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1. INTRODUCTION

A recent class of gene/protein function predictors, based on Graph Semi Supervised Learning (GSSL) [1], 
is  able  to  exploit  the  functional  relationships  between  genes  to  propagate  existing  annotations  to 
unannotated genes that are topologically related in the network. As the prediction of gene functions using 
network-based  methods  is  frequently  performed  at  whole  genome  level,  the  development  of  scalable 
methods is of critical importance to make feasible the analysis of very large graphs. 
Unfortunately GSSL methods scale poorly with the size of the graph [1] and usually have time complexity 
that  becomes  quickly  prohibitive  in  large  graphs,  thus  preventing  their  adoption  in  whole  genome 
applications.  This problem is particularly evident  with the prediction of  the function of  genes in high 
eukaryotes like mammalians or plants. 
GSSL methods can be roughly categorized as inductive when they are based on an explicit classification 
model, or transductive, if the labels are propagated using only information coming from the topology of the 
network and without training a classification model. Few approaches,  aimed at overcoming the scaling 
limitations  of  transductive  GSSL  methods,  have  been  recently  proposed:  they  are  based  on  kernel 
approximations [2] that trade approximation accuracy for scalability, or on the assumption that graphs have 
a block structure [3] which is often hard to prove for gene functional networks. 

2. METHODS

We propose a novel framework for scalable semi-supervised network-based learning of gene functions 
that:

• provides a “local implementation” of both classical algorithms (e.g. random walks and random 
walks with restart) and recently proposed methods (e.g. kernelized score functions [4,5]), based on 
a “vertex centric” computational model;

• computes a random walk graph kernel without approximation;

• does not make assumptions on the nature of the considered network;

• exploits graph  database technologies  for  the storage of  the graph and for  efficiently  handling 
nodes and edges in secondary memory.

Our implementation allows the application of the transductive GSSL methods on off-the-shelf machines 
with limited speed and memory. The execution times are comparable with those obtained with the “global  
implementation” on main memory with well equipped machines. 
In the global implementation, the network is represented through an adjacency matrix and very efficient 
routines  for  matrix  multiplication  are  integrated  in  the  implementation  of  the  methods.  In  the  local 
implementation,  by  contrast,  the  algorithms  work  "vertex-by-vertex"  in  a  native  representation  of  the 
network  that  allows  us  to  easily  access  vertex  neighbors  in  constant  time  (like  in  the  adjacency-list  
representation of a graph). Our local implementation allows us to process huge networks, thus overcoming 
the limitations of current transductive GSSL methods. 
Kernelized score functions provide semi-supervised transductive  methods that  generalize  the notion of  
average distance from a set of core “positive” genes annotated to a specific functional class, and embed a 
general kernel to model the functional similarity between genes [4,5]. In this contribution we used few 
variants of kernelized score functions [4] (namely AVG – average, NN – nearest neighbors, and kNN – k-
nearest neighbors) that can be naturally implemented in local form and that embed a local implementation 
of the 1-step random walk kernel. 
The main contribution of this work is the local implementation of the methods by exploiting the Neo4j 
graph database [6].  The adoption of Neo4j, that effectively and efficiently handles the network on disk, 
allows us to overcome the issue of maintaining the entire network in main-memory. Moreover, the Neo4j  
APIs make the realization of the implementation easy and particularly efficient  by exploiting the Neo4j 
caching facilities. The methods have been implemented in Java using the Neo4j APIs. 



3. RESULTS
As a proof of  concept  of  the proposed approach,  we predicted the GO BP terms for  the genes of the  
Arabidopsis thaliana model organism. To this end we constructed a gene network using the functional 
relationships encoded in the AraNet [7] functional gene network and we ranked all the 19.647 genes in 
AraNet (with a total of 1.062.222 edges) according to their likelihood to belong to 40 randomly selected 
GO BP terms with a number of annotated genes comprised between 20 and 200. The execution time of the 
local implementation is empirically compared with the global implementation of several  network-based 
transductive rankers  (random walk,  random walk with restart,  kernelized score functions).   The global  
implementations have been executed on an Intel i7 machine with 20 GB RAM (machine M1), whereas, the 
local ones have been executed on an Intel Core Duo 1.60 machine with 4 GB RAM (machine M2).
Table 1 reports also the average AUC and the precision at 20% recall (P20R) achieved by the different  
methods across the 40 GO terms, even if the main aim of this work consists in comparing the empirical 
complexity of the global and local implementation of the same methods. The last two columns of Table 1 
report  the execution time obtained with the global implementation (which exploits only data structures 
loaded in main-memory) and the local implementation (in which the network is stored on disk and handled  
through Neo4j). The execution times with the main-memory and secondary-memory implementations are 
comparable,  even  tough  the  relevant  difference  between the characteristics  of  the  used  machines.  We 
remark that the global implementation on machine M2 cannot be executed because of lack of memory. 

4. CONCLUSIONS
Despite the popularity of GSSL methods, the development of purely transductive solutions able to scale to 
large networks is still an open problem that makes difficult to perform automated function prediction in 
multiple genomes or in large genomes such the ones of high eukaryotes. 
Our general  framework allows the application of  off-the-shelf machines  to the automated gene/protein  
function prediction in mammalians or plants or other model organisms with a large number of genes, and 
in perspective could be applied, with well-equipped machines, to multiple-species gene function prediction 
involving networks with millions of nodes/genes.
We emphasize that our approach could be applied to other GSSL algorithms, if they can be implemented  
through a vertex-centric computational model using graph database technologies, such as Neo4j.
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GSSL method AUC P20R TIME
global impl.

TIME
local impl.

Kernelized Score 
Functions
(1 step)

AVG  0.7203 0.1872 1m:20sec 2 m

NN  0.7125 0.0684 1m:21sec 1m:57sec

kNN (k=5) 0.7189 0.1359 1m:21sec 1m:55sec

Random Walk 1 step 0.7166 0.1448 44m 33m:25sec

2 step 0.7849 0.1751 47m:5sec 62m:14s

3 step 0.7450 0.1280 48m:10sec 91m:57s

Random Walk with Restart Θ=0.3 0.7720 0.1543 2h:23m 4h:57m

Θ=0.6 0.7837 0.1566 2h:25m 4h:57m

Table 1: Experimental comparison of the main-memory (global) and graph-database (local) implementations.
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