is a property of the ECOC algorithm
used. Accuracy of dichotomizers depends on the difficulty of the dichotomization
problems (for example if the dichotomy is linearly separable or not). Accuracy
depends also on the structure and properties of the dichotomizer and on the
cardinality of the data set: A dichotomizer with too parameters with respect
to the data set size will be subjected to overfitting and an high error variance.
Correlation among computed ECOC codeword bits is less for PND compared
to MLP classifiers: in PND each codeword bit is learned and computed by its
own MLP, specialized for its particular dichotomy, while in monolithic classifiers
each codeword bit is learned and computed by linear combinations of hidden
layer outputs pertaining to one and only shared multi-layer perceptron. Hence,
interdependence among MLP ECOC outputs lowers the effectiveness of ECOC
codes for this kind of classifiers. Moreover, we point out that a ”blind” ECOC de-
composition can in some cases generate complex dichotomies, counter-balancing
error recovering capabilities of error correcting output codes, especially if di-
chotomizers are too simple for their dichotomization task (with respect to the
data set cardinality), as in the case of PLD. PND, instead, join independence
of dichotomizers (low correlation among codeword bits) with a good accuracy
of their non linear dichotomizers. These conditions are both necessary for the
effectiveness of ECOC codes in complex classification tasks.

5 Conclusions

Decomposition methods for multiclass classification problems constitute a pow-
erful framework to improve generalization capabilities of a large set of learning
machines. Moreover, a successful technique to improve generalization capabilities
of classification systems is based on Error correcting output codes (ECOC) [5,
6].

Our experimental results show that ECOC is more effective if used in the
framework of decomposition of polychotomies into dichotomies, especially if non
linear dichotomizers, such us multi-layer perceptrons implementing Parallel Non-
linear Dichotomizers [21,14] are used for the individual and separated learning of
each codeword bit coding a class. Moreover, monolithic classifiers does not fully
exploit the potentialities of error correcting output codes, because of the corre-
lation among codeword bits, while Parallel Linear Dichotomizers (see, e.g., [1]),
even though implementing non linear classifiers starting from linear ones, do not
show good performances in case of complex problems, due to the linearity of
their dichotomizers.

Effectiveness of error correcting output codes depends on codeword bits cor-
relation, dichotomizers structure, properties and accuracy, and on the complexity
of the multiclass learning problem.

On the basis of the experimental results and theoretical arguments reported
in this paper we can claim that the most effectiveness of ECOC decomposition
scheme can be obtained with PND, a learning machine based on decomposi-



tion of polychotomies into dichotomies, that are in turn solved using non linear
independent classifiers implemented by MLP.

Acknowledgments

This work was partially supported by INFM, Universita of Genova, Madess II
CNR. We thank Eddy Mayoraz for his suggestions and helpful discussions.

References

1.

10.
11.

12.

13.

14.

15.

E. Alpaydin and E. Mayoraz. Combining linear dichotomizers to construct
nonlinear polychotomizers. Technical report, IDIAP-RR 98-05 - Dalle Molle
Institute for Perceptual Artificial Intelligence, Martigny (Switzerland) 1998.
ftp://ftp.idiap.ch/pub/reports/1998/rr98-05.ps.gz.

R. Anand, G. Mehrotra, C.K. Mohan and S. Ranka. Efficient classification for
multiclass problems using modular neural networks. IEEE Transactions on Neural
Networks, 6:117-124, 1995.

R.C. Bose and D.K. Ray-Chauduri. On a class of error correcting binary group
codes. Information and Control, (3):68-79, 1960.

. V. N. Cherkassky and F. Mulier. Learning from data: Concepts, Theory and Meth-

ods. Wiley & Sons, New York, 1998.

T. Dietterich and G. Bakiri. Error - correcting output codes: A general method
for improving multiclass inductive learning programs. In Proceedings of AAAI-91,
pages 572-577. AAAI Press / MIT Press, 1991.

T. Dietterich and G. Bakiri. Solving multiclass learning problems via error-
correcting output codes. Journal of Artificial Intelligence Research, (2):263-286,
1995.

T.G. Dietterich. Approximate statistical test for comparing supervised classifica-
tion learning algorithms. Neural Computation, 7 (10):1895-1924, 1998.

B.S. Everitt. The analysis of contingency tables. Chapman and Hall, London,
1977.

S. Hashem. Optimal linear combinations of neural networks. Neural Computation,
10:599-614, 1997.

J.R. Quinlan. C4.5 Programs for Machine Learning. Morgan Kauffman, 1993.

E. Kong and T. Dietterich. Error - correcting output coding correct bias and
variance. In The XII International Conference on Machine Learning, pages 313—
321, San Francisco, CA, 1995. Morgan Kauffman.

S. Lin and D.J.Jr. Costello. Error Control Coding: Fundamentals and Applications.
Prentice-Hall, Englewood Cliffs, 1983.

F. Masulli and G. Valentini. Comparing decomposition methods for classification.
In KES’2000, Fourth International Conference on Knowledge-Based Intelligent En-
gineering Systems € Allied Technologies, Brighton, England. (in press).

F. Masulli and G. Valentini. Parallel Non linear Dichotomizers. In IJCNN2000, The
IEEE-INNS-ENNS International Joint Conference on Neural Networks, Como,
Italy. (in press).

E. Mayoraz and M. Moreira. On the decomposition of polychotomies into di-
chotomies. In The XIV International Conference on Machine Learning, pages
219-226, Nashville, TN, July 1997.



16.

17.

18.

19.

20.

21.

22.

C.J. Merz and P.M. Murphy. UCI repository of machine learning databases, 1998.
www.ics.uci.edu/mlearn/MLRepository.html.

M.P. Perrone and L.N. Cooper. When networks disagree: ensemble methods for
hybrid neural networks. In Mammone R.J., editor, Artificial Neural Networks for
Speech and Vision, pages 126-142. Chapman & Hall, London, 1993.

W.W. Peterson and E.J. Jr. Weldon. Error correcting codes. MIT Press, Cam-
bridge, MA, 1972.

D.E. Rumelhart ; G.E. Hinton and R.J. Williams. Learning internal reperesenta-
tions by error propagation. In Rumelhart D.E., McClelland J.L., editor, Parallel
Distributed Processing: Explorations in the Microstructure of Conition, volume 1,
chapter 8. MIT Press, Cambridge, MA, 1986.

T. J. Sejnowski and C. R. Rosenberg. Parallel networks that learn to pronounce
english text. Journal of Artificial Intelligence Research, (1):145-168, 1987.

G. Valentini. Metodi scompositivi per la classificazione. Master’s thesis, Diparti-
mento di Informatica e Scienze Informazione - Universita di Genova, Genova, Italy,
1999.

G. Valentini and F. Masulli. NEURObjects, a set of library classes for neural
networks development. In Proceedings of the third International ICSC Symposia
on Intelligent Industrial Automation (IIA’99) and Soft Computing (SOCO’99),
pages 184-190, Millet, Canada, 1999. ICSC Academic Press.



