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Abstrat

Ensembles of lassi�ers represent one of the main researh diretions in mahine learning.

Two main theories are invoked to explain the suess of ensemble methods. The �rst one

onsider the ensembles in the framework of large margin lassi�ers, showing that ensembles

enlarge the margins, enhaning the generalization apabilities of learning algorithms. The

seond is based on the lassial bias{variane deomposition of the error, and it shows that

ensembles an redue variane and/or bias.

In aordane with this seond approah, this thesis pursues a twofold purpose: on the

one hand it explores the possibility of using bias{variane deomposition of the error as an

analytial tool to study the properties of learning algorithms; on the other hand it explores

the possibility of designing ensemble methods based on bias{variane analysis of the error.

At �rst, bias{variane deomposition of the error is onsidered as a tool to analyze learning

algorithms. This work shows how to apply Domingos and James theories on bias{variane

deomposition of the error to the analysis of learning algorithms. Extended experiments

with Support Vetor Mahines (SVMs) are presented, and the analysis of the relationships

between bias, variane, kernel type and its parameters provides a haraterization of the

error deomposition, o�ering insights into the way SVMs learn.

In a similar way bias{variane analysis is applied as a tool to explain the properties of en-

sembles of learners. A bias{variane analysis of ensembles based on resampling tehniques

is onduted, showing that, as expeted, bagging is a variane redution ensemble method,

while the theoretial property of aneled variane holds only for Breiman's random ag-

gregated preditors.

In addition to analyzing learning algorithms, bias{variane analysis an o�er guidane to

the design of ensemble methods. This work shows that it provides a theoretial and pratial

tool to develop new ensemble methods well-tuned to the harateristis of a spei� base

learner.

On the basis of the analysis and experiments performed on SVMs and bagged ensembles of

SVMs, new ensemble methods based on bias{variane analysis are proposed. In partiular

Lobag (Low bias bagging ) selets low bias base learners and then ombines them through

bootstrap aggregating tehniques. This approah a�ets both bias, through the seletion

of low bias base learners, and variane, through bootstrap aggregation of the seleted low

bias base learners. Moreover a new potential lass of ensemble methods (heterogeneous



ensembles of SVMs), that aggregate di�erent SVM models on the basis of their bias{

variane harateristis, is introdued.

From an appliative standpoint it is also shown that the proposed ensemble methods an

be suessfully applied to the analysis of DNA miroarray data.
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Chapter 1

Introdution

Ensembles of lassi�ers represent one of the main researh diretions in mahine learn-

ing [43, 184℄.

The suess of this emerging disipline is the result of the exhange and interations be-

tween di�erent ultural bakgrounds and di�erent perspetives of researhers from diverse

disiplines, ranging from neural networks, to statistis, pattern reognition and soft om-

puting, as reported by the reent international workshops on Multiple Classi�er System

organized by Josef Kittler and Fabio Roli [106, 107, 157℄.

Indeed empirial studies showed that both in lassi�ation and regression problems en-

sembles are often muh more aurate than the individual base learners that make them

up [8, 44, 63℄, and di�erent theoretial explanations have been proposed to justify the

e�etiveness of some ommonly used ensemble methods [105, 161, 111, 2℄.

Nonetheless, the variety of terms and spei�ations used to indiate sets of learning ma-

hines that work together to solve a mahine learning problem [123, 192, 193, 105, 92,

30, 51, 12, 7, 60℄, reets the absene of an uni�ed theory on ensemble methods and the

youngness of this researh area.

A large number of ombination shemes and ensemble methods have been proposed in lit-

erature. The ombination by majority voting [103, 147℄, where the lass most represented

among the base lassi�ers is hosen, is probably the �rst ensemble method proposed in the

literature, far before the �rst omputers appeared [38℄. A re�nement of this approah is

represented by a ombination through Bayesian deision rules, where the lass with the

highest posterior probability omputed through the estimated lass onditional probabil-

ities and the Bayes' formula is seleted [172℄. The base learners an also be aggregated

using simple operators as Minimum, Maximum, Average and Produt and Ordered Weight

Averaging [160, 20, 117℄, and if we an interpret the lassi�er outputs as the support for the

12



lasses, fuzzy aggregation methods an be applied [30, 190, 118℄. Other methods onsist in

training the ombining rules, using seond-level learning mahines on top of the set of the

base learners [55℄ or meta-learning tehniques [25, 150℄. Other lasses of ensemble methods

try to improve the overall auray of the ensemble by diretly boosting the auray and

the diversity of the base learners. For instane they an modify the struture and the

harateristis of the available input data, as in resampling methods [15, 63, 161℄ or in

feature seletion [81℄ methods. They an also manipulate the aggregation of the lasses,

as in Output Coding methods [45, 46℄, or they an selet base learners speialized for a

spei� input region, as in mixture of experts methods [98, 90℄. Other approahes an

injet randomness at di�erent levels to the base learning algorithm [44, 19℄, or an selet

a proper set of base learners evaluating the performanes of the omponent base learners,

as in test-and-selet methods [166, 156℄.

Despite the variety and the di�erenes between the diverse lasses of ensemble methods

proposed in literature, they share a ommon harateristi: they emphasize in partiular

the ombination sheme, or more in general the way the base learners are aggregated. Of

ourse this is a fundamental aspet of ensemble methods, as it represents the main stru-

tural element of any ensemble of learning mahines. Indeed ensemble methods have been

oneived quite independently of the harateristis of spei� base learners, emphasizing

the ombination sheme instead of the properties of the applied basi learning algorithm.

However, several researhers showed that the e�etiveness of ensemble methods depends on

the spei� harateristis of the base learners; in partiular on their individual auray,

on the relationship between diversity and auray of the base learners [77, 119, 72, 121℄,

on their stability [16℄, and on their general geometrial properties [32℄. In other words,

the analysis of the features and properties of the base learners used in ensemble methods

is another important item for the design of ensemble methods [43℄. Then we ould try to

develop ensemble methods well-tuned to the harateristis of spei� base learners.

Aording to this this standpoint, this researh starts from the "bottom edge" of ensemble

methods: trying to exploit the features of base learning algorithms in order to build around

them ensemble methods well-tuned to the learning harateristis of the base learners.

This requires the analysis of their learning properties, disovering and using appropriate

tools to perform/exeute this task. In priniple, we ould use measures of auray, di-

versity and omplexity to study and haraterize the behaviour of learning algorithms.

However, as shown by L. Kunheva [121℄, diversity may be related in a omplex way to

auray, and it may be very diÆult to haraterize the behaviour of a learning algorithm

in terms of apaity/omplexity of the resulting learning mahine [188℄.

Deomposition of the error in bias and variane is a lassial topi in statistial learn-

ing [52, 68℄. Reently, Domingos proposed an uni�ed theory on bias-variane analysis of

the error, independent of the partiular loss funtion [47℄, and James extended the Domin-
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gos approah, introduing the notions of bias and variane e�et [94℄.

Using the theoretial tools provided by Domingos, we tried to evaluate if the analysis of

bias and variane an provide insights into the way learning algorithms work. In priniple,

we ould use the knowledge obtained from this analysis to design new learning algorithms,

as suggested by Domingos himself [49℄, but in this work we did not follow this researh

line.

We used bias-variane analysis as a tool to study the behavior of learning methods, fousing

in partiular on Support Vetor Mahines [35℄. A related issue of this work was also to

evaluate if it was possible to haraterize learning in terms of bias{variane deomposition

of the error, studying the relationships between learning parameters and the bias and

variane omponents of the error. We onsidered also if and how this analysis ould be

extended from spei� learning algorithms to ensemble methods, trying to haraterize

also the behaviour of ensemble methods based on resampling tehniques in terms of bias{

variane deomposition of the error.

Besides studying if bias-variane theory o�ers a rationale to analyze the behaviour of

learning algorithms and to explain the properties of ensembles of lassi�ers, the seond

main researh topi of this thesis onsists in researhing if the deomposition of the error

in bias and variane an also give guidane to the design of ensemble methods by relating

measurable properties of learning algorithms to expeted performanes of ensembles [182℄.

On the basis of the knowledge gained from the bias variane analysis of spei� learning

algorithms, we tried to understand if it was possible to design new ensemble methods well-

tuned to the bias{variane harateristis of spei� base learners. Moreover we studied

also if we ould design ensemble methods with embedded bias{variane analysis proedures

in order to take into aount bias{variane harateristis of both the base learner and the

ensemble. For instane, we researhed if ensemble methods based on resampling tehniques

(e.g. bagging) ould be enhaned through the bias{variane analysis approah, or if we

ould build variants of bagging exploiting the bias{variane harateristis of the base

learners. This researh line was motivated also by an appliative standpoint, in order to

onsider low-sized and high-dimensional lassi�ation problems in bioinformatis.

Outline of the thesis

Chapter 2 (Ensemble methods) introdues the main subjet of this thesis into the the

general framework of ensemble methods. It presents an overview of ensembles of learning

mahines, explaining the main reasons why they are able to outperform any single lassi�er

within the ensemble, and proposing a taxonomy based on the main ways base lassi�ers

an be generated or ombined together. New diretions in ensemble methods researh are

depited, introduing ensemble methods well-tuned to the learning harateristis of the

base learners.
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The main goal of this work is twofold: on one hand it onsists in evaluating if bias-variane

analysis an be used as a tool to study and haraterize learning algorithms and ensemble

methods; on the other hand it onsists in evaluating if the deomposition of the error

into bias and variane an guide the design of ensemble methods by relating measurable

properties of algorithms to the expeted performanes of ensembles. In both ases bias{

variane theory plays a entral role, and hapter 3 (Bias{variane deomposition of the

error) summarizes the main topis of Domingos bias{variane theory. After a brief outline

of the literature on bias{variane deomposition, the hapter fouses on bias{variane

deomposition for the 0/1 loss, as we are mainly interested in lassi�ation problems. We

underline that in this ontext bias variane is not additive, and we present an analysis of

the ombined e�et of bias, variane and noise on the overall error, omparing also the

theoretial approahes of Domingos and James on this topi. Moreover we onsider the

proedures to measure bias and variane, distinguishing the ase when "large" or "small"

data sets are available. In the latter ase we propose to use out-of-bag proedures, as

they are unbiased and omputationally less expensive ompared with multiple hold-out

and ross-validation tehniques.

Chapter 4 (Bias{variane analysis in single SVMs) presents an experimental bias{variane

analysis in SVMs. The main goal of this hapter is to study the learning properties of SVMs

with respet to their bias{variane harateristis and to haraterize their learning behav-

ior. In partiular this analysis gets insights into the way SVMs learn, unraveling the spei�

e�ets of bias, unbiased and biased variane on the overall error. Firstly, the experimental

set-up, involving training and testing of more than half-million of di�erent SVMs, using

gaussian, polynomial and dot-produt kernels, is presented. Then we analyzed the rela-

tionships of bias{variane deomposition with di�erent kernels, regularization and kernel

parameters, using both syntheti and "real world" data. In partiular, with gaussian ker-

nels we studied the reasons why usually SVMs do not learn with small values of the spread

parameter, their behavior with large values of the spread, and the relationships between

generalization error, training error, number of support vetors and apaity. We provided

also a haraterization of bias{variane deomposition of the error in gaussian kernels, dis-

tinguishing three main regions haraterized by spei� trends of bias and variane with

respet to the values of the spread parameter �. Similar haraterizations were provided

also for polynomial and dot-produt kernels.

Bias-variane an also be a useful tool to analyze bias{variane harateristis of ensemble

methods. To this purpose hapter 5 (Bias{variane analysis in random aggregated and

bagged ensembles of SVMs) provides an extended experimental analysis of bias{variane

deomposition of the error for ensembles based on resampling tehniques. We onsider

theoretial issues about the relationships between random aggregating and bagging. In-

deed bagging an be seen as an approximation of random aggregating, that is a proess

by whih base learners, trained on samples drawn aordingly to an unknown probability

distribution from the entire universe population, are aggregated through majority voting
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(lassi�ation) or averaging between them (regression). Breiman showed that random ag-

gregating and bagging are e�etive with unstable learning algorithms, that is when small

hanges in the training set an result in large hanges in the preditions of the base learn-

ers; we prove that there is a strit relationship between instability and the variane of the

base preditors. Theoretial analysis shows that random aggregating should signi�antly

redue variane, without inrementing bias. Bagging also, as an approximation of random

aggregating, should redue variane. We performed an extended experimental analysis, in-

volving training and testing of about 10 million SVMs, to test these theoretial outomes.

Moreover, we analyzed bias{variane in bagged and random aggregated SVM ensembles, to

understand the e�et of bagging and random aggregating on bias and variane omponents

of the error in SVMs. In both ases we evaluated for eah kernel the expeted error and

its deomposition in bias, net-variane, unbiased and biased variane with respet to the

learning parameters of the base learners. Then we analyzed the bias{variane deomposi-

tion as a funtion of the number of the base learners employed. Finally, we ompared bias

and variane with respet to the learning parameters in random aggregated and bagged

SVM ensembles and in the orresponding single SVMs, in order to study the e�et of

bagging and random aggregating on the bias and variane omponents of the error. With

random aggregated ensembles we registered a very large redution of the net-variane with

respet to single SVMs. It was always redued lose to 0, independently of the type of

kernel used. This behaviour is due primarily to the unbiased variane redution, while

the bias remains unhanged with respet to the single SVMs. With bagging we have also

a redution of the error, but not as large as with random aggregated ensembles. Indeed,

unlike random aggregating, net and unbiased variane, although redued, are not atually

redued to 0, while bias remains unhanged or slightly inreases. An interesting byprodut

of this analysis is that undersampled bagging an be viewed as another approximation of

random aggregating (using a bootstrap approximation of the unknown probability distri-

bution), if we onsider the universe U as a data set from whih undersampled data, that

is data sets whose ardinality is muh less than the ardinality of U , are randomly drawn

with replaement. This approah should provide very signi�ant redution of the variane

and ould be in pratie applied to data mining problems, when learning algorithms annot

omfortably manage very large data sets.

In addition to providing insights into the behavior of learning algorithms, the analysis of

the bias{variane deomposition of the error an identify the situations in whih ensemble

methods might improve base learner performanes. Indeed the deomposition of the error

into bias and variane an guide the design of ensemble methods by relating measurable

properties of algorithms to the expeted performane of ensembles. Chapter 6 (SVM

ensemble methods based on bias{variane analysis), presents two possible ways of applying

bias{variane analysis to develop SVM-based ensemble methods. The �rst approah tries

to apply bias{variane analysis to enhane both auray and diversity of the base learners.

The seond researh diretion onsists in bootstrap aggregating low bias base learners in
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order to lower both bias and variane. Regarding the �rst approah, only some very

general researh lines are depited. About the seond diretion, a spei� new method

that we named Lobag, that is Low bias bagged SVMs, is introdued, onsidering also

di�erent variants. Lobag applies bias{variane analysis in order to diret the tuning of

Support Vetor Mahines toward the optimization of the performane of bagged ensembles.

Spei�ally, sine bagging is primarily a variane-redution method, and sine the overall

error is (to a �rst approximation) the sum of bias and variane, this suggests that SVMs

should be tuned to minimize bias before being ombined by bagging. The key-issue of this

methods onsists in eÆiently evaluating the bias{variane deomposition of the error.

We embed this proedure inside the Lobag ensemble method implementing a relatively

inexpensive out-of-bag estimate of bias and variane. The pseudoode of Lobag is provided,

as well as a C++ implementation (available on-line). Numerial experiments show that

Lobag ompares favorably with bagging, and some preliminary results show that it an be

suessfully applied to DNA miroarray data analysis.

The onlusions summarize the main results ahieved, and several open questions delineate

possible future works and developments.
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Chapter 2

Ensemble methods

Ensembles are sets of learning mahines whose deisions are ombined to improve the

performane of the overall system. In this last deade one of the main researh areas in

mahine learning has been represented by methods for onstruting ensembles of learning

mahines. Although in the literature [123, 192, 193, 105, 92, 30, 51, 12, 7, 60℄ a plethora

of terms, suh as ommittee, lassi�er fusion, ombination, aggregation and others are

used to indiate sets of learning mahines that work together to solve a mahine learning

problem, in this paper we shall use the term ensemble in its widest meaning, in order to

inlude the whole range of ombining methods. This variety of terms and spei�ations

reets the absene of an uni�ed theory on ensemble methods and the youngness of this

researh area. However, the great e�ort of the researhers, reeted by the amount of the

literature [167, 106, 107, 157℄ dediated to this emerging disipline, ahieved meaningful

and enouraging results.

Empirial studies showed that both in lassi�ation and regression problem ensembles

are often muh more aurate than the individual base learner that make them up [8,

44, 63℄, and reently di�erent theoretial explanations have been proposed to justify the

e�etiveness of some ommonly used ensemble methods [105, 161, 111, 2℄.

The interest in this researh area is motivated also by the availability of very fast omputers

and networks of workstations at a relatively low ost that allow the implementation and

the experimentation of omplex ensemble methods using o�-the-shelf omputer platforms.

However, as explained in Set. 2.1 there are deeper reasons to use ensembles of learning

mahines. motivated by the intrinsi harateristis of the ensemble methods.

This hapter presents a brief overview of the main areas of researh, without pretending

to be exhaustive or to explain the detailed harateristis of eah ensemble method.
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2.1 Reasons for Combining Multiple Learners

Both empirial observations and spei� mahine learning appliations on�rm that a given

learning algorithm outperforms all others for a spei� problem or for a spei� subset of

the input data, but it is unusual to �nd a single expert ahieving the best results on the

overall problem domain. As a onsequene multiple learner systems try to exploit the loal

di�erent behavior of the base learners to enhane the auray and the reliability of the

overall indutive learning system. There are also hopes that if some learner fails, the overall

system an reover the error. Employing multiple learners an derive from the appliation

ontext, suh as when multiple sensor data are available, induing a natural deomposition

of the problem. In more general ases we an dispose of di�erent training sets, olleted

at di�erent times, having eventually di�erent features and we an use di�erent speialized

learning mahine for eah di�erent item.

However, there are deeper reasons why ensembles an improve performanes with respet

to a single learning mahine. As an example, onsider the following one given by Tom

Dietterih in [43℄. If we have a dihotomi lassi�ation problem and L hypotheses whose

error is lower than 0:5, then the resulting majority voting ensemble has an error lower than

the single lassi�er, as long as the error of the base learners are unorrelated. In fat, if

we have 21 lassi�ers, and the error rates of eah base learner are all equal to p = 0:3 and

the errors are independent, the overall error of the majority voting ensemble will be given

by the area under the binomial distribution where more than L=2 hypotheses are wrong:

P

error

=

L

X

(i=dL=2e)

�

L

i

�

p

i

(1� p)

L�i

) P

error

= 0:026� p = 0:3

This result has been studied by mathematiians sine the end of the XVIII entury in

the ontext of soial sienes: in fat the Condoret Jury Theorem [38℄) proved that the

judgment of a ommittee is superior to those of individuals, provided the individuals have

reasonable ompetene (that is, a probability of being orret higher than 0:5). As noted

in [122℄, this theorem theoretially justi�es reent researh on multiple "weak" lassi-

�ers [95, 81, 110℄, representing an interesting researh diretion diametrially opposite to

the development of highly aurate and spei� lassi�ers.

This simple example shows also an important issue in the design of ensembles of learning

mahines: the e�etiveness of ensemble methods relies on the independene of the error

ommitted by the omponent base learner. In this example, if the independene assumption

does not hold, we have no assurane that the ensemble will lower the error, and we know

that in many ases the errors are orrelated. From a general standpoint we know that

the e�etiveness of ensemble methods depends on the auray and the diversity of the

base learners, that is if they exhibit low error rates and if they produe di�erent errors
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[78, 174, 132℄. The orrelated onept of independene between the base learners has been

ommonly regarded as a requirement for e�etive lassi�er ombinations, but Kunheva

and Whitaker have reently shown that not always independent lassi�ers outperform

dependent ones [121℄. In fat there is a trade-o� between auray and independene:

more aurate are the base learners, less independent they are.

Learning algorithms try to �nd an hypothesis in a given spae H of hypotheses, and in

many ases if we have suÆient data they an �nd the optimal one for a given problem. But

in real ases we have only limited data sets and sometimes only few examples are available.

In these ases the learning algorithm an �nd di�erent hypotheses that appear equally

aurate with respet to the available training data, and although we an sometimes selet

among them the simplest or the one with the lowest apaity, we an avoid the problem

averaging or ombining them to get a good approximation of the unknown true hypothesis.

Another reason for ombining multiple learners arises from the limited representational

apability of learning algorithms. In many ases the unknown funtion to be approximated

is not present inH, but a ombination of hypotheses drawn fromH an expand the spae of

representable funtions, embraing also the true one. Although many learning algorithms

present universal approximation properties [86, 142℄, with �nite data sets these asymptoti

features do not hold: the e�etive spae of hypotheses explored by the learning algorithm

is a funtion of the available data and it an be signi�antly smaller than the virtual H

onsidered in the asymptoti ase. From this standpoint ensembles an enlarge the e�etive

hypotheses overage, expanding the spae of representable funtions.

Many learning algorithms apply loal optimization tehniques that may get stuk in loal

optima. For instane indutive deision trees employ a greedy loal optimization approah,

and neural networks apply gradient desent tehniques to minimize an error funtion over

the training data. Moreover optimal training with �nite data both for neural networks and

deision trees is NP-hard [13, 88℄. As a onsequene even if the learning algorithm an

in priniple �nd the best hypothesis, we atually may not be able to �nd it. Building an

ensemble using, for instane, di�erent starting points may ahieve a better approximation,

even if no assurane of this is given.

Another way to look at the need for ensembles is represented by the lassial bias{variane

analysis of the error [68, 115℄: di�erent works have shown that several ensemble methods

redue variane [15, 124℄ or both bias and variane [15, 62, 114℄. Reently the improved

generalization apabilities of di�erent ensemble methods have also been interpreted in the

framework of the theory of large margin lassi�ers [129, 162, 2℄, showing that methods suh

as boosting and ECOC enlarge the margins of the examples.
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2.2 Ensemble Methods Overview

A large number of ombination shemes and ensemble methods have been proposed in liter-

ature. Combination tehniques an be grouped and analyzed in di�erent ways, depending

on the main lassi�ation riterion adopted. If we onsider the representation of the input

patterns as the main riterion, we an identify two distint large groups, one that uses the

same and one that uses di�erent representations of the inputs [104, 105℄.

Assuming the arhiteture of the ensemble as the main riterion, we an distinguish between

serial, parallel and hierarhial shemes [122℄, and if the base learners are seleted or not by

the ensemble algorithm we an separate seletion-oriented and ombiner-oriented ensemble

methods [92, 118℄. In this brief overview we adopt an approah similar to the one ited

above, in order to distinguish between non-generative and generative ensemble methods.

Non-generative ensemble methods on�ne themselves to ombine a set of given possibly

well-designed base learners: they do not atively generate new base learners but try to

ombine in a suitable way a set of existing base lassi�ers. Generative ensemble methods

generate sets of base learners ating on the base learning algorithm or on the struture of

the data set and try to atively improve diversity and auray of the base learners.

Note that in some ases it is diÆult to assign a spei� ensemble method to either of the

proposed general superlasses: the purpose of this general taxonomy is simply to provide

a general framework for the main ensemble methods proposed in the literature.

2.2.1 Non-generative Ensembles

This large group of ensemble methods embraes a large set of di�erent approahes to

ombine learning mahines. They share the very general ommon property of using a

predetermined set of learning mahines previously trained with suitable algorithms. The

base learners are then put together by a ombiner module that may vary depending on its

adaptivity to the input patterns and on the requirement of the output of the individual

learning mahines.

The type of ombination may depend on the type of output. If only labels are available or

if ontinuous outputs are hardened, then majority voting, that is the lass most represented

among the base lassi�ers, is used [103, 147, 124℄.

This approah an be re�ned assigning di�erent weights to eah lassi�er to optimize the

performane of the ombined lassi�er on the training set [123℄, or, assuming mutual in-

dependene between lassi�ers, a Bayesian deision rule selets the lass with the highest

posterior probability omputed through the estimated lass onditional probabilities and

the Bayes' formula [193, 172℄. A Bayesian approah has also been used in Consensus

based lassi�ation of multisoure remote sensing data [10, 9, 21℄, outperforming onven-
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tional multivariate methods for lassi�ation. To overome the problem of the indepen-

dene assumption (that is unrealisti in most ases), the Behavior-Knowledge Spae (BKS)

method [87℄ onsiders eah possible ombination of lass labels, �lling a look-up table using

the available data set, but this tehnique requires a large volume of training data.

Where we interpret the lassi�er outputs as the support for the lasses, fuzzy aggrega-

tion methods an be applied, suh as simple onnetives between fuzzy sets or the fuzzy

integral [30, 29, 100, 190℄; if the lassi�er outputs are possibilisti, Dempster-Shafer om-

bination rules an be applied [154℄. Statistial methods and similarity measures to estimate

lassi�er orrelation have also been used to evaluate expert system ombination for a proper

design of multi-expert systems [89℄.

The base learners an also be aggregated using simple operators as Minimum, Maximum,

Average and Produt and Ordered Weight Averaging and other statistis [160, 20, 117, 155℄.

In partiular, on the basis of a ommon bayesian framework, Josef Kittler provided a

theoretial underpinning of many existing lassi�er ombination shemes based on the

produt and the sum rule, showing also that the sum rule is less sensitive to the errors of

subsets of base lassi�ers [105℄.

Reently Ludmila Kunheva has developed a global ombination sheme that takes into

aount the deision pro�les of all the ensemble lassi�ers with respet to all the lasses,

designing Deision templates that summarize in matrix format the average deision pro�les

of the training set examples. Di�erent similarity measures an be used to evaluate the

mathing between the matrix of lassi�er outputs for an input x, that is the deision

pro�les referred to x, and the matrix templates (one for eah lass) found as the lass

means of the lassi�er outputs [118℄. This general fuzzy approah produe soft lass labels

that an be seen as a generalization of the onventional risp and probabilisti ombination

shemes.

Another general approah onsists in expliitly training ombining rules, using seond-level

learning mahines on top of the set of the base learners [55, 191℄. This staked struture

makes use of the outputs of the base learners as features in the intermediate spae: the

outputs are fed into a seond-level mahine to perform a trained ombination of the base

learners.

Meta-learning tehniques an be interpreted as an extension of the previous approah [25,

26℄. Indeed they an be de�ned as learning from learned knowledge and are haraterized

by meta-level training sets generated by the �rst level base learners trained on the "true"

data set, and a meta-learner trained from the meta-level training set [150℄. In other words,

in meta-learning the integration rule is learned by the meta-learner on the basis of the

behavior of the trained base learners.
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2.2.2 Generative Ensembles

Generative ensemble methods try to improve the overall auray of the ensemble by

diretly boosting the auray and the diversity of the base learner. They an modify the

struture and the harateristis of the available input data, as in resampling methods or

in feature seletion methods, they an manipulate the aggregation of the lasses (Output

Coding methods), an selet base learners speialized for a spei� input region (mixture

of experts methods), an selet a proper set of base learners evaluating the performane

and the harateristis of the omponent base learners (test-and-selet methods) or an

randomly modify the base learning algorithm (randomized methods).

2.2.2.1 Resampling methods

Resampling tehniques an be used to generate di�erent hypotheses. For instane, boot-

strapping tehniques [56℄ may be used to generate di�erent training sets and a learning

algorithm an be applied to the obtained subsets of data in order to produe multiple

hypotheses. These tehniques are e�etive espeially with unstable learning algorithms,

whih are algorithms very sensitive to small hanges in the training data, suh as neural-

networks and deision trees.

In bagging [15℄ the ensemble is formed by making bootstrap repliates of the training

sets, and then multiple generated hypotheses are used to get an aggregated preditor.

The aggregation an be performed averaging the outputs in regression or by majority or

weighted voting in lassi�ation problems [169, 170℄.

While in bagging the samples are drawn with replaement using a uniform probability

distribution, in boosting methods the learning algorithm is alled at eah iteration using a

di�erent distribution or weighting over the training examples [160, 63, 161, 62, 164, 159,

50, 61, 51, 50, 17, 18, 65, 64℄. This tehnique plaes the highest weight on the examples

most often mislassi�ed by the previous base learner: in this way the base learner fouses

its attention on the hardest examples. Then the boosting algorithm ombines the base

rules taking a weighted majority vote of the base rules. Shapire and Singer showed

that the training error exponentially drops down with the number of iterations [163℄ and

Shapire et al. [162℄ proved that boosting enlarges the margins of the training examples,

showing also that this fat translates into a superior upper bound on the generalization

error. Experimental work showed that bagging is e�etive with noisy data, while boosting,

onentrating its e�orts on noisy data seems to be very sensitive to noise [153, 44℄. Reently,

variants of boosting, spei� for noisy data, have been proposed by several authors [152, 39℄.

Another resampling method onsists in onstruting training sets by leaving out disjoint

subsets of the training data as in ross-validated ommittees [143, 144℄ or sampling without

replaement [165℄.

23



Another general approah, named Stohasti Disrimination [109, 110, 111, 108℄, is based

on randomly sampling from a spae of subsets of the feature spae underlying a given

problem, then ombining these subsets to form a �nal lassi�er, using a set-theoreti ab-

stration to remove all the algorithmi details of lassi�ers and training proedures. By

this approah the lassi�ers' deision regions are onsidered only in form of point sets,

and the set of lassi�ers is just a sample into the power set of the feature spae. A rigor-

ous mathematial treatment starting from the "representativeness" of the examples used

in mahine learning problems leads to the design of ensemble of weak lassi�ers, whose

auray is governed by the law of large numbers [27℄.

2.2.2.2 Feature seletion methods

This approah onsists in reduing the number of input features of the base learners, a

simple method to �ght the e�ets of the lassial urse of dimensionality problem [66℄. For

instane, in the Random Subspae Method [81, 119℄, a subset of features is randomly seleted

and assigned to an arbitrary learning algorithm. This way, one obtains a random subspae

of the original feature spae, and onstruts lassi�ers inside this redued subspae. The

aggregation is usually performed using weighted voting on the basis of the base lassi�ers

auray. It has been shown that this method is e�etive for lassi�ers having a dereasing

learning urve onstruted on small and ritial training sample sizes [168℄

The Input Deimation approah [175, 139℄ redues the orrelation among the errors of the

base lassi�ers, deoupling the base lassi�ers by training them with di�erent subsets of

the input features. It di�ers from the previous Random Subspae Method as for eah lass

the orrelation between eah feature and the output of the lass is expliitly omputed,

and the base lassi�er is trained only on the most orrelated subset of features.

Feature subspae methods performed by partitioning the set of features, where eah subset

is used by one lassi�er in the team, are proposed in [193, 141, 20℄. Other methods for

ombining di�erent feature sets using geneti algorithms are proposed in [118, 116℄. Di�er-

ent approahes onsider feature sets obtained by using di�erent operators on the original

feature spae, suh as Prinipal Component Analysis, Fourier oeÆients, Karhunen-Loewe

oeÆients, or other [28, 55℄. An experiment with a systemati partition of the feature

spae, using nine di�erent ombination shemes is performed in [120℄, showing that there

are no "best" ombinations for all situations and that there is no assurane that in all ases

a lassi�er team will outperform the single best individual.
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2.2.2.3 Mixtures of experts methods

The reombination of the base learners an be governed by a supervisor learning mahine,

that selets the most appropriate element of the ensemble on the basis of the available

input data. This idea led to the mixture of experts methods [91, 90℄, where a gating

network performs the division of the input spae and small neural networks perform the

e�etive alulation at eah assigned region separately. An extension of this approah is

the hierarhial mixture of experts method, where the outputs of the di�erent experts are

non-linearly ombined by di�erent supervisor gating networks hierarhially organized [97,

98, 90℄.

Cohen and Intrator extended the idea of onstruting loal simple base learners for di�erent

regions of input spae, searhing for appropriate arhitetures that should be loally used

and for a riterion to selet a proper unit for eah region of input spae [31, 32℄. They

proposed a hybrid MLP/RBF network by ombining RBF and Pereptron units in the same

hidden layer and using a forward seletion approah [58℄ to add units until a desired error is

reahed. Although the resulting Hybrid Pereptron/Radial Network is not in a strit sense

an ensemble, the way by whih the regions of the input spae and the omputational units

are seleted and tested ould be in priniple extended to ensembles of learning mahines.

2.2.2.4 Output Coding deomposition methods

Output Coding (OC) methods deompose a multilass{lassi�ation problem in a set of two-

lass subproblems, and then reompose the original problem ombining them to ahieve

the lass label [134, 130, 43℄. An equivalent way of thinking about these methods onsists

in enoding eah lass as a bit string (named odeword), and in training a di�erent two-

lass base learner (dihotomizer) in order to separately learn eah odeword bit. When the

dihotomizers are applied to lassify new points, a suitable measure of similarity between

the odeword omputed by the ensemble and the odeword lasses is used to predit the

lass.

Di�erent deomposition shemes have been proposed in literature: In the One-Per-Class

(OPC) deomposition [4℄, eah dihotomizer f

i

has to separate a single lass from all oth-

ers; in the PairWise Coupling (PWC) deomposition [79℄, the task of eah dihotomizer

f

i

onsists in separating a lass C

i

form lass C

j

, ignoring all other lasses; the Correting

Classi�ers (CC) and the PairWise Coupling Correting Classi�ers (PWC-CC) are variants

of the PWC deomposition sheme, that redue the noise originated in the PWC sheme

due to the proessing of non pertinent information performed by the PWC dihotomiz-

ers [137℄.

Error Correting Output Coding [45, 46℄ is the most studied OC method, and has been

suessfully applied to several lassi�ation problems [1, 11, 69, 6, 177, 194℄. This deom-
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position method tries to improve the error orreting apabilities of the odes generated

by the deomposition through the maximization of the minimum distane between eah

ouple of odewords [114, 130℄. This goal is ahieved by means of the redundany of the

oding sheme [187℄.

ECOC methods present several open problems. The tradeo� between error reovering

apabilities and omplexity/learnability of the dihotomies indued by the deomposition

sheme has been takled in several works [2, 176℄, but an extensive experimental evaluation

of the tradeo� has to be performed in order to ahieve a better understanding of this

phenomenon. A related problem is the analysis of the relationship between odeword length

and performanes: some preliminary results seem to show that long odewords improve

performane [69℄. Another open problem, not suÆiently investigated in literature [69,

131, 11℄, is the seletion of optimal dihotomi learning mahines for the deomposition

unit. Several methods for generating ECOC odes have been proposed: exhaustive odes,

randomized hill limbing [46℄, random odes [93℄, and Hadamard and BCH odes [14, 148℄.

An open problems is still the joint maximization of distanes between rows and olumns in

the deomposition matrix. Another open problem onsists in designing odes for a given

multilass problem. An interesting greedy approah is proposed in [134℄, and a method

based on soft weight sharing to learn error orreting odes from data is presented in [3℄.

In [36℄ it is shown that given a set of dihotomizers the problem of �nding an optimal

deomposition matrix is NP-omplete: by introduing ontinuous odes and asting the

design problem of ontinuous odes as a onstrained optimization problem, we an ahieve

an optimal ontinuous deomposition using standard optimization methods.

The work in [131℄ highlights that the e�etiveness of ECOC deomposition methods de-

pends mainly on the design of the learning mahines implementing the deision units, on

the similarity of the ECOC odewords, on the auray of the dihotomizers, on the om-

plexity of the multilass learning problem and on the orrelation of the odeword bits.

In partiular, Peterson and Weldon [148℄ showed that if errors on di�erent ode bits are

dependent, the e�etiveness of error orreting ode is redued. Consequently, if a de-

omposition matrix ontains very similar rows (dihotomies), eah error of an assigned

dihotomizer will be likely to appear in the most orrelated dihotomizers, thus reduing

the e�etiveness of ECOC. These hypotheses have been experimentally supported by a

quantitative evaluation of the dependeny among output errors of the deomposition unit

of ECOC learning mahines using mutual information based measures [132, 133℄.

2.2.2.5 Test and selet methods

The test and selet methodology relies on the idea of seletion in ensemble reation [166℄.

The simplest approah is a greedy one [147℄, where a new learner is added to the en-

semble only if the resulting squared error is redued, but in priniple any optimization
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tehnique an be used to selet the "best" omponent of the ensemble, inluding geneti

algorithms [138℄.

It should be noted that the time omplexity of the seletion of optimal subsets of lassi�ers

is exponential with respet to the number of base learners used. From this point of view

heuristi rules, as the "hoose the best" or the "hoose the best in the lass", using lassi�ers

of di�erent types strongly redue the omputational omplexity of the seleted phase, as

the evaluation of di�erent lassi�er subsets is not required [145℄. Moreover test and selet

methods impliitly inlude a "prodution stage", by whih a set of lassi�ers must be

generated.

Di�erent seletion methods based on di�erent searh algorithm mututated from feature

seletion methods (forward and bakward searh) or for the solution of omplex optimiza-

tion tasks (tabu searh) are proposed in [156℄. Another interesting approah uses lustering

methods and a measure of diversity to generate sets of diverse lassi�ers ombined by ma-

jority voting, seleting the ensemble with the highest performane [72℄. Finally, Dynami

Classi�er Seletion methods [85, 192, 71℄ are based on the de�nition of a funtion seleting

for eah pattern the lassi�er whih is probably the most aurate, estimating, for instane

the auray of eah lassi�er in a loal region of the feature spae surrounding an unknown

test pattern [71, 74, 73℄.

2.2.2.6 Randomized ensemble methods

Injeting randomness into the learning algorithm is another general method to generate

ensembles of learning mahines. For instane, if we initialize with random values the initial

weights in the bakpropagation algorithm, we an obtain di�erent learning mahines that

an be ombined into an ensemble [113, 143℄.

Several experimental results showed that randomized learning algorithms used to generate

base elements of ensembles improve the performanes of single non-randomized lassi�ers.

For instane in [44℄ randomized deision tree ensembles outperform single C4.5 deision

trees [151℄, and adding gaussian noise to the data inputs, together with bootstrap and

weight regularization an ahieve large improvements in lassi�ation auray [153℄.

2.3 New diretions in ensemble methods researh

Ensemble methods are one of the most inreasing researh topi in mahine learning.

Without pretending to be exhaustive, here are summarized some new diretions in ensemble

method researh, emphasizing those topis most related to my researh interests.

Ensemble methods have been developed in lassi�ation and regression settings, but there
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are very few approahes proposed for unsupervised lustering problems. For instane, a

multiple k-means method ombines multiple approximate k-means solution to obtain a

�nal set of luster enters [59℄, and luster ensembles based on partial sets of features

or multiple views of data have been applied to data mining problems and to struture

rules in a knowledge base [99, 136℄. Reently a new interesting researh diretion has

been proposed for unsupervised lustering problems [70, 171℄. Aording to this approah

multiple partitioning of a set of objets, obtained from di�erent lustering algorithms or

di�erent instanes of the same lustering algorithm, are ombined without aessing the

original input features, but using only the luster labels provided by the applied lusterers.

Then the "optimal" partition labeling is seleted as the one that maximizes the mutual

information with respet to all the provided labelings. This approah should also permit to

integrate both di�erent lustering algorithms and views of data, exploiting heterogeneous

resoures and data available in distributed environments.

Another researh diretion for ensemble methods ould be represented by ensemble meth-

ods spei� for feature seletion. Indeed, if only small sized samples are available, ensemble

methods ould provide robust estimates of sets of features orrelated with the output of a

learning mahines: several appliations, for instane in bioinformatis, ould take advan-

tage of this approah.

Following the spirit of Breiman's random forests [19℄, we ould use randomness at dif-

ferent levels to improve performanes of ensemble methods. For instane, we know that

random seletion of input samples ombined with random seletion of features improve

the performane of random forests. This approah ould be in priniple extended to other

base learners. Moreover we ould also extend this approah to other types of randomness,

as the strong law of large numbers assures the onvergene and no over�tting problems

inrementing the number of base learners [19℄. For instane we ould design "forests", or,

more appropriately in this ontext, nets of neural networks, exploring suitable ways to in-

jet randomness in building ensembles, extending the original Breiman's approah "limited

only" to random input and features.

Two main theories are invoked to explain the suess of ensemble methods. The �rst

one onsider the ensembles in the framework of large margin lassi�ers [129℄, showing

that ensembles enlarge the margins, enhaning the generalization apabilities of learning

algorithms [162, 2℄. The seond is based on the the lassial bias{variane deomposition

of the error [68℄, and it shows that ensembles an redue variane [16℄ and also bias [114℄.

Reently Domingos proved that Shapire's notion of margins [162℄ an be expressed in

terms of bias and variane and vieversa [49℄, and hene Shapire's bounds of ensemble's

generalization error an be equivalently expressed in terms of the distribution of the margins

or in terms of the bias{variane deomposition of the error, showing the equivalene of

margin-based and bias{variane-based approahes.
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Despite these important results, most of the theoretial problems behind ensemble methods

remain opened, and we need more researh work to understand the harateristis and

generalization apabilities of ensemble methods.

For instane, a substantially unexplored researh �eld is represented by the analysis of the

relationships between ensemble methods and data omplexity [126℄. The papers of Tin

Kam Ho [82, 83, 84℄ represent a fundamental starting point to explore the relationships

between ensemble methods (and more generally learning algorithms) and data omplexity

in order to haraterize ensemble methods with respet to the spei� properties of the

data. Extending this approah we ould also try to design ensemble methods well-tuned

to the data harateristis, embedding analysis of data omplexity and/or the evaluation

of the geometrial or topologial data harateristis into the ensemble method itself. An

interesting step in this diretion is represented bu the researh of Cohen and Intrator [31,

33℄. Even if they use a single learning mahine omposed by heterogeneous radial and

sigmoidal units to properly �t geometrial data harateristis, their approah an be in

priniple extended to heterogeneous ensembles of learning mahines.

From a di�erent standpoint we ould also try to develop ensemble methods well-tuned

to the the harateristis of spei� base learners. Usually ensemble methods have been

oneived quite independently of the harateristis of spei� base learners, emphasizing

the ombination sheme instead of the properties of the applied basi learning algorithm.

Hene, a promising researh line ould onsist in haraterizing the properties of a spei�

base learner, building around it an ensemble method well-tuned to the learning harater-

istis of the base learner itself. Toward this researh diretion, bias-variane analysis [47℄

ould in priniple be used to haraterize the properties of learning algorithms in order to

design ensemble methods well-tuned to the bias{variane harateristis of a spei� base

learner [182℄.
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Chapter 3

Bias{variane deomposition of the

error

Our purpose onsists in evaluating if bias{variane analysis an be used to haraterize

the behavior of learning algorithms and to tune the individual base lassi�ers so as to

optimize the overall performane of the ensemble. As a onsequene, to pursue these

goals, we onsidered the di�erent approahes and theories proposed in the literature, and

in partiular we propose a very general approah appliable to any loss funtion and in

partiular to the 0/1 loss [47℄, as explained below in this hapter.

Historially, the bias{variane insight was borrowed from the �eld of regression, using

squared{loss as the loss funtion [68℄. For lassi�ation problems, where the 0=1 loss is the

main riterion, several authors proposed bias{variane deompositions related to 0=1 loss.

Kong and Dietterih [114℄ proposed a bias{variane deomposition in the ontext of ECOC

ensembles [46℄, but their analysis is extensible to arbitrary lassi�ers, even if they de�ned

variane simply as a di�erene between loss and bias.

In Breiman's deomposition [16℄ bias and variane are always non-negative (while Diet-

terih de�nition allows a negative variane), but at any input the reduible error (i.e. the

total error rate less noise) is assigned entirely to variane if the lassi�ation is unbiased,

and to bias if biased. Moreover he fored the deomposition to be purely additive, while

for the 0/1 loss this is not the ase. Kohavi and Wolpert approah [112℄ produed a biased

estimation of bias and variane, assigning a non-zero bias to a Bayes lassi�er, while Tib-

shirani [173℄ did not use diretly the notion of variane, deomposing the 0=1 loss in bias

and an unrelated quantity he alled "aggregation e�et", whih is similar to the James'

notion of variane e�et [94℄.

Friedman [66℄ showed that in lassi�ation problems, bias and variane are not purely
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additive: in some ases inreasing variane inreases the error, but in other ases an also

redue the error, espeially when the predition is biased.

Heskes [80℄ proposed a bias-variane deomposition using the Kullbak-Leibler divergene

as loss funtion. By this approah the error between the target and the predited lassi-

�er densities is measured; anyway when he tried to extend this approah to the zero-one

funtion interpreted as the limit ase of log-likelihood type error, the resulting deomposi-

tion produes a de�nition of bias that losses his natural interpretation as systemati error

ommitted by the lassi�er.

As briey outlined, these deompositions su�er of signi�ant shortomings: in partiular

they lose the relationship to the original squared loss deomposition, foring in most ases

bias and variane to be purely additive.

We onsider lassi�ation problems and the 0=1 loss funtion in the Domingos' uni�ed

framework of bias{variane deomposition of the error [49, 48℄. In this approah bias and

variane are de�ned for an arbitrary loss funtion, showing that the resulting deomposition

speializes to the standard one for squared loss, but it holds also for the 0=1 loss [49℄.

A similar approah has been proposed by James [94℄: he extended the notion of variane

and bias for general loss funtions, distinguishing also between bias and variane, inter-

preted respetively as the systemati error and the variability of an estimator, and the the

atual e�et of bias and variane on the error.

In the rest of this hapter we onsider Domingos and James bias{variane theory, fousing

on bias{variane for the 0/1 loss. Moreover we show how to measure bias and variane of

the error in lassi�ation problems, suggesting diverse approahes for respetively "large"

or "small" data sets.

3.1 Bias{Variane Deomposition for the 0/1 loss fun-

tion

The analysis of bias{variane deomposition of the error has been originally developed in

the standard regression setting, where the squared error is usually used as loss funtion.

Considering a predition y = f(x) of an unknown target t, provided by a learner f on input

x, with x 2 R

d

and y 2 R, the lassial deomposition of the error in bias and variane for

the squared error loss is [68℄:

E

y;t

[(y � t)

2

℄ = E

t

[(t� E[t℄)

2

℄ + E

y

[(y � E[y℄)

2

℄ + (E[y℄� E[t℄)

2

= Noise(t) + V ar(y) +Bias

2

(y)

31



In words, the expeted loss of using y to predit t is the sum of the varianes of t (noise) and

y plus the squared bias. E

y

[�℄ indiates the expeted value with respet to the distribution

of the random variable y.

This deomposition annot be automatially extended to the standard lassi�ation setting,

as in this ontext the 0/1 loss funtion is usually applied, and bias and variane are not

purely additive. As we are mainly interested in analyzing bias{variane for lassi�ation

problems, we introdue the bias{variane deomposition for the 0/1 loss funtion, aording

to the Domingos uni�ed bias{variane deomposition of the error [48℄.

3.1.1 Expeted loss depends on the randomness of the training

set and the target

Consider a (potentially in�nite) population U of labeled training data points, where eah

point is a pair (x

j

; t

j

); t

j

2 C; x

j

2 R

d

; d 2 N , where C is the set of the lass labels. Let

P (x; t) be the joint distribution of the data points in U . Let D be a set of m points drawn

identially and independently from U aording to P . We think of D as being the training

sample that we are given for training a lassi�er. We an view D as a random variable,

and we will let E

D

[�℄ indiate the expeted value with respet to the distribution of D.

Let L be a learning algorithm, and de�ne f

D

= L(D) as the lassi�er produed by L

applied to a training set D. The model produes a predition f

D

(x) = y. Let L(t; y) be

the 0=1 loss funtion, that is L(t; y) = 0 if y = t, and L(t; y) = 1 otherwise.

Suppose we onsider a �xed point x 2 R

d

. This point may appear in many labeled train-

ing points in the population. We an view the orresponding labels as being distributed

aording to the onditional distribution P (tjx). Reall that it is always possible to fator

the joint distribution as P (x; t) = P (x)P (tjx). Let E

t

[�℄ indiate the expetation with

respet to t drawn aording to P (tjx).

Suppose we onsider a �xed predited lass y for a given x. This predition will have an

expeted loss of E

t

[L(t; y)℄. In general, however, the predition y is not �xed. Instead, it

is omputed from a model f

D

whih is in turn omputed from a training sample D.

Hene, the expeted loss EL of learning algorithm L at point x an be written by onsid-

ering both the randomness due to the hoie of the training set D and the randomness in

t due to the hoie of a partiular test point (x; t):

EL(L;x) = E

D

[E

t

[L(t; f

D

(x))℄℄;

where f

D

= L(D) is the lassi�er learned by L on training data D. The purpose of the

bias-variane analysis is to deompose this expeted loss into terms that separate the bias

and the variane.
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3.1.2 Optimal and main predition.

To derive this deomposition, we must de�ne two things: the optimal predition and the

main predition: aording to Domingos, bias and variane an be de�ned in terms of these

quantities.

The optimal predition y

�

for point x minimizes E

t

[L(t; y)℄ :

y

�

(x) = argmin

y

E

t

[L(t; y)℄ (3.1)

It is equal to the label t that is observed more often in the universe U of data points. The

optimal model

^

f(x) = y

�

; 8x makes the optimal predition at eah point x. The noise

N(x), is de�ned in terms of the optimal predition, and represents the remaining loss that

annot be eliminated, even by the optimal predition:

N(x) = E

t

[L(t; y

�

)℄

Note that in the deterministi ase y

�

(x) = t and N(x) = 0.

The main predition y

m

at point x is de�ned as

y

m

= argmin

y

0

E

D

[L(f

D

(x); y

0

)℄: (3.2)

This is a value that would give the lowest expeted loss if it was the \true label" of x. It

expresses the "entral tendeny" of a learner, that is its systemati predition, or, in other

words, it is the label for x that the learning algorithm \wishes" were orret. For 0/1 loss,

the main predition is the lass predited most often by the learning algorithm L when

applied to training sets D.

3.1.3 Bias, unbiased and biased variane.

Given these de�nitions, the bias B(x) (of learning algorithm L on training sets of size m)

is the loss of the main predition relative to the optimal predition:

B(x) = L(y

�

; y

m

)

For 0/1 loss, the bias is always 0 or 1. We will say that L is biased at point x, if B(x) = 1.

The variane V (x) is the average loss of the preditions relative to the main predition:

V (x) = E

D

[L(y

m

; f

D

(x))℄ (3.3)

It aptures the extent to whih the various preditions f

D

(x) vary depending on D.
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In the ase of the 0/1 loss we an also distinguish two opposite e�ets of variane (and

noise) on the error: in the unbiased ase variane and noise inrease the error, while in the

biased ase variane and noise derease the error.

There are three omponents that determine whether t = y:

1. Noise: is t = y

�

?

2. Bias: is y

�

= y

m

?

3. Variane: is y

m

= y ?

Note that bias is either 0 or 1 beause neither y

�

nor y

m

are random variables. From this

standpoint we an onsider two di�erent ases: the unbiased and the biased ase.

In the unbiased ase, B(x) = 0 and hene y

�

= y

m

. In this ase we su�er a loss if the

predition y di�ers from the main predition y

m

(variane) and the optimal predition y

�

is equal to the target t, or y is equal to y

m

, but y

�

is di�erent from t (noise).

In the biased ase, B(x) = 1 and hene y

�

6= y

m

. In this ase we su�er a loss if the

predition y is equal to the main predition y

m

and the optimal predition y

�

is equal to

the target t, or if both y is di�erent from to y

m

(variane), and y

�

is di�erent from t (noise).

Fig. 3.1 summarizes the di�erent onditions under whih an error an arise, onsidering

the ombined e�et of bias, variane and noise on the learner predition.

Considering the above ase analysis of the error, if we let P (t 6= y

�

) = N(x) = � and

P (y

m

6= y) = V (x) = �, in the unbiased ase we have:

L(t; y) = �(1� �) + �(1� �) (3.4)

= � + � � 2��

= N(x) + V (x)� 2N(x)V (x)

while, in the the biased ase:

L(t; y) = �� + (1� �)(1� �) (3.5)

= 1� (� + � � 2��)

= B(x)� (N(x) + V (x)� 2N(x)V (x))

Note that in the unbiased ase (eq. 3.4) the variane is an additive term of the loss funtion,

while in the biased ase (eq. 3.5) the variane is a subtrative term of the loss funtion.

Moreover the interation terms �� will usually be small, beause, for instane, if both noise

and variane term will be both lower than 0:1, the interation term 2N(x)V (x) will be

redued to less than 0:02
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Figure 3.1: Case analysis of error.

In order to distinguish between these two di�erent e�ets of the variane on the loss

funtion, Domingos de�nes the unbiased variane, V

u

(x), to be the variane when B(x) = 0

and the biased variane, V

b

(x), to be the variane when B(x) = 1. We an also de�ne the

net variane V

n

(x) to take into aount the ombined e�et of the unbiased and biased

variane:

V

n

(x) = V

u

(x)� V

b

(x)

Fig. 3.2 summarizes in graphi form the opposite e�ets of biased and unbiased variane

on the error.

If we an disregard the noise, the unbiased variane aptures the extents to whih the

learner deviates from the orret predition y

m

(in the unbiased ase y

m

= y

�

), while

the biased variane aptures the extents to whih the learner deviates from the inorret

predition y

m

(in the biased ase y

m

6= y

�

).

More preisely, for the two-lass lassi�ation problem, with N(x) = 0, in the two ases

we have:

1. If B(x) = 0, p

orr

(x) > 0:5) V

u

(x) = 1� p

orr

(x).

2. If B(x) = 1, p

orr

(x) � 0:5) V

b

(x) = p

orr

(x)

where p

orr

is the probability that a predition is orret: p

orr

(x) = P (y = tjx).
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Figure 3.2: E�ets of biased and unbiased variane on the error. The unbiased variane

inrements, while the biased variane derements the error.

In fat, in the unbiased ase:

p

orr

(x) > 0:5 ) y

m

= t ) P (y = y

m

jx) = p

orr

) P (y 6= y

m

) = 1 � p

orr

)

E

D

[L(y

m

; y)℄ = V (x) = 1� p

orr

.

Hene the variane V (x) = V

u

(x) = 1 � p

orr

is given by the probability of an inorret

predition, or equivalently expresses the deviation from the orret predition.

In the biased ase:

p

orr

(x) � 0:5 ) y

m

6= t ) P (y = y

m

jx) = 1 � p

orr

) P (y 6= y

m

) = p

orr

)

E

D

[L(y

m

; y)℄ = V (x) = p

orr

.

Hene the variane V (x) = V

b

(x) = p

orr

is given by the probability of a orret predition,

or equivalently expresses the deviation from the inorret predition.

3.1.4 Domingos bias{variane deomposition.

For quite general loss funtions L Domingos [47℄ showed that the expeted loss is:

EL(L;x) = 

1

N(x) +B(x) + 

2

V (x) (3.6)

For the 0=1 loss, 

1

is 2P

D

(f

D

(x) = y

�

)� 1 and 

2

is +1 if B(x) = 0 and �1 if B(x) = 1.

Note that 

2

V (x) = V

u

(x)� V

b

(x) = V

n

(x) (eq. 3.3), and if we disregard the noise, eq. 3.6
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an be simpli�ed to:

EL(L;x) = B(x) + V

n

(x) (3.7)

Summarizing, one of the most interesting aspets of Domingos' deomposition is that

variane hurts on unbiased points x, but it helps on biased points. Nonetheless, to obtain

low overall expeted loss, we want the bias to be small, and hene, we see to redue both

the bias and the unbiased variane. A good lassi�er will have low bias, in whih ase the

expeted loss will approximately equal the variane.

This deomposition for a single point x an be generalized to the entire population by

de�ning E

x

[�℄ to be the expetation with respet to P (x). Then we an de�ne the average

bias E

x

[B(x)℄, the average unbiased variane E

x

[V

u

(x)℄, and the average biased variane

E

x

[V

b

(x)℄. In the noise-free ase, the expeted loss over the entire population is

E

x

[EL(L;x)℄ = E

x

[B(x)℄ + E

x

[V

u

(x)℄� E

x

[V

b

(x)℄:

3.1.5 Bias, variane and their e�ets on the error

James [94℄ provides de�nitions of bias and variane that are idential to those provided by

Domingos. Indeed bias and variane de�nitions are based on quantities that he named the

systemati part sy of y and the systemati part st of t. These orrespond respetively to

the Domingos main predition (eq.3.2) and optimal predition (eq.3.1).

Moreover James distinguishes between bias and variane and systemati and variane ef-

fets. Bias and variane satisfy respetively the notion of the di�erene between the sys-

temati parts of y and t, and the variability of the estimate y. Systemati e�et SE

represents the hange in error of prediting t when using sy instead of st, and the variane

e�et V E the hange in predition error when using y instead of sy in order to predit t.

Using Domingos notation (y

m

for sy, and y

�

for st) the variane e�et is:

V E(y; t) = E

y;t

[L(y; t)℄� E

t

[L(t; y

m

)℄

while the systemati e�et orresponds to:

SE(y; t) = E

t

[L(t; y

m

)℄� E

t

[L(t; y

�

)℄

In other words the systemati e�et represents the hange in predition error aused by

bias, while the variane e�et the hange in predition error aused by variane.

While for the squared loss the two sets of bias{variane de�nitions math, for general loss

funtions the identity does not hold. In partiular for the 0/1 loss James proposes the

following de�nitions for noise, variane and bias with 0/1 loss:

N(x) = P (t 6= y

�

)
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V (x) = P (y 6= y

m

)

B(x) = I(y

�

6= y

m

) (3.8)

where I(z) is 1 if z is true and 0 otherwise.

The variane e�et for the 0/1 loss an be expressed in the following way:

V E(y; t) = E

y;t

[L(y; t)� L(t; y

m

)℄ = P

y;t

(y 6= t)� P

t

(t 6= y

m

) =

= 1� P

y;t

(y = t)� (1� P

t

(t = y

m

)) = P

t

(t = y

m

)� P

y;t

(y = t) (3.9)

while the systemati e�et is:

SE(y; t) = E

t

[L(t; y

m

)℄� E

t

[L(t; y

�

)℄ = P

t

(t 6= y

m

)� P

t

(t 6= y

�

) =

= 1� P

t

(t = y

m

)� (1� P

t

(t = y

�

)) = P

t

(t = y

�

)� P

t

(t = y

m

) (3.10)

If we let N(x) = 0, onsidering eq. 3.7, eq. 3.8, and eq. 3.9 the variane e�et beomes:

V E(y; t) = P

t

(t = y

m

)� P

y;t

(y = t) = P (y

�

= y

m

)� P

y

(y = y

�

) =

= 1� P (y

�

6= y

m

)� (1� P

y

(y 6= y

�

)) = 1�B(x)� (1� EL(L;x)) =

EL(L;x)� B(x) = V

n

(x) (3.11)

while from eq. 3.8 and eq. 3.10 the systemati e�et beomes:

SE(y; t) = P

t

(t = y

�

)� P

t

(t = y

m

) = 1� P

t

(t 6= y

�

)� (1� P

t

(t 6= y

m

)) =

P (y� 6= y

m

) = I(y� 6= y

m

) = B(x) (3.12)

Hene if N(x) = 0, it follows that the variane e�et is equal to the net-variane (eq. 3.11),

and the systemati e�et is equal to the bias (eq. 3.12).

3.2 Measuring bias and variane

The proedures to measure bias and variane depend on the harateristis and on the

ardinality of the data sets used.

For syntheti data sets we an generate di�erent sets of training data for eah learner

to be trained. Then a large syntheti test set an be generated in order to estimate the

bias{variane deomposition of the error for a spei� learner model.

Similarly, if a large data set is available, we an split it in a large learning set and in a

large testing set. Then we an randomly draw subsets of data from the large training set

in order to train the learners; bias{variane deomposition of the error is measured on the

large independent test set.
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However, in pratie, for real data we dispose of only one and often small data set. In this

ase, we an use ross-validation tehniques for estimating bias{variane deomposition,

but we propose to use out-of-bag [19℄ estimation proedures, as they are omputationally

less expensive.

3.2.1 Measuring with arti�ial or large benhmark data sets

Consider a set D = fD

i

g

n

i=1

of learning sets D

i

= fx

j

; t

j

g

m

j=1

. Here we onsider only a

two-lass ase, i.e. t

j

2 C = f�1; 1g; x

j

2 X, for instane X = R

d

; d 2 N , but the

extension to the multilass ase is straightforward.

We de�ne f

D

i

= L(D

i

) as the model f

D

i

produed by a learner L using a training set D

i

.

The model produes a predition f

D

i

(x) = y.

In presene of noise and with the 0/1 loss, the optimal predition y

�

is equal to the label

t that is observed more often in the universe U of data points:

y

�

(x) = argmax

t2C

P (tjx)

The noise N(x) for the 0/1 loss an be estimated if we an evaluate the probability of the

targets for a given example x:

N(x) =

X

t2C

L(t; y

�

)P (tjx) =

X

t2C

jjt 6= y

�

jjP (tjx)

where jjzjj = 1 if z is true, 0 otherwise,

In pratie, for "real world" data sets it is diÆult to estimate the noise, and to simplify

the omputation we onsider the noise free ase. In this situation we have y

�

= t.

The main predition is a funtion of the y = f

D

i

(x). Considering a 0=1 loss, we have

y

m

= argmax(p

1

; p

�1

)

where p

1

= P

D

(y = 1jx) and p

�1

= P

D

(y = �1jx), i.e. the main predition is the mode.

To alulate p

1

, having a test set T = fx

j

; t

j

g

r

j=1

, it is suÆient to ount the number of

learners that predit lass 1 on a given input x:

p

1

(x

j

) =

P

n

i=1

kf

D

i

(x

j

) = 1k

n

where kzk = 1 if z is true and kzk = 0 if z is false

The bias an be easily alulated after the evaluation of the main predition:

B(x) =

�

1 if y

m

6= t

0 if y

m

= t

=

�

�

�

�

y

m

� t

2

�

�

�

�

(3.13)
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or equivalently:

B(x) =

�

1 if p

orr

(x) � 0:5

0 otherwise

where p

orr

is the probability that a predition is orret, i.e. p

orr

(x) = P (y = tjx) =

P

D

(f

D

(x) = t).

In order to measure the variane V (x), if we de�ne y

D

i

= f

D

i

(x), we have:

V (x) =

1

n

n

X

i=1

L(y

m

; y

D

i

) =

1

n

n

X

i=1

jj(y

m

6= y

D

i

)jj

The unbiased variane V

u

(x) and the biased variane V

b

(x) an be alulated evaluating if

the predition of eah learner di�ers from the main predition respetively in the unbiased

and in the biased ase:

V

u

(x) =

1

n

n

X

i=1

jj(y

m

= t) and (y

m

6= y

D

i

)jj

V

b

(x) =

1

n

n

X

i=1

jj(y

m

6= t) and (y

m

6= y

D

i

)jj

In the noise-free ase, the average loss on the example x E

D

(x) is alulated by a simple

algebrai sum of bias, unbiased and biased variane:

E

D

(x) = B(x) + V

u

(x)� V

b

(x) = B(x) + (1� 2B(x))V (x)

In order to evaluate bias{variane deomposition on the entire set of examples, onsider

a test set T = fx

j

; t

j

g

r

j=1

. We an easily alulate the average bias, variane, unbiased,

biased and net variane, averaging over the entire set of examples:

Average bias:

E

x

[B(x)℄ =

1

r

r

X

j=1

B(x

j

) =

1

r

r

X

j=1

�
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Average unbiased variane:
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Average biased variane:
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Average net variane:
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Finally, the average loss on all the examples (with no noise) is the algebrai sum of the

average bias, unbiased and biased variane:

E

x

[L(t; y)℄ = E

x

[B(x)℄ + E

x

[V

u

(x)℄� E

x

[V

b

(x)℄

3.2.2 Measuring with small data sets

In pratie (unlike in theory), we have only one and often small data set S. We an

simulate multiple training sets by bootstrap repliates S

0

= fxjx is drawn at random with

replaement from Sg.

In order to measure bias and variane we an use out-of-bag points, providing in suh a

manner an unbiased estimate of the error.

At �rst we need to onstrut B bootstrap repliates of S (e. g., B = 200): S

1

; : : : ; S

B

.

Then we apply a learning algorithm L to eah repliate S

b

to obtain hypotheses f

b

= L(S

b

).

Let T

b

= SnS

b

be the data points that do not appear in S

b

(out of bag points). We an

use these data sets T

b

to evaluate the bias{variane deomposition of the error; that is we

ompute the predited values f

b

(x), 8x s:t: x 2 T

b

.

For eah data point x, we will now have the observed orresponding value t and several

preditions y

1

; : : : ; y

K

, where K = jfT

b

jx 2 T

b

; 1 � b � Bgj depends on x, K � B, and

on the average K ' B=3, beause about 1=3 of the preditors is not trained on a spei�

input x.

In order to ompute the main predition, for a two-lass lassi�ation problem, we an

de�ne:

p

1

(x) =

1

K

B

X

b=1

jj(x 2 T

b

) and (f

b

(x) = 1)jj
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p

�1

(x) =
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K
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jj(x 2 T

b

) and (f

b

(x) = �1)jj

The main predition y

m

(x) orresponds to the mode:

y

m

= argmax(p

1

; p

�1

)

The bias an be alulated as in eq. 3.13, and the variane V (x) is:

V (x) =

1

K

B

X

b=1

jj(x 2 T

b

)and(y

m

6= f

b

(x))jj

Similarly an be easily omputed unbiased, biased and net{variane:

V

u
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K
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jj(x 2 T

b

) and (B(x) = 0) and (y

m
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(x))jj
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(x))jj
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u

(x)� V

b

(x)

Average bias, variane, unbiased, biased and net variane, an be easily alulated averag-

ing over all the examples.
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Chapter 4

Bias{Variane Analysis in single

SVMs

The bias{variane deomposition of the error represents a powerful tool to analyze learning

proesses in learning mahines. Aording to the proedures desribed in the previous

hapter, we analyzed bias and variane in SVMs, in order to study the relationships with

di�erent kernel types and their parameters. To aomplish this task we omputed bias{

variane deomposition of the error on di�erent syntheti and "real" data sets.

4.1 Support Vetor Mahines

In this setion we provide a very brief overview of Support Vetor Mahines in order to

introdue the main notions and onepts used in the rest of the this hapter. For more

details, see, for instane [188, 37℄.

Given a data set Z = f(x

i

; y

i

)g

n

i=1

, x

i

2 R

N

; y

i

2 Y = f�1; 1g, where y

i

are the labels of

two di�erent lasses of examples, a linear lassi�er omputes a deision funtion g(x) =

sign(f(x)), where f(x) = w � x+ b.

For a point x

p

on the separating hyperplane f(x

p

) = w � x

p

+ b = 0 (Fig. 4.1), a point x

m

on the margin whose width is  an be expressed as

x

m

= x

p

+

w

jjwjj



Then f(x

m

) = w � x

m

+ b = w � x

p

+

w�w

jjwjj

 + b = jjwjj.

The funtional margin is jjwjj and the geometri margin is  =

f(x

m

)

jjwjj

.
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Figure 4.1: Separating hyperplane and margins in a two-lass lassi�ation problem

To obtain the anonial separating hyperplane we need to normalize w.r.t the funtional

margin:

f



(x) =

f(x)

jjwjj

The anonial funtional margin is

f



(x

m

) =

f(x

m

)

jjwjj

= 1

The anonial margin is 



=

1

jjwjj

From this point we onsider only the anonial hyperplane (that is the hyperplane with

anonial margin 1=jjwjj.

In order to maximize the margin  =

1

jjwjj

and to orretly separate the examples we need

to solve a onstrained quadrati optimization problem:

Minimize w �w

subjet to y

i

(w � x

i

+ b) � 1

1 � i � n
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The hyperplane w�x+b = 0 that solves this quadrati oprimization problem is the maximal

margin iperplane with margin  =

1

jjwjj

The lagrangian assoiated with the primal optimization problem is:

L(w; b; �) =

1

2

w �w�

n

X
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i
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i
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+ b)� 1)

leading to this set of optimality onditions:
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Putting the relations obtained into the primal we have:
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obtaining the assoiated dual optimization problem:

Maximize �(�) =

P

n

i=1

�

i

�

1

2

P

n

i=1

P
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j=1
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i
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�
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� x

j

)

subjet to

P

n

i=1

y

i

�

i

= 0

�

i

� 0; 1 � i � n

The hyperplane whose weight vetor w

�

=

P

n

i=1

y

i

�

i

x

i

solves this quadrati optimization

problem is the maximal margin hyperplane with geometri margin  =

1

jjwjj

.
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The linear SVMs ompute the family of linear funtions:

F(x;w; b) = fx �w + b;w 2 R

n

; b 2 Rg

If �

�

is the solution of the dual optimization problem then

� w

�

=

P

n

i=1

y

i

�

�

i

x

i

is the weight vetor of the maximal margin hyperplane

� f(x) = w

�

� x+ b

�

=

P

n

i=1

y

i

�

�

i

x

i

� x+ b

�

is the orresponding disriminant funtion.

� The deision funtion g : R

n

! f�1;+1g is g(x) = sign(

P

n

i=1

y

i

�

�

i

x

i

� x + b

�

)

The SVM algorithm minimizes both the empirial risk and the on�dene interval [188℄.

Indeed, maximizing the margin, that is equivalently minimizing jjwjj, we minimize the

Vapnik Chervonenkis (VC) dimension, and the on�dene interval depends mainly on the

ratio (VC) dimension/ ardinality of the training set.

In order to onsider non lineraly separable data we nee to introdue soft margin SVM and

kernels. In this setting we �rst add to the primal optimization problems a set of slak

variables �

i

, and a

Minimize w �w + C

P

n

i=1

�

i

subjet to y

i

(w � x

i

+ b) � 1� �

i

�

i

� 0

1 � i � n

If K(x;x

0

) is a symmetri funtion satis�ng Merer's onditions, that is:

Z Z

K(x;x

0

)f(x)f(x

0

)dxdx

0

� 0

for all f suh that

R

f

2

(x)dx <1, then we an expand K(x;x

0

) in a some inner produt

feature spae:

K(x;x

0

) =

1

X

j=1

�

j

�(x)�(x

0

)

Note that in the dual representation of linear SVMs the inputs appears only in a dot-

produt form:as a onsequene we an substitute the dot-produts in the input spae with

a kernel funtion obeying Merer's onditions:

Maximize �(�) =
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The disriminant funtion obtained from the solution of this quadrati optimization prob-

lem is:

f(x; �

�

; b) =

n

X

i=1

y

i

�

�

i

K(x

i

;x) + b

�

The SVM reeives as inputs patterns x in the input spae, but works in a high dimensional

(possibly in�nite) feature spae, where it performs a linear separation of the data.

The symmetri funtion K(�; �) must be hosen among the kernels of Reproduing Kernel

Hilbert Spaes [189℄; three possible hoies are:

� Linear kernel: K(u;v) = u � v

� Polynomial kernel: K(u;v) = (u � v + 1)

d

� Gaussian kernel: K(u;v) = exp(�ku� vk

2

=�

2

)

The bias and variane of SVMs are typially ontrolled by two parameters. The parameter

C ontrols the tradeo� between �tting the data (ahieved by driving the �

i

's to zero) and

maximizing the margin (ahieved by driving kwk to zero). Setting C large should tend to

minimize bias.

The seond parameter that ontrols bias arises only in SVMs that employ parameterized

kernels suh as the polynomial kernel (where the parameter is the degree d of the polyno-

mial) and RBF kernels (where the parameter is the width � of the gaussian kernel). Bias

and variane depend ritially on these parameters [182℄.

4.2 Experimental setup

We performed an extended bias{variane analysis of the error in Support Vetor Mahines,

training and testing more than half million of di�erent SVMs on di�erent training and test

sets.

4.2.1 Data sets

In the experiments we employed 7 di�erent data sets, both syntheti and "real".

P2 is a syntheti bidimensional two{lass data set; eah region is delimited by one or more

of four simple polynomial and trigonometri funtions (Fig. 4.2).
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The syntheti data set Waveform is generated from a ombination of 2 of 3 "base" waves;

we redued the original three lasses of Waveform to two, deleting all samples pertaining

to lass 0. The other data sets are all from the UCI repository [135℄.

Tab. 4.1 summarizes the main features of the data sets used in the experiments. The rest

of this setion explains in more detail the harateristis of the data sets.

Table 4.1: Data sets used in the experiments.

Data set # of # of tr. # of tr. # base # of

attr. samples sets tr. set test samples

P2 2 100 400 syntheti 10000

Waveform 21 100 200 syntheti 10000

Grey-Landsat 36 100 200 4425 2000

Letter 16 100 200 614 613

Letter w. noise 16 100 200 614 613

Spam 57 100 200 2301 2300

Musk 166 100 200 3299 3299

4.2.1.1 P2

We used a syntheti bidimensional two{lass data set (Fig. 4.2). Eah region, delimited

by one or more of four simple polynomial and trigonometri funtions, belongs to one of

the two lasses, aording to the Roman numbers I and II. We generated a series of 400

training sets with 100 independent examples randomly extrated aording to a uniform

probability distribution. The test set (10000 examples) was generated through the same

distribution. The appliation gensimple, that we developed to generate the data, is freely

available on line at ftp://ftp.disi.unige.it/person/ValentiniG/BV/gensimple.

4.2.1.2 Waveform

It is a syntheti data set from the UCI repository. Eah lass is generated from a ombina-

tion of 2 of 3 "base" waves. Using the appliation waveform we an generate an arbitrary

number of samples from the same distribution. We redued the original three lasses of

Waveform to two, deleting all samples pertaining to lass 0.
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Figure 4.2: P2 data set, a bidimensional two lass syntheti data set.

4.2.1.3 Grey-Landsat

It is a data set from the UCI repository, modi�ed in order to be available for a dihotomi

lassi�ation problem. The attributes represent intensity values for four spetral bands

and nine neighbouring pixels, while the lassi�ation refers to the entral pixel. Hene we

have 9 data values for eah spetral band for a total of 36 data attributes for eah pattern.

The data ome from a retangular area approximately �ve miles wide. The original data

set Landsat (available from UCI repository) is a 6 way lassi�ation data set with 36

attributes. Following Sott and Langdon [125℄, lasses 3, 4 and 7 were ombined into one

(positive gray), while 1, 2 and 5 beame the negative examples (not-Gray).

4.2.1.4 Letter-Two

It is a redued version of the Letter data set from UCI: we onsider here only letter B

versus letter R, taken from the letter reognition data set. The 16 attributes are integer

values that refer to di�erent features of the letters. We used also a version of Letter-Two

with 20 % added lassi�ation noise (Letter-Two with added noise data set).
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4.2.1.5 Spam

This data set from UCI separates "spam" e-mails from "non-spam' e-mails, onsidering

mainly attributes that indiate whether a partiular word or harater frequently ours

in the e-mail. Of ourse, the onept of spam is somewhat subjetive: in partiular the

reators of this data set seleted non-spam e-mails that ame from �led work and personal

e-mails, while olletion of spam e-mails ame from their postmaster and individuals who

had �led spam. However we have a relatively large data set with 4601 instanes and 57

ontinuous attributes.

4.2.1.6 Musk

The dataset (available from UCI) desribes a set of 102 moleules of whih 39 are judged

by human experts to be musks and the remaining 63 moleules are judged to be non-

musks. The 166 features that desribe these moleules depend upon the exat shape, or

onformation, of the moleule. Beause bonds an rotate, a single moleule an adopt

many di�erent shapes. To generate this data set, all the low-energy onformations of the

moleules were generated to produe 6,598 onformations. Then, a feature vetor was

extrated that desribes eah onformation.

In these experiments the data set was used as a normal data set, onsidering diretly the

di�erent onformations of the same moleule as a di�erent instane. As a onsequene,

eah feature vetor represents a di�erent example to be lassi�ed and the lassi�er does

not lassify a moleule as "musk" if any of its onformations is lassi�ed as a musk. In

other words we used the data set without onsidering the many-to-one relationship between

feature vetors and moleules that haraterize the "multiple instane problem".

4.2.2 Experimental tasks

In order to perform a reliable evaluation of bias and variane we used small training set

and large test sets. For syntheti data we generated the desired number of samples. For

real data sets we used bootstrapping to repliate the data. In both ases we omputed

the main predition, bias, unbiased and biased variane, net-variane aording to the

proedures explained in Set. 3.2.1. In our experiments, the omputation of variane e�et

and systemati e�et is redued to the measurement of the net-variane and bias, as we

did not expliitly onsider the noise (eq. 3.11 and 3.12).
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4.2.2.1 Set up of the data

With syntheti data sets, we generated small training sets of about 100 examples and

reasonably large test sets using omputer programs. In fat small samples show bias and

variane more learly than having larger samples. We produed 400 di�erent training sets

for P2 and 200 training sets for Waveform. The test sets were hosen reasonably large

(10000 examples) to obtain reliable estimates of bias and variane.

For real data sets we �rst divided the data into a training D and a test T sets. If the

data sets had a prede�ned training and test sets reasonably large, we used them (as in

Grey-Landsat and Spam), otherwise we split them in a training and test set of equal size.

Then we drew from D bootstrap samples. We hosen bootstrap samples muh smaller than

jDj (100 examples). More preisely we drew 200 data sets from D, eah one onsisting of

100 examples uniformly drawn with replaement.

Fig. 4.3 outlines the experimental proedure we adopted for setting up the data and Fig. 4.4

the experimental proedure to evaluate bias{variane deomposition of the error.

Proedure Generate samples

Input arguments:

- Data set S

- Number n of samples

- Size s of the samples

Output:

- Set

�

D = fD

i

g

n

i=1

of samples

begin proedure

[D; T ℄ = Split(S)

�

D = ;

for i = 1 to n

begin

D

i

= Draw with replaement(D; s)

�

D =

�

D +D

i

end

end proedure.

Figure 4.3: Proedure to generate samples to be used for bias{variane analysis with single

SVMs
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Proedure Bias{Variane analysis

Input arguments:

- Test set T

- Number of samples n

- Set of learning parameters A

- Set

�

D = fD

i

g

n

i=1

of samples

Output:

- Error, bias, net-variane, unbiased and biased variane BV = fbv(�)g

�2A

of the SVMs with learning parameters � 2 A.

begin proedure

For eah � 2 A

begin

SVM Set(�) = ;

for i = 1 to n

begin

svm(�; D

i

) = svm train (�; D

i

)

SVM Set(�) = SVM Set(�) [ svm(�; D

i

)

end

bv(�) = Perform BV analysis(SVM Set (�), T )

BV = BV [ bv(�)

end

end proedure.

Figure 4.4: Proedure to perform bias{variane analysis on single SVMs

Samples D

i

are drawn with replaement aording to an uniform probability distribution

from the training setD by the proedure Draw with replaement. This proess is repeated

n times (proedure Generate samples, Fig. 4.3). Then the proedure Bias--Variane analysis

(Fig. 4.4) trains di�erent SVM models, aording to the di�erent learning parameters �

provided to the proedure svm train). SVM Set(�) is the set of the SVMs trained us-

ing the same learning parameter � and a set

�

D of samples generated by the proedure

Generate samples.

The bias{variane deomposition of the error is performed on the separated test set T

using the previously trained SVMs (proedure Perform BV analysis).

4.2.2.2 Tasks

To evaluate bias and variane in SVMs we onduted experiments with di�erent kernels

and di�erent kernel parameters.
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In partiular we onsidered 3 di�erent SVM kernels:

1. Gaussian kernels. We evaluated bias{variane deomposition varying the parame-

ters � of the kernel and the C parameter that ontrols the trade{o� between training

error and the margin. In partiular we analyzed:

(a) The relationships between average error, bias, net{variane, unbiased and biased

variane and the parameter � of the kernel.

(b) The relationships between average error, bias, net{variane, unbiased and biased

variane and the parameter C (the regularization fator) of the kernel.

() The relationships between generalization error, training error, number of sup-

port vetors and apaity with respet to �.

We trained RBF-SVM with all the ombinations of the parameters � and C, taken

from the following two sets:

�

� 2 f0:01; 0:02; 0:1; 0:2; 0:5; 1; 2; 5; 10; 20; 50; 100; 200; 300; 400; 500; 1000g

C 2 f0:01; 0:1; 1; 2; 5; 10; 20; 50; 100; 200; 500; 1000g

evaluating in suh a way 17�12 = 204 di�erent RBF-SVM models for eah data set.

2. Polynomial kernels. We evaluated bias{variane deomposition varying the degree

of the kernel and the C parameter that ontrols the trade{o� between training error

and the margin. In partiular we analyzed:

(a) The relationships between average error, bias, net{variane, unbiased and biased

variane and the degree of the kernel.

(b) The relationships between average error, bias, net{variane, unbiased and biased

variane and the parameter C (the regularization fator) of the kernel.

We trained polynomial-SVM with all the ombinations of the parameters:

�

degree 2 f1; 2; 3; 4; 5; 6; 7; 8; 9; 10g

C 2 f0:01; 0:1; 1; 2; 5; 10; 20; 50; 100; 200; 500; 1000g

evaluating in suh a way 10 � 12 = 120 di�erent polynomial-SVM models for eah

data set. Following the heuristi of Jakkola, the dot produt of polynomial kernel was

divided by the dimension of the input data, to "normalize" the dot{produt before

to raise to the degree of the polynomial.

3. Dot{produt kernels. We evaluated bias{variane deomposition varying the C

parameter. We analyzed the relationships between average error, bias, net{variane,

unbiased and biased variane and the parameter C (the regularization fator) of
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the kernel. We trained dot{produt-SVM onsidering the following values for the C

parameter:

C 2 f0:01; 0:1; 1; 2; 5; 10; 20; 50; 100; 200; 500; 1000g

evaluating in suh a way 12 di�erent dot{produt-SVM models for eah data set.

Eah SVM model required the training of 200 di�erent SVMs, one for eah synthesized or

bootstrapped data set, for a total of (204+120+12)�200 = 67200 trained SVMs for eah

data set (134400 for the data set P2, as for this data set we used 400 data sets for eah

model).

Summarizing the experiments required the training of more than half million of SVMs,

onsidering all the data sets and of ourse the testing of all the SVM previously trained

in order to evaluate the bias{variane deomposition of the error of the di�erent SVM

models. For eah SVM model we omputed the main predition, bias, net-variane, biased

and unbiased variane and the error on eah example of the test set, and the orresponding

average quantities on the overall test set.

4.2.3 Software used in the experiments

In all our experiments we used the NEURObjets [185℄

1

C++ library and SVM-light [96℄

appliations. In partiular the syntheti data P2 and Waveform were generated respe-

tively through our C++ appliation gensimple and waveform from the UCI repository.

The bootstrapped data for the real data sets were extrated using the C++ NEURObjets

appliation subsample. The data then were normalized using the NEURObjets applia-

tion onvert data format. For some data sets in order to extrat randomly a separated

training and test set we used the NEURObjets appliation dofold. Training and testing

of the SVM were performed using Joahim's SVM-light software, and in partiular the

appliations svm learn and svm lassify. We slightly modi�ed svm learn in order to

fore onvergene of the SVM algorithm when the optimality onditions are not reahed in

a reasonable time. We developed and used the C++ appliation analyze BV, to perform

bias{variane deomposition of the error

2

. This appliation analyzes the output of a generi

learning mahine model and omputes the main predition, error, bias, net{variane, un-

biased and biased variane using the 0=1 loss funtion. Other C++ appliations have been

developed for the automati analysis of the results, using also Cshell sripts to train, test

and analyze bias{variane deomposition of all the SVM models for a spei� data set,

onsidering respetively gaussian, polynomial and dot{produt kernels.

1

Download web site: http://www.disi.unige.it/person/ValentiniG/NEURObjets.

2

The soure ode is available at ftp://ftp.disi.unige.it/person/ValentiniG/BV. Moreover C++

lasses for bias{variane analysis have been developed as part of the NEURObjets library
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4.3 Results

In this setion we present the results of the experiments. We analyzed bias{variane deom-

position with respet to the kernel parameters onsidering separately gaussian, polynomial

and dot produt SVMs, omparing also the results among di�erent kernels. Here we present

the main results. Full results, data and graphis are available by anonymous ftp at:

ftp://ftp.disi.unige.it/person/ValentiniG/papers/bv-svm.ps.gz.

4.3.1 Gaussian kernels

Fig. 4.5 depits the average loss, bias net{variane, unbiased and biased variane varying

the values of � and the regularization parameter C in RBF-SVM on the Grey-Landsat data

set. We note that � is the most important parameter: although for very low values of C

the SVM annot learn, independently of the values of �, (Fig. 4.5 a), the error, the bias,

and the net{variane depend mostly on the � parameter. In partiular for low values of

�, bias is very high (Fig. 4.5 b) and net-variane is 0, as biased and unbiased variane are

about equal (Fig. 4.5d and 4.5e). Then the bias suddenly goes down (Fig. 4.5b), lowering

the average loss (Fig. 4.5a), and then stabilizes for higher values of �. Interestingly enough,

in this data set (but also in others, data not shown), we note an inrement followed by

a derement of the net{variane, resulting in a sort of "wave shape" of the net variane

graph (Fig. 4.5).

Fig. 4.6 shows the bias{variane deomposition on di�erent data sets, varying �, and for

a �xed value of C, that is a sort of "slie" along the � axis of the Fig. 4.5. The plots

show that average loss, bias, and variane depend signi�antly on � for all the onsidered

data sets, on�rming the existene of a \high biased region" for low values of �. In this

region, biased and unbiased variane are about equal (net{variane V

n

= V

u

� V

b

is low).

Then unbiased variane inreases while biased variane dereases (Fig. 4.6 a,b, and d),

and �nally both stabilize for relatively high values of �. Interestingly, the average loss and

the bias do not inrease for high values of �, espeially if C is high.

Bias and average loss inreases with � only for very small C values. Note that net-variane

and bias show opposite trends only for small values of C (Fig. 4.6 ). For larger C values

the symmetri trend is limited only to � � 1 (Fig. 4.6 d), otherwise bias stabilizes and

net-variane slowly dereases.

Fig. 4.7 shows more in detail the e�et of the C parameter on bias-variane deomposition.

For C � 1 there are no variations of the average error, bias and variane for a �xed value

of �. Note that for very low values of � (Fig. 4.7a and b) there is no learning. In the

Letter-Two data set, as in other data sets (�gures not shown), only for small C values we

have variations in bias and variane values (Fig. 4.7).
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Figure 4.5: Grey-Landsat data set. Error (a) and its deomposition in bias (b), net variane

(), unbiased variane (d), and biased variane (e) in SVM RBF, varying both C and �.
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Figure 4.6: Bias-variane deomposition of the error in bias, net variane, unbiased and

biased variane in SVM RBF, varying � and for �xed C values: (a) Waveform, (b) Grey-

Landsat, () Letter-Two with C = 0:1, () Letter-Two with C = 1, (e) Letter-Two with

added noise and (f) Spam.
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Figure 4.7: Letter-Two data set. Bias-variane deomposition of error in bias, net variane,

unbiased and biased variane in SVM RBF, while varying C and for some �xed values of

�: (a) � = 0:01, (b) � = 0:1, () � = 1, (d) � = 5, (e) � = 20, (f) � = 100.
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Figure 4.8: The disriminant funtion omputed by the SVM on the P2 data set with

� = 0:01, C = 1.

4.3.1.1 The disriminant funtion omputed by the SVM-RBF lassi�er

In order to get insights into the behaviour of SVM learning algorithm with gaussian kernels

we plotted the real-valued funtions omputed without onsidering the disretization step

performed through the sign funtion. The real valued funtion omputed by a gaussian

SVM is the following:

f(x; �; b) =

X

i2SV

y

i

�

i

exp(�kx

i

� xk

2

=�

2

) + b

where the �

i

are the Lagrange multipliers found by the solution of the dual optimization

problem, the x

i

2 SV are the support vetors, that is the points for whih �

i

> 0.

We plotted the surfae omputed by the gaussian SVM with the syntheti data set P2.

Indeed it is the only surfae that an be easily visualized, as the data are bidimensional

and the resulting real valued funtion an be easily represented through a wireframe three-

dimensional surfae. The SVMs are trained with exatly the same training set omposed

by 100 examples. The outputs are referred to a test set of 10000 examples, seleted in an

uniform way through all the data domain. In partiular we onsidered a grid of equi-spaed
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Figure 4.9: The disriminant funtion omputed by the SVM on the P2 data set, with

� = 1, C = 1.

data at 0.1 interval in a two dimensional 10 � 10 input spae. If f(x; �; b) > 0 then the

SVM mathes up the example x with lass 1, otherwise with lass 2.

With small values of � we have "spiky" funtions: the response is high around the support

vetors, and is lose to 0 in all the other regions of the input domain (Fig. 4.8). In this

ase we have over�tting: a large error on the test set (about 46 % with � = 0:01 and 42:5

% with � = 0:02 ), and a training error near to 0. If we enlarge the values of � we obtain

a wider response on the input domain and the error dereases (with � = 0:1 the error is

about 37 %). With � = 1 we have a smooth funtion that �ts quite well the data (Fig. 4.9).

In this ase the error drops down to about 13 %.

Enlarging too muh � we have a too smooth funtion (Fig. 4.10 (a)), and the error inreases

to about 37 %: in this ase the high bias is due to an exessive smoothing of the funtion.

Inreasing the values of the regularization parameter C (in order to better �t the data),

we an diminish the error to about 15 %: the shape of the funtion now is less smooth

(Fig. 4.10 (b)).

Finally using very large values of sigma (e.g. � = 500), we have a very smooth (in pratie

a plan) and a very biased funtion (error about 45 %), and if we inrement C, we obtain
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obtain better results, but always with a large error (about 35 %).

4.3.1.2 Behavior of SVMs with large � values

Fig 4.5 and 4.6 show that the � parameter plays a sort of smoothing e�et, when the value

of � inreases. In partiular with large values of � we did not observe any inrement of bias

nor derement of variane. In order to get insights into this ounter-intuitive behaviour we

tried to answer these two questions:

1. Does the bias inrease while variane derease with large values of �, and what is the

ombined e�et of bias-variane on the error?

2. In this situation (large values for �), what is the e�et of the C parameter?

In Fig. 4.6 we do not observe an inrement of bias with large values of �, but we limited

our experiments to values of � � 100. Here we investigate the e�et for larger values of �

(from 100 to 1000).

In most ases, also inreasing the values of � right to 1000 we do not observe an inrement

of the bias and a substantial derement of the variane. Only for low values of C, that is

C < 1 the bias and the error inrease with large values of � (Fig. 4.11).

With the P2 data set the situation is di�erent: in this ase we observe an inrement of the

bias and the error with large values of �, even if with large value of C the inrement rate is

lower (Fig. 4.12 a and b). Also with the musk data set we note an inrement of the error

with very large values of �, but surprisingly this is due to an inrement of the unbiased

variane, while the bias is quite stable, at least for values of C > 1, (Fig. 4.12  and d).

Larger values of C ounter-balane the bias introdued by large values of �. But with

some distributions of the data too large values of � produe too smooth funtions, and

also inrementing C it is very diÆult to �t the data. Indeed, the real-valued funtion

omputed by the RBF-SVM with the P2 data set (that is the funtion omputed without

onsidering the sign funtion) is too smooth for large values of �: for � = 20, the error is

about 37%, due almost entirely to the large bias, (Fig. 4.10 a), and for � = 500 the error

is about 45 % and also inrementing the C value to 1000, we obtain a surfae that �ts the

data better, but with an error that remains large (about 35%).

Summarizing with large � values bias an inrement, while net-variane tends to stabilize,

but this e�et an be ounter-balaned by larger C values.

61



       1
       0

      −1

0
2

4
6

8
X

2
4

6
8

10

Y

−2
−1.5

−1
−0.5

0
0.5

1
1.5

Z

(a)

      10
       0

     −10

0
2

4
6

8
X

2
4

6
8

10

Y

−20
−15
−10
−5

0
5

10
15
20

Z

(b)

Figure 4.10: The disriminant funtion omputed by the SVM on the P2 data set. (a)

� = 20, C = 1, (b) � = 20 C = 1000.
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Figure 4.11: Grey-Landsat data set. Bias-variane deomposition of error in bias, net

variane, unbiased and biased variane in SVM RBF, while varying � and for some �xed

values of C: (a) C = 0:1, (b) C = 1, () C = 10, (d) C = 100.
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Figure 4.12: Bias-variane deomposition of error in bias, net variane, unbiased and biased

variane in SVM RBF, while varying � and for some �xed values of C: (a) P2, with C = 1,

(b) P2, with C = 1000, Musk, with C = 1, (d) Musk, with C = 1000.

4.3.1.3 Relationships between generalization error, training error, number of

support vetors and apaity

Looking at Fig. 4.5 and 4.6, we see that SVMs do not learn for small values of �. Moreover

the low error region is relatively large with respet to � and C.

In this setion we evaluate the relationships between the estimated generalization error,

the bias, the training error, the number of support vetors and the estimated Vapnik

Chervonenkis dimension [188℄, in order to answer the following questions:

1. Why SVMs do not learn for small values of �?
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2. Why we have a so large bias for small values of �?

3. Can we use the variation of the number of support vetors to predit the "low error"

region?

4. Is there any relationship between the bias, variane and VC dimension, and an we

use this last one to individuate the "low error" region?

The generalization error, bias, training error, number of support vetors and the Vapnik

Chervonenkis dimension are estimated averaging with respet to 400 SVMs (P2 data set)

or 200 SVMs (other data sets) trained with di�erent bootstrapped training sets omposed

by 100 examples eah one. The test error and the bias are estimated with respet to an

independent and suÆiently large data set.

The VC dimension is estimated using the Vapnik's bound based on the radius R of the

sphere that ontains all the data (in the feature spae), approximated through the sphere

entered in the origin, and on the norm of the weights in the feature spae [188℄. In this

way the VC dimension is overestimated but it is easy to ompute and we are interested

mainly in the omparison of the VC dim. of di�erent SVM models:

V C � R

2

� kwk

2

+ 1

where [37℄

kwk

2

=

X

i2SV

X

j2SV

�

i

�

j

K(x

i

;x

j

)y

i

y

j

and

R

2

= max

i

K(x

i

;x

i

)

The number of support vetors is expressed as the halved ratio of the number (% SV ) of

support vetors with respet to the total number of the training data:

%SV =

#SV

#trainingdata � 2

In the graphs shown in Fig. 4.13 and Fig. 4.14, on the left y axis is represented the error,

training error and bias, and the halved ratio of support vetors. On the right y axis is

reported the estimated Vapnik Chervonenkis dimension.

For very small values of � the training error is very small (about 0), while the number of

support vetors is very high, and high is also the error and the bias (Fig.4.13 and 4.14).

These fats support the hypothesis of over�tting problems with small values of �. Indeed

the real-valued funtion omputed by the SVM (that is the funtion omputed without

onsidering the sign funtion, Set. 4.3.1.1) is very spiky with small values of � (Fig. 4.8).
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Figure 4.13: Letter-Two data set. Error, bias, training error, halved fration of support

vetors, and estimated VC dimension while varying the � parameter and for some �xed

values of C: (a) C = 1, (b) C = 10, () C = 100, and C = 1000.
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The response of the SVM is high only in small areas around the support vetors, while

in all the other areas "non overed" by the gaussians entered to the support vetors the

response is very low (about 0), that is the SVM is not able to get a deision, with a

onsequently very high bias.

Anyway, note that the pattern of dependeny between � and the bias{variane omponents

of the error might be di�erent if larger training sets were used. Indeed the high bias region

will be smaller (that is limited to lower values of �) if the number of the examples of the

training set is larger. With an inreasing number of examples, the "non-overed" regions

of the input spae will be redued, and they might be only small exeptions if relatively

large training sets are used. This should be not so surprising, as it is well-known that

th error, as well as its bias variane omponents depend largely on the ardinality of the

available training set [12, 188℄.

In the same region (small values for �) the net variane is usually very small, for either one

of these reasons: 1) biased and unbiased variane are almost equal but both di�erent from

0 ; 2) biased and unbiased variane are about equal but both very near to 0 (Fig. 4.6 a,

b and f). In the �rst ase the SVM performs a sort of random guessing for the most part

of the unknown data, resulting in a very biased response, but with a ertain variability

due to the fat both in the biased and in the unbiased regions SVM trained on di�erent

training sets provide di�erent outputs, with a onsequent biased and unbiased variane.

In the seond ase the SVMs tend to answer in the same way independently of a partiular

instane of the test set: they lassify all the examples as positives or as negatives. As a

onsequene, both biased and unbiased variane are 0, and the error is equal to the bias.

For instane, if the number of the examples in the test set is equal for the positive and

the negative lass, then the bias (and the error) will be 0:5. If the number of positive

examples is n

+

and the number of negative examples is n

�

, and the SVMs lassi�y as

positive all the examples the bias and the error will be n

�

=(n

+

+ n

�

), and of ourse will

be n

+

=(n

+

+n

�

) if the SVM lassi�es all the examples as negative. Enlarging � we obtain

a wider response on the input domain: the real-valued funtion omputed by the SVM

beomes smoother (Fig. 4.9), as the "bumps" around the support vetors beome wider

and the SVM an deide also on unknown examples. At the same time the number of

support vetors dereases (Fig. 4.13 and 4.14).

Considering the variation of the ratio of the support vetors with �, in all data sets the

trend of the halved ratio of support vetors follows the error, with a sigmoid shape that

sometimes beomes an U shape for small values of C (Fig.4.13 and 4.14). This is not

surprising beause it is known that the support vetor ratio o�ers an approximation of the

generalization error of the SVMs [188℄. Moreover, on all the data sets the halved ratio of

support vetors dereases in the "stabilized" region, while in the transition region remains

high. As a onsequene the derement in the number of support vetors shows that we are

entering the "low error" region, and in priniple we an use this information to detet this
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Figure 4.14: Grey-Landsat data set. Error, bias, training error, halved fration of support

vetors, and estimated VC dimension while varying the � parameter and for some �xed

values of C: (a) C = 1, (b) C = 10, () C = 100, and C = 1000.
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region.

In order to analyze the role of the VC dimension on the generalization ability of learning

mahines, we know from Statistial learning Theory that the form of the bounds of the

generalization error E of SVMs is the following:

E(f(�; C)

k

n

)) � E

emp

(f(�; C)

k

n

)) + �(

h

k

n

) (4.1)

where f(�; C)

k

n

represents the set of funtions omputed by an RBF-SVM trained with n ex-

amples and with parameters (�

k

; C

k

) taken from a set of parameters S = f(�

i

; C

i

); i 2 Ng,

E

emp

represents the empirial error and � the on�dene interval that depends on the

ardinality n of the data set and on the VC dimension h

k

of the set of funtions identi�ed

by the atual seletion of the parameters (�

k

; C

k

). In order to obtain good generalization

apabilities we need to minimize both the empirial risk and the on�dene interval. A-

ording to Vapnik's bounds (eq. 4.1), in Fig. 4.13 and 4.14 the lowest generalization error

is obtained for a small empirial risk and a small estimated VC dimension.

But sometimes with relatively small values of V C we have a very large error, as the training

error and the number of support vetors inrease with very large values of � (Fig. 4.13 a

and 4.14 a). Moreover with a very large estimate of the VC dimension and low empirial

error (Fig. 4.13 and 4.14) we have a relatively low generalization error.

In onlusion it seems very diÆult to use in pratie these estimates of the VC dimension

to infer the generalization abilities of the SVM. In partiular it seems unreliable to use the

VC dimension to infer the "low error" region of the RBF-SVM.

4.3.2 Polynomial and dot-produt kernels

In this setion we analyze the harateristis of bias{variane deomposition of the error

in polynomial SVMs, varying the degree of the kernel and the regularization parameter C.

Error shows a U shape with respet to the degree. This shape depends on unbiased variane

(Fig. 4.15 a and b), or both by bias and unbiased variane (Fig. 4.15  and d). The U

shape of the error with respet to the degree tends to be more at for inreasing values of

C, and net-variane and bias show often opposite trends (Fig. 4.16).

Average error and bias are higher for low C and degree values, but inrementing the degree

the error is less sensitive to C values (Fig. 4.17). Bias is at (Fig. 4.18 a) or dereasing

with respet to the degree (Fig. 4.16 b), or it an be onstant or dereasing, depending on

C (Fig. 4.18 b). Unbiased variane shows an U shape (Fig. 4.15 a and b) or it inreases

(Fig. 4.15 ) with respet to the degree, and the net{variane follows the shape of the

unbiased variane. Note that in the P2 data set (Fig. 4.16) bias and net{variane follow
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Figure 4.15: Bias-variane deomposition of error in bias, net variane, unbiased and biased

variane in polynomial SVM, while varying the degree and for some �xed values of C: (a)

Waveform, C = 0:1, (b) Waveform, C = 50, () Letter-Two, C = 0:1, (d) Letter-Two,

C = 50.
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Figure 4.16: P2 data set. Error (a) and its deomposition in bias (b) and net variane (),

varying both C and the polynomial degree.

the lassial opposite trends with respet to the degree. This is not the ase with other

data sets (see, e.g. Fig. 4.15).

For large values of C bias and net{variane tend to onverge, as a result of the bias

redution and net{variane inrement (Fig. 4.19), or beause both stabilize at similar

values (Fig. 4.17).

In dot{produt SVMs bias and net{variane show opposite trends: bias dereases, while

net{variane and unbiased variane tend to inrease with C (Fig. 4.20). On the data set

P2 this trend is not observed, as in this task the bias is very high and the SVM does not

perform better than random guessing (Fig. 4.20a). The minimum of the average loss for

relatively low values of C is the result of the derement of the bias and the inrement of the
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Figure 4.17: Letter-Two data set. Bias-variane deomposition of error in bias, net vari-

ane, unbiased and biased variane in polynomial SVM, while varying C and for some

polynomial degrees: (a) degree = 2, (b) degree = 3, () degree = 5, (d) degree = 10
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Figure 4.18: Bias in polynomial SVMs with (a) Waveform and (b) Spam data sets, varying

both C and polynomial degree.
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Figure 4.19: Bias-variane deomposition of error in bias, net variane, unbiased and biased

variane in polynomial SVM, varying C: (a) P2 data set with degree = 6, (b) Spam data

set with degree = 3.
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net{variane: it is ahieved usually before the rossover of bias and net{variane urves

and before the stabilization of the bias and the net{variane for large values of C. The

biased variane remains small independently of C.

4.3.3 Comparing kernels

In this setion we ompare the bias{variane deomposition of the error with respet to the

C parameter, onsidering gaussian, polynomial and dot{produt kernels. For eah kernel

and for eah data set the best results are seleted. Tab. 4.2 shows the best results ahieved

by the SVM, onsidering eah kernel and eah data set used in the experiments. Interest-

ingly enough in 3 data sets there are not signi�ant di�erenes in the error (Waveform,

Letter-Two with added noise and Spam), but there are di�erenes in bias, net{variane,

unbiased or biased variane. In the other data sets gaussian kernels outperform polynomial

and dot{produt kernels, as bias, net{variane or both are lower. Considering bias and

net{variane, in some ases they are lower for polynomial or dot{produt kernel, showing

that di�erent kernels learn in di�erent ways with di�erent data.

Considering the data set P2 (Fig. 4.21 a, , e), RBF-SVM ahieves the best results, as

a onsequene of a lower bias. Unbiased variane is omparable between polynomial and

gaussian kernel, while net{variane is lower, as biased variane is higher for polynomial-

SVM. In this task the bias of dot{produt SVM is very high. Also in the data set Musk

(Fig. 4.21 b, d, f) RBF-SVM obtains the best results, but in this ase unbiased variane

is responsible for this fat, while bias is similar. With the other data sets the bias is

similar between RBF-SVM and polynomial-SVM, but for dot{produt SVM often the bias

is higher (Fig. 4.22 b, d, f).

Interestingly enough RBF-SVM seems to be more sensible to the C value with respet

to both polynomial and dot{produt SVM: for C < 0:1 in some data sets the bias is

muh higher (Fig. 4.22 a, , e). With respet to C bias and unbiased variane show

sometimes opposite trends, independently of the kernel: bias dereases, while unbiased

variane inreases, but this does not our in some data sets. We outline also that the

shape of the error, bias and variane urves is similar between di�erent kernels in all the

onsidered data sets: that is, well-tuned SVM having di�erent kernels tend to show similar

trends of the bias and variane urves with respet to the C parameter.
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Figure 4.20: Bias-variane deomposition of error in bias, net variane, unbiased and biased

variane in dot-produt SVM, varying C: (a) P2, (b) Grey-Landsat, () Letter-Two, (d)

Letter-Two with added noise, (e) Spam, (f) Musk.
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Figure 4.21: Bias-variane deomposition of error in bias, net variane, unbiased and

biased variane with respet to C, onsidering di�erent kernels. (a) P2, gaussian; (b)

Musk, gaussian () P2, polynomial; (d) Musk, polynomial; (e) P2, dot{produt; (f) Musk,

dot{produt.
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Figure 4.22: Bias-variane deomposition of error in bias, net variane, unbiased and bi-

ased variane with respet to C, onsidering di�erent kernels. (a) Waveform, gaussian; (b)

Letter-Two, gaussian () Waveform, polynomial; (d) Letter-Two, polynomial; (e) Wave-

form, dot{produt; (f) Letter-Two, dot{produt.
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Table 4.2: Compared best results with di�erent kernels and data sets. RBF-SVM stands

for SVM with gaussian kernel; Poly-SVM for SVM with polynomial kernel and D-prod

SVM for SVM with dot-produt kernel. Var unb. and Var. bias. stand for unbiased and

biased variane.

Parameters Avg. Bias Var. Var. Net

Error unb. bias. Var.

Data set P2

RBF-SVM C = 20; � = 2 0.1516 0.0500 0.1221 0.0205 0.1016

Poly-SVM C = 10; degree = 5 0.2108 0.1309 0.1261 0.0461 0.0799

D-prod SVM C = 500 0.4711 0.4504 0.1317 0.1109 0.0207

Data set Waveform

RBF-SVM C = 1; � = 50 0.0706 0.0508 0.0356 0.0157 0.0198

Poly-SVM C = 1; degree = 1 0.0760 0.0509 0.0417 0.0165 0.0251

D-prod SVM C = 0:1 0.0746 0.0512 0.0397 0.0163 0.0234

Data set Grey-Landsat

RBF-SVM C = 2; � = 20 0.0382 0.0315 0.0137 0.0069 0.0068

Poly-SVM C = 0:1; degree = 5 0.0402 0.0355 0.0116 0.0069 0.0047

D-prod SVM C = 0:1 0.0450 0.0415 0.0113 0.0078 0.0035

Data set Letter-Two

RBF-SVM C = 5; � = 20 0.0743 0.0359 0.0483 0.0098 0.0384

Poly-SVM C = 2; degree = 2 0.0745 0.0391 0.0465 0.0111 0.0353

D-prod SVM C = 0:1 0.0908 0.0767 0.0347 0.0205 0.0142

Data set Letter-Two with added noise

RBF-SVM C = 10; � = 100 0.3362 0.2799 0.0988 0.0425 0.0563

Poly-SVM C = 1; degree = 2 0.3432 0.2799 0.1094 0.0461 0.0633

D-prod SVM C = 0:1 0.3410 0.3109 0.0828 0.0527 0.0301

Data set Spam

RBF-SVM C = 5; � = 100 0.1263 0.0987 0.0488 0.0213 0.0275

Poly-SVM C = 2; degree = 2 0.1292 0.0969 0.0510 0.0188 0.0323

D-prod SVM C = 0:1 0.1306 0.0965 0.0547 0.0205 0.0341

Data set Musk

RBF-SVM C = 2; � = 100 0.0884 0.0800 0.0217 0.0133 0.0084

Poly-SVM C = 2; degree = 2 0.1163 0.0785 0.0553 0.0175 0.0378

D-prod SVM C = 0:01 0.1229 0.1118 0.0264 0.0154 0.0110

4.4 Charaterization of Bias{Variane Deomposition

of the Error

Despite the di�erenes observed in di�erent data sets, ommon trends of bias and variane

an be individuated for eah of the kernels onsidered in this study. Eah kernel presents
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a spei� haraterization of bias and variane with respet to its spei� parameters, as

explained in the following setions.

4.4.1 Gaussian kernels

Error, bias, net{variane, unbiased and biased variane show a ommon trend in the 7 data

sets we used in the experiments. Some di�erenes, of ourse, arise in the di�erent data

sets, but we an distinguish three di�erent regions in the error analysis of RBF-SVM, with

respet to inreasing values of � (Fig. 4.23):

1. High bias region. For low values of �, error is high: it depends on a high bias.

Net{variane is about 0 as biased and unbiased variane are equivalent. In this region

there are no remarkable utuations of bias and variane: both remain onstant, with

high values of bias and omparable values of unbiased and biased variane, leading to

net{variane values near to 0. In some ases biased and unbiased variane are about

equal, but di�erent from 0, in other ases they are equal, but near to 0.

2. Transition region. Suddenly, for a ritial value of �, the bias dereases rapidly.

This ritial value depends also on C: for very low values of C, we have no learning,

then for higher values the bias drops. Higher values of C ause the ritial value of �

to derease (Fig. 4.5 (b) and 4.6). In this region the inrease in net{variane is less

than the derease in bias: so the average error dereases. The boundary of this region

an be determined at the point where the error stops derementing. This region is

haraterized also by a partiular trend of the net{variane. We an distinguish two

main behaviours:

(a) Wave-shaped net{variane. Net{variane �rst inreases and then dereases,

produing a wave-shaped urve with respet to �. The initial inrement of

the net{variane is due to the simultaneous inrement of the unbiased variane

and derement of the biased variane. In the seond part of the transition

region, biased variane stabilizes and unbiased variane dereases, produing a

parallel derement of the net{variane. The rapid derement of the error with

� is due to the rapid derement of the bias, after whih the bias stabilizes and

the further derement of the error with � is determined by the net{variane

redution (Fig. 4.5, 4.6).

(b) Semi-wave-shaped net{variane. In other ases the net{variane urve with

� is not so learly wave-shaped: the desending part is very redued (Fig. 4.6

e, f). In partiular in the musk data set we have a ontinuous inrement of the

net{variane (due to the ontinuous growing of the unbiased variane with �),

and no wave-shaped urve is observed (at least for C > 10, Fig. 4.12 d).
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In both ases the inrement of the net{variane is slower than the inrement in bias:

so the average error dereases.

3. Stabilized region. This region is haraterized by small or no variations in bias

and net{variane. For high values of � both bias and net{variane stabilize and the

average error is onstant (Fig. 4.5, 4.6). In other data sets the error inreases

with �, beause of the inrement of the bias (Fig. 4.12 a,b) or the unbiased variane

(Fig. 4.12 ,d).
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Figure 4.23: The 3 regions of error in RBF-SVM with respet to �.

In the �rst region, bias rules SVM behavior: in most ases the bias is onstant and lose to

0:5, showing that we have a sort of random guessing, without e�etive learning. It appears

that the area of inuene of eah support vetor is too small (Fig. 4.8), and the learning

mahine over�ts the data. This is on�rmed by the fat that in this region the training

error is about 0 and almost all the training examples are support vetors.

In the transition region, the SVM starts to learn, adapting itself to the data harateristis.

Bias rapidly goes down (at the expenses of a growing net{variane), but for higher values

of � (in the seond part of the transition region), sometimes net{variane also goes down,

working to lower the error(Fig. 4.6).
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Figure 4.24: Behaviour of polynomial SVM with respet of the bias{variane deomposition

of the error.

Even if the third region is haraterized by no variations in bias and variane, sometimes

for low values of C, the error inreases with � (Fig. 4.11 a, 4.13 a), as a result of the bias

inrement; on the whole RBF-SVMs are sensitive to low values of C: if C is too low, then

bias an grow quikly. High values of C lower the bias (Fig. 4.13 , d).

4.4.2 Polynomial and dot-produt kernels

For polynomial and dot{produt SVMs, we have also haraterized the behavior of SVMs

in terms of average error, bias, net{variane, unbiased and biased variane, even if we

annot distinguish between di�erent regions learly de�ned.

However, ommon trends of the error urves with respet to the polynomial degree, on-

sidering bias, net{variane and unbiased and biased variane an be notied.

The average loss urve shows in general a U shape with respet to the polynomial degree,

and this shape may depend on both bias and unbiased variane or in some ases mostly on

the unbiased variane aording to the harateristis of the data set. From these general

observations we an shematially distinguish two main global pitures of the behaviour of

polynomial SVM with respet to the bias{variane deomposition of the error:
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1. Error urve shape bias{variane dependent.

In this ase the shape of the error urve is dependent both on the unbiased variane

and the bias. The trend of bias and net{variane an be symmetri or they an also

have non oinident paraboloid shape, depending on C parameter values (Fig. 4.15 ,

d and 4.16). Note that bias and net variane show often opposite trends (Fig. 4.16).

2. Error urve shape unbiased variane dependent.

In this ase the shape of the error urve is mainly dependent on the unbiased variane.

The bias (and the biased variane) tend to be degree independent, espeially for high

values of C (Fig. 4.15 a, b) .

Fig. 4.24 shematially summarizes the main harateristis of the bias{variane deom-

position of error in polynomial SVM. Note however that the error urve depends for the

most part on both variane and bias: the prevalene of the unbiased variane (Fig. 4.15 a,

b) or the bias seems to depend mostly on the distribution of the data. The inrement of

Minimum of the error
due to large decrement of bias

Opposite trends of
bias and net-var.

Low biased var. independent of C

Stabilized region

0

0.05

0.1

0.15

0.2
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0.01 0.1 1 2 5 10 20 50 100 200 500 1000
C

avg. error
bias

net variance
unbiased var.

biased var

Figure 4.25: Behaviour of the dot{produt SVM with respet of the bias{variane deom-

position of the error.

the values of C tends to atten the U shape of the error urve: in partiular for large C

values bias beomes independent with respet to the degree (Fig. 4.18). Moreover the C

parameter plays also a regularization role (Fig. 4.19)
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Dot{produt SVM are haraterized by opposite trends of bias and net{variane: bias

derements, while net{variane grows with respet to C; then, for higher values of C both

stabilize. The ombined e�et of these symmetri urves produes a minimum of the

error for low values of C, as the initial derement of bias with C is larger than the initial

inrement of net{variane. Then the error slightly inreases and stabilizes with C (Fig.

4.20). The shape of the net{variane urve is determined mainly by the unbiased variane:

it inreases and then stabilizes with respet to C. On the other hand the biased variane

urve is at, remaining small for all values of C. A shemati piture of this behaviour is

given in Fig. 4.25.
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Chapter 5

Bias{variane analysis in random

aggregated and bagged ensembles of

SVMs

Methods based on resampling tehniques, and in partiular on bootstrap aggregating (bag-

ging) of sets of base learners trained on repeated bootstrap samples drawn from a given

learning set, have been introdued in the nineties by Breiman [15, 16, 17℄.

The e�etiveness of this approah, that have been shown to improve the auray of a

single preditor [15, 63, 128, 44℄, is to be found in its property of reduing the variane

omponent of the error.

Bagging an be seen as an approximation of random aggregating, that is a proess by

whih base learners, trained on samples drawn aordingly to an unknown probability

distribution from the entire universe population, are aggregated through majority voting

(lassi�ation) or averaging between them (regression).

Breiman showed that in regression problem, aggregation of preditors always improve the

performane of single preditors, while in lassi�ation problems this is not always the

ase, if poor base preditors are used [15℄.

The improvement depends on the stability of the base learner: random aggregating and

bagging are e�etive with unstable learning algorithms, that is when small hanges in the

training set an result in large hanges in the preditions of the base learners.

Random aggregating always redue variane in regression and in lassi�ation with reason-

ably good base lassi�ers, while bias remains substantially unhanged. With bagging we

an have a variane redution but bias an also slightly inreases, as the average sample

size used by eah base learner is only about 2=3 of the training set from whih the samples
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are bootstrapped.

In general bagging unstable base learners is a good idea. As bagging is substantially a

variane redution method, we ould also selet low bias base learner in order to redue

both the bias and variane omponents of the error.

Random aggregating is only a theoretial ensemble method, as we need the entire universe

of data from whih random samples are drawn aording to an usually unknown probability

distribution. But with very large data sets, using a uniform probability distribution and

undersampling tehniques, we an simulate random aggregating (with the assumptions

that the very large available data set and the uniform probability distribution are good

approximations respetively of the "universe" population and the unknown probability

distribution).

In the next setions we disuss some theoretial issues about the relationships between

random aggregating and bagging. Then we verify the theoretial results of the expeted

variane redution in bagging and random aggregating performing an extended experimen-

tal bias{variane deomposition of the error in bagged and random aggregated ensembles

of SVMs. Finally, we onsider an approximation of random aggregated ensembles for very

large sale data mining problems.

5.1 Random aggregating and bagging

Let D be a set of m points drawn identially and independently from U aording to P ,

where U is a population of labeled training data points (x

j

; t

j

), and P (x; t) is the joint

distribution of the data points in U , with x 2 R

d

.

Let L be a learning algorithm, and de�ne f

D

= L(D) as the preditor produed by L

applied to a training set D. The model produes a predition f

D

(x) = y. Suppose that a

sequene of learning sets fD

k

g is given, eah i.i.d. from the same underlying distribution P .

Aording to [15℄ we an aggregate the f

D

trained with di�erent samples drawn from U to

get a better preditor f

A

(x; P ). For regression problems t

j

2 R and f

A

(x; P ) = E

D

[f

D

(x)℄,

where E

D

[�℄ indiates the expeted value with respet to the distribution of D, while in

lassi�ation problems t

j

2 S � N and f

A

(x; P ) = argmax

j

jfkjf

D

k

(x) = jgj.

As the training sets D are randomly drawn from U , we name the proedure to build f

A

random aggregating. In order to simplify the notation, we denote f

A

(x; P ) as f

A

(x).
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5.1.1 Random aggregating in regression

If T and X are random variables having joint distribution P the expeted squared loss EL

for the single preditor f

D

(X) is:

EL = E

D

[E

T;X

[(T � f

D

(X))

2

℄℄ (5.1)

while the expeted squared loss EL

A

for the aggregated preditor is:

EL

A

= E

T;X

[(T � f

A

(X))

2

℄ (5.2)

Developing the square in eq. 5.1 we have:

EL = E

D

[E

T;X

[T

2

+ f

2

D

(X)� 2Tf

D

(X)℄℄

= E

T

[T

2

℄ + E

D

[E

X

[f

2

D

(X)℄℄� 2E

T

[T ℄E

D

[E

X

[f

D

(X)℄℄

= E

T

[T

2

℄ + E

X

[E

D

[f

2

D

(X)℄℄� 2E

T

[T ℄E

X

[f

A

(X)℄ (5.3)

In a similar way, developing the square in eq. 5.2 we have:

EL

A

= E

T;X

[T

2

+ f

2

A

(X)� 2Tf

A

(X)℄

= E

T

[T

2

℄ + E

X

[f

2

A

(X)℄� 2E

T

[T ℄E

X

[f

A

(X)℄

= E

T

[T

2

℄ + E

X

[E

D

[f

D

(X)℄

2

℄� 2E

T

[T ℄E

X

[f

A

(X)℄ (5.4)

Let be Z = E

D

[f

D

(X)℄. Using E[Z

2

℄ � E[Z℄

2

, onsidering eq. 5.3 and 5.4 we have that

E

D

[f

2

D

(X)℄ � E

D

[f

D

(X)℄

2

and hene EL � EL

A

.

The redution of the error in random aggregated ensembles depends on how muh di�er the

two terms E

X

[E

D

[f

2

D

(X)℄℄ and E

X

[E

D

[f

D

(X)℄

2

℄ of eq. 5.3 and 5.4. As outlined by Breiman,

the e�et of instability is lear: if f

D

(X) does not hange too muh with repliate data sets

D, the two terms will be nearly equal and aggregation will not help. The more variable

the f

D

(X) are, the more improvement aggregation may produe.

In other words the redution of the error depends on the instability of the predition, that

is on how unequal the two sides of eq. 5.5 are:

E

D

[f

D

(X)℄

2

� E

D

[f

2

D

(X)℄ (5.5)

There is a strit relationship between the instability and the variane of the base preditor.

Indeed the variane V (X) of the base preditor is:

V (X) = E

D

[(f

D

(X)� E

D

[f

D

(X)℄)

2

℄

= E

D

[f

2

D

(X) + E

D

[f

D

(X)℄

2

� 2f

D

(X)E

D

[f

D

(X)℄℄

= E

D

[f

2

D

(X)℄� E

D

[f

D

(X)℄

2

(5.6)
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Comparing eq.5.5 and 5.6 we see that higher the instability of the base lassi�ers, higher

their variane is. The redution of the error in random aggregation is due to the redution

of the variane omponent (eq. 5.6) of the error, as V (X) will be small if and only if

E

D

[f

2

D

(X)℄ > E

D

[f

D

(X)℄

2

, that is if and only if the base preditor is unstable (eq. 5.5).

5.1.2 Random aggregating in lassi�ation

With random aggregation of base lassi�ers, the same behaviour regarding stability holds,

but in this ase a more omplex situation arises.

Indeed let be f

D

(X) a base lassi�er that predits a lass label t 2 C; C = f1; : : : ; Cg, and

let be X a random variable as in previous regression ase and T a random variable with

values in C.

Then the probability p(D) of orret lassi�ation for a �xed data set D, onsidering a non

deterministi assignment for the labels of the lass, is:

p(D) = P (f

D

(X) = T ) =

C

X

j=1

P (f

D

(X) = jjT = j)P (T = j) (5.7)

In order to make independent the probability p of orret lassi�ation from the hoie of

a spei� learning set we average over D:

p =

C

X

j=1

E

D

[P (f

D

(X) = jjT = j)℄P (T = j)

=

C

X

j=1

Z

P (f

D

(X) = jjX = x; T = j)P (T = jjX = x)P

X

(dx) (5.8)

Realling that f

A

(X) = argmax

i

P

D

(f

D

(x) = i), the probability p

A

of orret lassi�ation

for random aggregation is:

p

A

=

C

X

j=1

P (f

A

(X) = jjT = j)P (T = j)

=

C

X

j=1

Z

P (f

A

(X) = jjT = j)P (T = jjX = x)P

X

(dx)

=

C

X

j=1

Z

P (argmax

i

[P

D

(f

D

(X) = i)℄ = jjT = j)P (T = jjX = x)P

X

(dx)
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=

C

X

j=1

Z

I(argmax

i

[P

D

(f

D

(X) = i℄ = j)P (T = jjX = x)P

X

(dx) (5.9)

where I is the indiator funtion.

The optimal predition for a pattern x is the Bayesian predition:

B

�

(x) = argmax

j

P (T = jjX = x) (5.10)

We split now the patterns in a set O orresponding to the optimal preditions performed

by the aggregated lassi�er and in a set O

0

orresponding to non-optimal preditions. The

set O of the optimally lassi�ed patterns is:

O = fxj argmax

j

P (T = jjX = x) = argmax

j

P

D

(f

D

(x) = j)g

Aording to the proposed partition of the data we an split the probability p

A

of orret

lassi�ation for random aggregation in two terms:

p

A

=

Z

x2O

max

j

P (T = jjX = x)P

X

(dx) +

Z

x2O

0

C

X

j=1

I(f

A

(x) = j)P (T = jjX = x)P

X

(dx)

(5.11)

If x 2 O we have:

argmax

j

P (T = jjX = x) = argmax

j

P

D

(f

D

(x) = j) (5.12)

In this ase, onsidering eq. 5.8 and 5.9:

C

X

j=1

P (f

D

(X) = jjT = j)P (T = jjX = x) � argmax

j

P

D

(f

D

(x) = j)

and hene p

A

(X) � p(X). On the ontrary, if x 2 O

0

eq. 5.12 does not hold, and it may

our that:

C

X

j=1

I(f

A

(x) = j)P (T = jjX = x) <

C

X

j=1

P (f

D

(X) = jjT = j)P (T = jjX = x)

As a onsequene if the set O of the optimally predited patterns is large, that is, if we

have relatively good preditors, aggregation improves performanes. On the ontrary, if

the set O

0

is large, that is if we have poor preditors, aggregation an worsen performanes.

Summarizing, unlike regression, aggregating poor preditors an lower performanes, whereas,

as in regression, aggregating relatively good preditors an lead to better performanes, as

long as the base preditor is unstable [15℄.
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5.1.3 Bagging

In most ases we dispose only of data sets of limited size, and moreover we do not know

the probability distribution underlying the data. In these ase we ould try to simulate

random aggregation by bootstrap repliates of the data [56℄ and suessively aggregating

the preditors trained on the bootstrapped data.

The bootstrap aggregating method (bagging) [15℄ an be applied both to regression and

lassi�ation problems: the only di�erene is in the aggregation phase.

Consider, for instane, a lassi�ation problem. Let C be the set of lass labels. Let

fD

j

g

n

j=1

be the set of n bootstrapped samples drawn with replaement from the learning

set D aording to an uniform probability distribution. Let f

D

j

= L(D

j

) be the deision

funtion of the lassi�er trained by a learning algorithm L using the bootstrapped sample

D

j

.

Then the lassial deision funtion f

B

(x) applied for aggregating the base learners in

bagging is [15℄:

f

B

(x) = argmax

2C

n

X

j=1

I(f

D

j

(x) = ) (5.13)

where I(z) = 1 if the boolean expression z is true, otherwise I(z) = 0. In words, the

bagged ensemble selets the most voted lass.

In regression the aggregation is performed averaging between the real values omputed by

the real funtion valued base learners g

D

j

: R

d

! R:

f

B

(x) =

1

n

n

X

j=1

g

D

j

(x) (5.14)

Fig. 5.1 show the pseudo-ode for bagging.

The learning algorithm L generates an hypothesis h

t

: X ! Y using a sample D

t

boot-

strapped from D, and h

fin

is the �nal hypothesis omputed by the bagged ensemble,

aggregating the base learners through majority voting (Fig. 5.1).

Bagging shows the same limits of random aggregating: only if the base learners are unstable

we an ahieve redution of the error with respet to the single base learners. Of ourse if

the base learner is near to the Bayes error we annot expet improvements by bagging.

Moreover bagging is an approximation of random aggregating, for at least two reasons.
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Algorithm Bagging

Input arguments:

- Data set D = fz

i

= (x

i

; y

i

)g

n

i=1

, x

i

2 X � R

d

; y

i

2 Y = f1; : : : ; kg

- A learning algorithm L

- Number of iterations (base learners) T

Output:

- Final hypothesis h

fin

: X ! Y omputed by the ensemble.

begin

for t = 1 to T

begin

D

t

= Bootstrap repliate(D)

h

t

= L(D

t

)

end

h

fin

(x) = argmax

y2Y

P

T

t=1

jjh

t

(x) = yjj

end.

Figure 5.1: Bagging for lassi�ation problems.

First, bootstrap samples are not real data samples: they are drawn from a data set D that

is in turn a sample from the population U . On the ontrary f

A

uses samples drawn diretly

from U .

Seond, bootstrap samples are drawn from D through an uniform probability distribution

that is only an approximation of the unknown true distribution P .

For these reasons we an only hope that this is a good enough approximation to f

A

that

onsiderable variane redution (eq. 5.2) will result [17℄.

Moreover with bagging eah base learner, on the average, uses only 63:2% of the available

data for training and so we an expet for eah base learner a larger bias, as the e�etive

size of the learning set is redued. This an also a�et the bias of the bagged ensemble that

ritially depends on the bias of the omponent base learners: we ould expet sometimes

a slight inrement of the bias of the bagged ensemble with respet to the unaggregated

preditor trained on the entire available training set.

Bagging is a variane redution method, but we annot expet so large derements of

variane as in random aggregating. The intuitive reason onsists in the fat that in random

aggregating the base learners use more variable training sets drawn from U aording to

the distribution P . In this way random aggregating exploits more information from the

population U , while bagging an exploit only the information from a single data set D

drawn from U , through bootstrap repliates of the data from D.
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5.2 Bias{variane analysis in bagged SVM ensembles

In this setion we deal with the problem of understanding the e�et of bagging on bias

and variane omponents of the error in SVMs. Our aim onsists in getting insights into

the way bagged ensembles learn, in order to haraterize learning in terms of bias{variane

omponents of the error.

In partiular we try to verify the theoretial property of the expeted variane redution

in bagging, through an extended experimental bias{variane deomposition of the error in

bagged SVM ensembles.

The plan of the experiments, whose results are summarized in the next setions, is the

following. We performed experiments with gaussian, polynomial and dot-produt kernels.

At �rst, for eah kernel, we evaluated the expeted error and its deomposition in bias, net-

variane, unbiased and biased variane with respet to the learning parameters of the base

learners. Then we analyzed the bias{variane deomposition as a funtion of the number

of the base learners employed. Finally we ompared bias and variane with respet to the

learning parameters in bagged SVM ensembles and in the orresponding single SVMs, in

order to study the e�et of bootstrap aggregation on the bias and variane omponents of

the error.

The next setions reported only some examples and a summary of the results of bias{

variane analysis in bagged SVM ensembles. Full data, results and graphis of the experi-

mentation on bias{variane analysis in bagged ensembles of SVMs are reported in [180℄.

5.2.1 Experimental setup

To estimate the deomposition of the error in bias, net-variane, unbiased and biased

variane with bagged ensembles of SVMs, we performed a bias-variane deomposition of

the error on the data sets desribed in Chap. 4. At �rst we split the data in a separated

learning set D and testing set T . Then we drew with replaement from D n samples S

i

of size s, aording to a uniform probability distribution. From eah D

i

; 1 � i � n we

generated by bootstrap m repliates D

ij

, olleting them in n di�erent sets

�

D

i

= fD

ij

g

m

j=1

.

We used the n sets

�

D

i

to train n bagged ensembles, eah omposed by m SVMs, eah

one trained with di�erent bootstrapped data, repeating this proess for all the onsidered

SVM models. In order to properly ompare the e�et of di�erent hoies of the learning

parameters on bias{variane deomposition of the error, eah SVM model is represented

by a di�erent hoie of the kernel type and parameters and is trained with the same sets

�

D

i

; 1 � i � n of bootstrapped samples.

For eah SVM model, bias{variane deomposition of the error is evaluated on a separated
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test set T , signi�antly larger than the training sets, using the bagged ensembles trained

on the n sets

�

D

i

.

The experimental proedure we adopted to generate the data and to manage bias{variane

analysis are summarized in Fig. 5.2 and 5.3. For more detailed information on how to

ompute bias{variane deomposition of the error see Chap. 3.2.

Proedure Generate samples

Input arguments:

- Data set S

- Number of samples n

- Size of samples s

- Number of bootstrap repliate m

Output:

- Sets

�

D

i

= fD

ij

g

m

j=1

; 1 � i � n of bootstrapped samples

begin proedure

[D; T ℄ = Split(S)

for i = 1 to n

begin

D

i

= Draw with replaement(D; s)

�

D

i

= ;

for j = 1 to m

begin

D

ij

= Bootstrap repliate(D

i

)

�

D

i

=

�

D

i

+D

ij

end

end

end proedure.

Figure 5.2: Proedure to generate samples to be used for bias{variane analysis in bagging

The proedure Generate samples (Fig. 5.2) generates sets

�

D

i

of bootstrapped samples,

drawing at �rst a sample D

i

from the training set D aording to an uniform probability

distribution (proedure Draw with replaement) and then drawing from D

i

m bootstrap

repliates (proedure Bootstrap repliate). Note that

�

D

i

is a set of sets, and the plus

sign in Fig. 5.2 indiates that the entire set D

ij

is added as a new element of the set of

sets

�

D

i

.
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Proedure Bias{Variane analysis

Input arguments:

- Test set T

- Number of bagged ensembles n

- Number of bootstrap repliate m

- Set of learning parameters A

Output:

- Error, bias, net-variane, unbiased and biased variane BV = fbv(�)g

�2A

of the bagged ensemble having base learners with learning parameters � 2 A.

begin proedure

For eah � 2 A

begin

Ensemble Set(�) = ;

for i = 1 to n

begin

bag(�;

�

D

i

) = Ensemble train (�;

�

D

i

)

Ensemble Set(�) = Ensemble Set(�) [ bag(�;

�

D

i

)

end

bv(�) = Perform BV analysis(Ensemble Set (�), T )

BV = BV [ bv(�)

end

end proedure.

Figure 5.3: Proedure to perform bias{variane analysis on bagged SVM ensembles

The proedure Bias-Variane analysis (Fig. 5.3) trains di�erent ensembles of bagged

SVMs (proedure Ensemble train) using the same sets of bootstrap samples generated

through the proedure Generate samples. Then bias{variane deomposition of the er-

ror is performed on the separated test set T using the previously trained bagged SVM

ensembles (proedure Perform BV analysis).

In our experiments we employed gaussian, polynomial and dot-produt kernels evaluating

110 di�erent SVM models, onsidering di�erent ombinations of the type of the kernel and

learning parameters for eah data set. For eah model we set s = 100; n = 100; m = 60,

training for eah data set 110�100 = 11000 bagged ensembles and a total of 110�100�60 =

660000 di�erent SVMs. Considering all the data sets we trained and tested about 80000

di�erent bagged SVM ensembles and a total of about 5 millions of single SVMs.
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5.2.2 Bagged RBF-SVM ensembles

In this setion are reported the results of bias{variane analysis in bagged SVMs, using

base learners with gaussian kernels.

5.2.2.1 Bias{variane deomposition of the error

The deomposition of the error is represented with respet to di�erent values of � and

for �xed values of C. The error follows and "U" (Fig. 5.4 a and b) or a "sigmoid" trend

(Fig. 5.4  and d). This trend is visible also in other data sets (data not shown). In the P2

data set we an observe opposite trends of bias and net-variane varying the � parameter,

while in Letter-Two for large values of � both bias and net-variane remain onstant. The

net{variane, for small � values is about 0, as unbiased and biased variane are about

equal, then rapidly inreases, as at the same time unbiased variane inreases and biased

variane dereases. Anyway, when net{variane inreases the error goes down as the bias

dereases more quikly. Then, for slightly larger values of � the error diminishes, mainly

for the redution of the net-variane. For large values of � (espeially if C also is relatively

large) both bias and net-variane stabilizes at low level and the error tends to be low, but

in another data sets (e.g. P2) the bias inreases induing a larger error rate.

5.2.2.2 Deomposition with respet to the number of base learners

Considering the bias{variane deomposition of the error with respet to the number of

base learners, we an observe that the error redution arises in the �rst 10 iterations,

espeially for the redution of the unbiased variane. The bias and the biased variane

remain substantially unhanged for all the iterations (Fig. 5.5)

5.2.2.3 Comparison of bias{variane deomposition in single and bagged RBF-

SVMs

Here are reported the graphis omparing bias{variane deomposition in single SVMs and

bagged ensembles of SVMs. In all graphis of this setion the data referred to single SVMs

are labeled with rosses, while bagged SVMs are labeled with triangles. The orresponding

quantities (e.g. bias, net-variane, et.) are represented with the same type of line both in

single and bagged SVMs.

We analyze the relationships between bias-variane deomposition of the error in single

and bagged RBF-SVMs for eah di�erent region that haraterizes the bias-variane de-

omposition itself. In bagged SVM ensembles are also visible the three di�erent regions
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Figure 5.4: Bias-variane deomposition of error in bias, net variane, unbiased and biased

variane in bagged RBF-SVMs, while varying � and for some �xed values of C. P2 data

set: (a) C = 1, (b) C = 100. Letter-Two data set: () C = 1, (d) C = 100

that haraterize bias{variane deomposition in single SVMs (Set. 4.4.1).

High bias region. In this region the error of single and bagged SVMs is about equal,

and it is haraterized by a very high bias. The net-variane is lose to 0, beause biased

variane is about equal to the unbiased variane. In some ases they are both lose to 0.

In other ases they are equal but greater than 0 with slightly larger values in single that

in in bagged SVMs (Fig. 5.6).

Transition region. In this region the bias goes down very quikly both in single and

bagged SVMs. The net-variane maintains the wave-shape also in bagged SVMs, but it is

slightly lower. The error drops down at about the same rate in single and bagged SVMs

(Fig. 5.6 a and b).
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Figure 5.5: Bias-variane deomposition of error in bias, net variane, unbiased and biased

variane in bagged SVM RBF, with respet to the number of iterations. (a) Grey-Landsat

data set (b) Spam data set.

Stabilized region. For relatively large values of � the net-variane tends to stabilize

(Fig. 5.6). In this region the net-variane of the bagged SVMs is equal or less than the

net-variane of the single SVMs, while bias remains substantially unhanged in both. With

some data sets (Fig. 5.4 a and b) the bias tends to inrease with �, espeially with low

values of C. As a result, bagged SVMs show equal or lower average error with respet to

single SVMs (Fig. 5.6)

5.2.3 Bagged polynomial SVM ensembles

In this setion are reported the results of the experiments to evaluate the deomposition

of the error in bagged ensembles of polynomial SVMs.

5.2.3.1 Bias{variane deomposition of the error

The deomposition of the error is represented with respet to di�erent values of the poly-

nomial degree and for �xed values of C. Also in bagged polynomial ensembles the error

shows an "U" shape w.r.t. to the degree (Fig. 5.7), suh as in single polynomial SVM (see

Set. 4.3.2). This shape depends both on bias and net-variane. The lassial trade-o�

between bias and variane is sometimes notieable (Fig. 5.7 b), but in other ases both

bias and net-variane inrease with the degree (Fig. 5.7  and d ). As a general rule for low
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Figure 5.6: Comparison between bias-variane deomposition between single RBF-SVMs

(lines labeled with rosses) and bagged SVM RBF ensembles (lines labeled with triangles),

while varying � and for some �xed values of C. Letter-Two data set: (a) C = 1, (b)

C = 100. Waveform data set: () C = 1, (d) C = 100.

degree polynomial kernel the bias is relatively large and the net variane is low, while the

opposite ours with high degree polynomials (Fig. 5.7 a). The regularization parameter

C plays also an important role: large C values tends to derease the bias also for relatively

low degree (Fig. 5.7 d). Of ourse these results depend also on the spei� harateristis

of the data sets.
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Figure 5.7: Bias-variane deomposition of error in bias, net variane, unbiased and biased

variane in bagged polynomial SVM, while varying the degree and for some �xed values of

C. P2 data set: (a) C = 0:1, (b) C = 100. Letter-Two data set: () C = 0:1, (d) C = 100

5.2.3.2 Deomposition with respet to the number of base learners

This setion reports data and graphs about the deomposition of bias{variane in bagged

SVMs with respet to the number of iterations of bagging, that is the number of base

learners used. The error dereases in �rst 10 iterations, for the redution of the unbiased

variane, while bias and net-variane remain substantially unhanged (Fig. 5.8). This

behavior is similar to that shown by bagged ensembles of gaussian SVMs (Fig. 5.5).
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Figure 5.8: Bias-variane deomposition of error in bias, net variane, unbiased and biased

variane in bagged polynomial SVMs, with respet to the number of iterations. (a) P2

data set (b)Letter-Two data set.

5.2.3.3 Comparison of bias{variane deomposition in single and bagged poly-

nomial SVMs

In bagged SVMs, the trend of the error with respet to the degree shows an "U" shape

similar to that of single polynomial SVMs(Fig. 5.9). It depends both on bias and unbiased

variane. Bias and biased variane are unhanged with respet to single SVMs, while net-

variane is slightly redued (for the redution of the unbiased variane). As a result we

have a slight redution of the overall error.

5.2.4 Bagged dot-produt SVM ensembles

In this setion are reported the results of bias{variane analysis in bagged SVMs, using

base learners with dot-produt kernels.

5.2.4.1 Bias{variane deomposition of the error

The deomposition of the error is represented with respet to di�erent values of C. The

error seems to be relatively independent of C (Fig. 5.10), and no hanges are observed

both for bias and variane omponents of the error. In some data sets the bias slightly

dereases with C while unbiased variane slightly inreases.
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Figure 5.9: Comparison between bias-variane deomposition between single polynomial

SVMs (lines labeled with rosses) and bagged polynomial SVM ensembles (lines labeled

with triangles), while varying the degree and for some �xed values of C. P2 data set: (a)

C = 1, (b) C = 100. Grey-Landsat data set: () C = 1, (d) C = 100.

5.2.4.2 Deomposition with respet to the number of base learners

Considering the bias{variane deomposition of the error with respet to the number of

base learners, we an observe that the error redution arises in the �rst 10-20 iterations,

espeially for the redution of the unbiased variane. The bias and the biased variane

remain substantially unhanged for all the iterations (Fig. 5.11)
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Figure 5.10: Bias-variane deomposition of error in bias, net variane, unbiased and biased

variane in bagged dot-produt SVM, while varying C. (a) Waveform data set (b) Grey-

Landsat () Letter-Two with noise (d) Spam

5.2.4.3 Comparison of bias{variane deomposition in single and bagged dot-

produt SVMs

Fig. 5.12 shows the omparison between bias-variane deomposition between single dot-

produt SVMs. The redution of the error in bagged ensembles is due to the redution on

the unbiased variane, while bias is unhanged or slightly inreases in bagged dot-produt

SVMs. The biased variane also remains substantially unhanged. The shape of the error

urve is quite independent of the C values, at least for C � 1.
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Figure 5.11: Bias-variane deomposition of error in bias, net variane, unbiased and biased

variane in bagged dot-produt SVMs, with respet to the number of iterations. (a) Grey-

Landsat data set (b) Letter-Two data set.

5.2.5 Bias{variane harateristis of bagged SVM ensembles

In Tab. 5.1 are summarized the ompared results of bias{variane deomposition between

single SVMs and bagged SVM ensembles. E

SVM

stands for the estimated error of single

SVMs, E

bag

for the estimated error of bagged ensembles of SVMs, % Error redution

stands for the perent error redution of the error between single and bagged ensembles,

that is:

%Error redution =

E

SVM

� E

bag

E

SVM

% Bias redution, % NetV ar redution and % UnbV ar redution orresponds respe-

tively to the perent bias, net{variane and unbiased variane redution between single and

bagged ensemble of SVMs. The negative signs means that we have a larger error in the

bagged ensemble. Note that sometimes the derement of the net{variane an be larger

than 100 %: the net{variane an be negative, when the biased variane is larger than the

unbiased variane.

As expeted, bagging does not redue the bias (on the ontrary, sometimes bias slightly

inreases). The net-variane is not eliminated but only partially redued, and its derement

ranges from 0 to about 40 % with respet to single SVMs. Its redution is due to the

unbiased variane redution, while biased variane is unhanged. As a result the error

dereases, but its derement it is not so notieable, as it ranges from 0 to about 15 % with

respet to single SVMs, depending on the kernel and the data set. The overall shape of
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Figure 5.12: Comparison between bias-variane deomposition between single dot-produt

SVMs (lines labeled with rosses) and bagged dot-produt SVM ensembles (lines labeled

with triangles), while varying the values of C. (a) Waveform (b) Grey-Landsat () Spam

(d) Musk.

the urves of the error, bias and variane are very lose to that of single SVMs.

5.3 Bias{variane analysis in random aggregated en-

sembles of SVMs

This setion investigates the e�et of random aggregation of SVMs on bias and variane

omponents of the error.
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Table 5.1: Comparison of the results between single and bagged SVMs.

E

SVM

E

bag

% Error % Bias % NetVar % UnbVar

redution redution redution redution

Data set P2

RBF-SVM 0.1517 0.1500 1.14 -2.64 3.18 2.19

Poly-SVM 0.2088 0.1985 4.95 4.85 5.08 5.91

D-prod SVM 0.4715 0.4590 2.65 1.11 34.09 15.28

Data set Waveform

RBF-SVM 0.0707 0.0662 6.30 -1.41 26.03 17.82

Poly-SVM 0.0761 0.0699 8.11 0.36 23.78 17.94

D-prod SVM 0.0886 0.0750 15.37 -0.22 37.00 28.20

Data set Grey-Landsat

RBF-SVM 0.0384 0.0378 1.74 2.94 -7.46 3.94

Poly-SVM 0.0392 0.0388 1.05 -4.76 24.80 12.06

D-prod SVM 0.0450 0.0439 2.58 16.87 -165.72 -62.21

Data set Letter-Two

RBF-SVM 0.0745 0.0736 1.20 -25.00 21.63 12.29

Poly-SVM 0.0745 0.0733 1.55 -15.79 13.92 10.41

D-prod SVM 0.0955 0.0878 8.09 2.22 27.55 23.06

Data set Letter-Two with added noise

RBF-SVM 0.3362 0.3345 0.49 1.75 -5.78 0.40

Poly-SVM 0.3432 0.3429 0.09 -0.58 3.06 0.91

D-prod SVM 0.3486 0.3444 1.21 -0.56 10.23 6.09

Data set Spam

RBF-SVM 0.1292 0.1290 0.14 -0.48 1.57 2.22

Poly-SVM 0.1323 0.1318 0.35 2.11 -5.83 -1.19

D-prod SVM 0.1495 0.1389 7.15 -3.16 19.87 16.38

Data set Musk

RBF-SVM 0.0898 0.0920 -2.36 -6.72 22.91 13.67

Poly-SVM 0.1225 0.1128 7.92 -10.49 38.17 37.26

D-prod SVM 0.1501 0.1261 15.97 -2.41 34.56 29.38

Our aim onsists in getting insights into the way random aggregated ensembles learn, in

order to haraterize learning in terms of the bias{variane omponents of the error.

In partiular, an extended experimental bias{variane deomposition of the error in random

aggregated SVM ensembles is performed in order to verify the theoretial property of

aneled variane in random aggregation.

The plan of the experiments repliates the previous one we followed for bagged SVM
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ensembles, using dot-produt, polynomial and gaussian kernels.

We evaluated for eah kernel the expeted error and its deomposition in bias, net-variane,

unbiased and biased variane with respet to the learning parameters of the base learners.

Then we analyzed the bias{variane deomposition as a funtion of the number of the base

learners employed. Finally we ompared bias and variane with respet to the learning

parameters in random aggregated SVM ensembles and in the orresponding single SVMs,

in order to study the e�et of random aggregation on the bias and variane omponents of

the error.

Here are reported only some examples and a summary of the results of bias{variane anal-

ysis in random aggregated SVM ensembles. The experiments we performed with random

aggregated ensembles of SVMs are detailed in [181℄.

5.3.1 Experimental setup

In order to estimate the deomposition of the error in bias, unbiased and biased variane

with random aggregated ensembles of SVMs, we used a bootstrap approximation of the

unknown distribution P , that is, we drew samples of relatively small size from a relatively

large training set, aording to an uniform probability distribution. From this standpoint

we approximated random aggregation by a sort of undersampled bagging, drawing data

from the universe population U represented by a omfortable large training set. The

bias-variane deomposition of the error is omputed with respet to a separate test set

signi�antly larger than the undersampled training sets.

To estimate the deomposition of the error in bias, net-variane, unbiased and biased

variane with random aggregated ensembles of SVMs, we performed a bias-variane de-

omposition of the error on the data sets desribed in Chap. 4.

We split the data in a separated learning set D and testing set T . Then we drew with

replaement from D n set of samples

�

D

i

, aording to a uniform probability distribution.

Eah set of samples

�

D

i

is omposed by m samples D

ij

drawn with replaement from D,

using an uniform probability distribution. Eah sample D

ij

is omposed by s samples. The

D

ij

samples are in turn olleted in n sets

�

D

i

= fD

ij

g

m

j=1

.

We used the n sets

�

D

i

to train n random aggregated ensembles, repeating this proess for

all the onsidered SVM models. In order to properly ompare the e�et of di�erent hoies

of the learning parameters on bias{variane deomposition of the error, eah SVM model

is represented by a di�erent hoie of the kernel type and parameters and it is trained with

the same sets

�

D

i

; 1 � i � n of samples.

Fig. 5.13 summarizes the experimental proedure we adopted to generate the data and

Fig. 5.14 the experimental proedure to evaluate bias{variane deomposition of the error.
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Proedure Generate samples

Input arguments:

- Data set S

- Number n of set of samples

- Size of samples s

- Number m of samples olleted in eah set

Output:

- Sets

�

D

i

= fD

ij

g

m

j=1

; 1 � i � n of samples

begin proedure

[D; T ℄ = Split(S)

for i = 1 to n

begin

�

D

i

= ;

for j = 1 to m

begin

D

ij

= Draw with replaement(D; s)

�

D

i

=

�

D

i

+D

ij

end

end

end proedure.

Figure 5.13: Proedure to generate samples to be used for bias{variane analysis in random

aggregation

Sets

�

D

i

of samples are drawn with replaement aording to an uniform probability dis-

tribution from the training set D by the proedure Draw with replaement. This pro-

ess is repeated n times (proedure Generate samples, Fig. 5.13). Then the proedure

Bias-Variane analysis (Fig. 5.14) trains di�erent ensembles of random aggregated

SVMs (proedure Ensemble train) using the sets of samples generated by the proe-

dure Generate samples. The bias{variane deomposition of the error is performed on

the separated test set T using the previously trained bagged SVM ensembles (proedure

Perform BV analysis).

We employed gaussian, polynomial and dot-produt kernels evaluating 110 di�erent SVM

models, onsidering di�erent ombinations of the type of the kernel and learning parameters

for eah data set. For eah model we set s = 100; n = 100; m = 60, training for eah data

set 110�100 = 11000 random aggregated ensembles and a total of 110�100�60 = 660000
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Proedure Bias{Variane analysis

Input arguments:

- Test set T

- Number of random aggregated ensembles n

- Number of bootstrap repliate m

- Set of learning parameters A

Output:

- Error, bias, net-variane, unbiased and biased variane BV = fbv(�)g

�2A

of the random aggregated ensemble having base learners with learning parameters � 2

A.

begin proedure

For eah � 2 A

begin

Ensemble Set(�) = ;

for i = 1 to n

begin

rand aggr(�;

�

D

i

) = Ensemble train (�;

�

D

i

)

Ensemble Set(�) = Ensemble Set(�) [ rand aggr(�;

�

D

i

)

end

bv(�) = Perform BV analysis(Ensemble Set (�), T )

BV = BV [ bv(�)

end

end proedure.

Figure 5.14: Proedure to perform bias{variane analysis on random aggregated SVM

ensembles

di�erent SVMs. Considering all the data sets we trained and tested about 80000 di�erent

random aggregated SVM ensembles and a total of about 5 millions of single SVMs.

5.3.2 Random aggregated RBF-SVM ensembles

In this setion are reported the results of bias{variane analysis in random aggregated

RBF-SVMs.

5.3.2.1 Bias{variane deomposition of the error

The deomposition of the error is represented with respet to di�erent values of � and for

�xed values of C.
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Shematially we an observe the following fats:

� The shape of the error is mostly determined by the bias and it is in general sigmoid

with respet to �, but sometimes an "U" shape is observed, as the error an inrease

with � (Fig. 5.15).

� In all the data sets the net-variane is about 0 for all the values of �, and the wave-

shape of the net-variane is very redued or ompletely absent.

� The net-variane is 0 as both biased and unbiased variane are very low, with values

lose to 0. Only in the Waveform data set unbiased and biased variane are both

quite large in the "high bias" region (and partially also in Letter-Two).

� The net-variane is always 0 in the "stabilized region" in all the onsidered data sets.

� The error is determined almost entirely by the bias: in Fig. 5.15 it is diÆult to the

distinguish the error and bias urves.

5.3.2.2 Deomposition with respet to the number of base learners

Fig. 5.16 a, b and d refer to bias{variane deomposition of the error with respet to the

number of base learners for random aggregated SVMs of the "stabilized region". In these

ases we an observe the following fats:

� Most of the derement of the error ours within the �rst iterations (from 10 to 30,

depending on the data set).

� The bias remains unhanged during all the iterations

� The derement of the error is almost entirely due to the derement of the unbiased

variane, and it is larger than in bagged ensembles of SVMs.

On the ontrary Fig. 5.16  refers to � values in the the "transition region". Also in

this ase the bias remains unhanged in average (higher than the bias of SVMs of the

"stabilized region"), but osillates largely, espeially during the �rst 20 iterations. The

unbiased variane also osillates, but tends to derement with the iterations, lowering

the error. The biased variane osillates in the same way (that is with the same phase)

with respet to the bias, but with a lower amplitude, while the unbiased variane and in

partiular the net-variane osillates in a speular way (opposite phase) with respet to

the bias. This is observed also in the other data sets (exept in Letter-Two with noise). I

have no explanations for this behaviour.
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Figure 5.15: Bias-variane deomposition of error in bias, net variane, unbiased and biased

variane in random aggregated gaussian SVMs, while varying � and for some �xed values

of C. P2 data set: (a) C = 1, (b) C = 100. Letter-Two data set: () C = 1, (d) C = 100

5.3.2.3 Comparison of bias{variane deomposition in single and random ag-

gregated RBF-SVMs

In all the graphis of this setion the data referred to single SVMs are labeled with rosses,

while random aggregated SVMs are labeled with triangles. The orresponding quantities

(e.g. bias, net-variane, et.) are represented with the same type of line both in single and

random aggregated SVMs.

In random aggregated ensembles net-variane is very lose to 0. As a onsequene, the

error is in pratie redued to the bias. As in single SVMs, we an distinguish three main

regions with respet to �:

109



0

0.05

0.1

0.15

0.2

0 10 20 30 40 50 60
iterations

Sigma=0.2, C=1

avg. error
bias

net variance
unbiased var.

biased var.

0

0.05

0.1

0.15

0.2

0 10 20 30 40 50 60
iterations

Sigma=0.5, C=100

avg. error
bias

net variance
unbiased var.

biased var.

(a) (b)

0

0.05

0.1

0.15

0.2

0.25

0.3

0 10 20 30 40 50 60
iterations

Sigma=1, C=100

avg. error
bias

net variance
unbiased var.

biased var.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 10 20 30 40 50 60
iterations

Sigma=2, C=100

avg. error
bias

net variance
unbiased var.

biased var.

() (d)

Figure 5.16: Bias-variane deomposition of error in bias, net variane, unbiased and

biased variane in random aggregated SVM RBF, with respet to the number of iterations.

P2 dataset: (a) C = 1; � = 0:2, (b) C = 100; � = 0:5. Letter-Two data set: ()

C = 100; � = 1, (d) C = 100; � = 2

High bias region. In this region the the error of single and random aggregated SVMs

is about equal, and it is haraterized by a very high bias. The net-variane is lose to 0,

beause biased variane is about equal to the unbiased variane. In most ases they are

both lose to 0 (Fig. 5.17 a and b). In some ases they are equal but greater than 0 with

signi�antly larger values in single that in random aggragated SVMs (Fig. 5.17  and d).

Transition region. The bias dereases in the transition region at about the same rate in

single and random aggregated SVM ensembles. The net-variane maintains the wave-shape
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also in random aggregated SVMs, but it is lower. In some data sets (Fig. 5.17 a and b),

the net-variane remains low with no signi�ant variations also for small values of �. For

these reasons the error dereases more quikly in random aggregated SVMs, and the error

of the ensemble is about equal to the bias.

Stabilized region. The net-variane stabilizes, but at lower values (very lose to 0)

ompared with net-variane of single SVMs. Hene we have a redution of the error for

random aggregated SVM ensembles in this region. Note that the redution of the error

depends heavily on the level of the unbiased variane of dingle SVMs in the stabilized

region. If it is suÆiently high, we an ahieve substantial redution of the error in random

aggregated SVM ensembles. With some data sets the error inreases for large values of �,

mainly for the inrement of the bias (Fig. 5.15 a and b).

5.3.3 Random aggregated polynomial SVM ensembles

5.3.3.1 Bias{variane deomposition of the error

The deomposition of the error is represented with respet to di�erent values of the poly-

nomial degree and for �xed values of C.

Shematially we an observe the following fats:

� In all the data sets the net-variane is about 0 for all the values of polynomial degree,

as both biased and unbiased variane are very low lose to 0. Only in some data sets

(e.g. P2), with low values of C we an observe a ertain level on unbiased variane,

espeially with low degree polynomials (Fig. 5.18 a).

� In almost all the onsidered data sets the error shows an "U" shape with respet to

the degree. This shape tends to a at line if C is relatively large. With the P2 data

set the error dereases with the degree (Fig. 5.18).

� The error is determined almost entirely by the bias: its minimum is reahed for

spei� values of the degree of the polynomial and depends on the harateristis of

the data set.

5.3.3.2 Deomposition with respet to the number of base learners

This setion reports data and graphs about the deomposition of bias{variane in random

aggregated SVMs with respet to the number of iterations, that is the number of base

learners used.
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Figure 5.17: Comparison of bias-variane deomposition between single RBF-SVMs (lines

labeled with rosses) and random aggregated ensembles of RBF-SVMs (lines labeled with

triangles), while varying � and for some �xed values of C. Letter-Two data set: (a) C = 1,

(b) C = 100. Waveform data set: () C = 1, (d) C = 100.

Fig. 5.19 shows that the bias remains onstant throughout the iterations. Most of the error

derement is ahieved within the �rst 10-20 iterations, and it is almost entirely due to the

derement of the unbiased variane. The error is redued to the bias, when the number

of iterations is suÆiently large. The biased variane is low and slowly dereases at eah

iteration, while the unbiased variane ontinues to derease at eah iteration, but most of

its derement ours within the �rst 20 iterations (Fig. 5.19).
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Figure 5.18: Bias-variane deomposition of error in bias, net variane, unbiased and biased

variane in random aggregated polynomial SVM, while varying the degree and for some

�xed values of C. P2 data set: (a) C = 1, (b) C = 100. Letter-Two data set: () C = 1,

(d) C = 100

5.3.3.3 Comparison of bias{variane deomposition in single and random ag-

gregated polynomial SVMs

In random aggregated polynomial SVMs the error is due almost entirely to the bias. The

bias omponent is about equal in random aggregated and single SVMs.

In single SVMs sometimes are observed opposite trends between bias and unbiased variane:

the bias dereases, while the unbiased variane inreases with the degree (Fig. 5.20 a and

b). On the ontrary in random aggregated ensembles the net-variane is very lose to 0

and the error is due almost entirely to the bias (Fig. 5.20).
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Figure 5.19: Bias-variane deomposition of error in bias, net variane, unbiased and biased

variane in random aggregated polynomial SVMs, with respet to the number of iterations.

P2 dataset: (a) C = 1, degree = 6 (b) C = 100, degree = 9. Letter-Two data set: ()

C = 1, degree = 3, (d) C = 100, degree = 9.

Hene in random aggregated SVMs, the shape of the error with respet to the degree

depends on the shape of the bias, and onsequently the error urve shape is bias-dependent,

while in single SVMs it is variane or bias-variane dependent.

The general shape of the error with respet to the degree resembles an "U" urve, or an

be atted in dependene of the bias trend, espeially with relatively large C values.
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Figure 5.20: Comparison of bias-variane deomposition between single polynomial SVMs

(lines labeled with rosses) and random aggregated polynomial SVM ensembles (lines la-

beled with triangles), while varying the degree and for some �xed values of C. P2 data

set: (a) C = 1, (b) C = 100. Grey-Landsat data set: () C = 1, (d) C = 100.

5.3.4 Random aggregated dot-produt SVM ensembles

5.3.4.1 Bias{variane deomposition of the error

The deomposition of the error is represented with respet to di�erent values of C.

Shematially we an observe the following fats (Fig. 5.21):
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� Net-variane is about 0 for all the values of C, as both biased and unbiased variane

are very low lose to 0.

� The error, bias and variane seem to be independent of the values of C. Anyway,

note that in the experiments we used only values of C � 1.

� The error is determined almost totally by the bias.
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Figure 5.21: Bias-variane deomposition of error in bias, net variane, unbiased and biased

variane in random aggregated dot-produt SVM, while varying C. (a) Grey-Landsat data

set (b) Letter-Two () Letter-Two with noise (d) Spam
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5.3.4.2 Deomposition with respet to the number of base learners

Considering the number of iterations, the most important fats with dot-produt random

aggregated SVM ensembles are the following (Fig. 5.22):

� The bias remains onstant

� Most of the error derement is ahieved within the �rst 10-20 iterations

� Error derement is due to the derement of the unbiased variane

� The error is determined almost totally by the bias.

� The biased variane slowly dereases at eah iteration

5.3.4.3 Comparison of bias{variane deomposition in single and random ag-

gregated dot-produt SVMs

In all ases the error is about equal to the bias, that remains unhanged with respet to

the single SVMs. As a onsequene the error shape is equal to the shape of the bias and

it is independent of the C values, at least for C � 1. As a result we a have a signi�ant

redution of the error due to derement of the unbiased variane (Fig. 5.23).

5.3.5 Bias{variane harateristis of random aggregated SVM

ensembles

In the following tables are summarized the ompared results of bias{variane deompo-

sition between single SVMs and random aggregated SVM ensembles. E

SVM

stands for

the estimated error of single SVMs, E

agg

for the estimated error of random aggregated

ensembles of SVMs, % Error redution stands for the perent error redution of the error

between single and random aggregated ensembles, that is:

%Error redution =

E

SVM

� E

agg

E

SVM

% Bias redution, % NetV ar redution and % UnbV ar redution orresponds respe-

tively to the perent bias, net{variane and unbiased variane redution between single

and random aggregated ensemble of SVMs. The negative signs means that we have a

larger error in the random aggregated ensemble. Note that sometimes the derement of
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Figure 5.22: Bias-variane deomposition of error in bias, net variane, unbiased and biased

variane in random aggregated dot-produt SVM, with respet to the number of iterations.

(a) Waveform (b) Letter-Two () Spam (d) Musk.

the net{variane an be larger than 100 %: reall that net{variane an be negative (when

the biased variane is larger than the unbiased variane).

Random aggregated ensembles of SVMs strongly redue net-variane. Indeed in all data

sets the net-variane is near to 0, with a redution lose to 100 % with respet to single

SVMs, on�rming the ideal behavior of random aggregating (Set. 5.1). Unbiased variane

redution is responsible for this fat, as in all data sets its derement amounts to about

90 % with respet to single SVMs (Tab. 5.2). As expeted bias remains substantially

unhanged, but with the P2 data set with polynomial and gaussian kernels we register a
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Figure 5.23: Comparison of bias-variane deomposition between single dot-produt SVMs

(lines labeled with rosses) and random aggregated dot-produt SVM ensembles (lines

labeled with triangles), while varying the values of C. (a) Waveform (b) Grey-Landsat ()

Spam (d) Musk.

not negligible derement of the bias. As a result the error dereases from 15 to about 70

% with respet to single SVMs, depending on the kernel and on the harateristis of the

data set. The overall shape of the urves of the error resembles that of the bias of single

SVMs, with a harateristis sigmoid shape for gaussian kernels (that an also beome an

"U" shape for ertain data sets) with respet to the � width values (Fig. 5.15 and 5.16),

an "U" shape with respet to the degree for polynomial kernels (Fig. 5.18 and 5.19), while

it is relatively independent of the C values (at least for suÆiently large values of C) for

random aggregated linear SVMs (Fig. 5.21).
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Table 5.2: Comparison of the results between single and random aggregated SVMs.

E

SVM

E

agg

% Error % Bias % NetVar % UnbVar

redution redution redution redution

Data set P2

RBF-SVM 0.1517 0.0495 67.37 24.52 99.04 85.26

Poly-SVM 0.2088 0.1030 50.65 19.56 92.26 83.93

D-prod SVM 0.4715 0.4611 2.21 0.89 142.65 91.08

Data set Waveform

RBF-SVM 0.0707 0.0501 29.08 1.14 100.58 89.63

Poly-SVM 0.0761 0.0497 34.59 3.68 97.12 89.44

D-prod SVM 0.0886 0.0498 43.74 3.84 99.12 90.69

Data set Grey-Landsat

RBF-SVM 0.0384 0.0300 21.87 3.22 99.95 85.42

Poly-SVM 0.0392 0.0317 19.13 3.17 83.79 80.95

D-prod SVM 0.0450 0.0345 23.33 19.27 69.88 72.57

Data set Letter-Two

RBF-SVM 0.0745 0.0345 53.69 0.00 95.32 92.48

Poly-SVM 0.0745 0.0346 53.54 -5.26 95.46 92.71

D-prod SVM 0.0955 0.0696 27.11 2.22 109.73 92.31

Data set Letter-Two with added noise

RBF-SVM 0.3362 0.2770 17.55 2.92 90.26 87.04

Poly-SVM 0.3432 0.2775 19.13 1.75 95.96 89.42

D-prod SVM 0.3486 0.2925 16.07 -1.68 106.4 89.97

Data set Spam

RBF-SVM 0.1292 0.0844 34.67 6.75 99.74 90.05

Poly-SVM 0.1323 0.0814 38.47 22.33 95.22 86.03

D-prod SVM 0.1495 0.0804 46.22 6.90 94.91 90.24

Data set Musk

RBF-SVM 0.0898 0.0754 16.02 0.39 106.70 93.85

Poly-SVM 0.1225 0.0758 38.12 1.53 97.52 94.02

D-prod SVM 0.1501 0.0761 49.28 0.80 98.30 93.03

5.4 Undersampled bagging

While bagging had been suessfully applied to di�erent lassi�ation and regression prob-

lems [8, 44, 5, 102, 186℄, random aggregating is almost ideal, beause in most ases the true

distribution P is unknown and we an aess only a limited and often small sized data set.

From a theoretial standpoint we need to know the usually unknown true distribution of

the data, and we should be able to aess the (possibly in�nite) universe U of the data
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From a di�erent standpoint random aggregating (using a bootstrap approximation of P )

an be viewed as a form of undersampled bagging if we onsider the universe U as a data

set from whih undersampled data, that is data sets whose ardinality is muh less than

the ardinality of U , are randomly drawn with replaement. For instane this is the way

by whih we approximated random aggregating in our experiments desribed in Set. 5.3.

In real problems, if we have very large learning sets, or on-line available learning data,

we ould use undersampled bagging in order to overome the spae omplexity problem

raising from learning too large data sets, or to allow on-line learning [34℄.

Indeed in most data mining problems we have very large data sets, and ordinary learning

algorithms annot diretly proess the data set as a whole. For instane most of the

implementations of the SVM learning algorithm have a O(n

2

) spae omplexity, where n

is the number of examples. If n is relatively large (e.g. n = 100000) we need room for 10

10

elements, a too ostly memory requirement for most urrent omputers. In these ases

we ould use relatively small data sets randomly drawn form the large available data set,

using undersampled bagging methods to improve performanes.

This situation is very similar to the ideal random aggregation setting: the only di�erene

is that we use only limited data and an uniform probability distribution to draw the data.

In these ases we ould expet a strong derement of the variane, while bias should remain

substantially unhanged. Indeed our experiments (Set. 5.3) reported a redution of the

net-variane over 90 %, as well as no substantial hanges in bias.

Moreover the inherent parallelism of this proess should permit to obtain a signi�ant speed

up using, for instane, simple luster of workstations using message passing interfae [140℄.

On the other hand we ould use this approah for inremental learning strategies, olleting

on-line samples in small data sets and aggregating the resulting lassi�ers. Of ourse this

approah holds if the on-line samples are distributed aording to an uniform probability

distribution along time.

5.5 Summary of bias{variane analysis results in ran-

dom aggregated and bagged ensembles of SVMs

We onduted an extensive experimental analysis of bias{variane deomposition of the

error in random aggregated and bagged ensembles of SVMs, involving training an testing

of more than 10 millions of SVMs. In both ases we used relatively small data sets (100

examples) bootstrapped from a relatively large data set and reasonably large test sets to

perform a reliable evaluation of bias and variane.
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Figure 5.24: Comparison of the error between single SVMs, bagged and random aggregated

ensembles of SVMs. Results refers to 7 di�erent data sets. (a) Gaussian kernels (b)

Polynomial kernels () Dot-produt kernels.
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Figure 5.25: Comparison of the relative error, bias and unbiased variane redution between

bagged and single SVMs (lines labeled with triangles), and between random aggregated

and single SVMs (lines labeled with squares). B/S stands for Bagged versus Single SVMs,

and R/S for random aggregated versus Single SVMs. Results refers to 7 di�erent data sets.

(a) Gaussian kernels (b) Polynomial kernels () Dot-produt kernels.
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Considering random aggregated ensembles, the most important fat we an observe onsists

in a very large redution of the net-variane. It is always redued lose to 0, independently

of the type of kernel used (Fig. 5.15, 5.18, 5.21). This behaviour is due primarily to the

unbiased variane redution, while the bias remains unhanged with respet to the single

SVMs (Fig. 5.17, 5.20, 5.23).

Comparing bias{variane deomposition of the error between single and random aggregated

ensembles of SVMs, we note that the relative error redution varies from 10 to about 70

%, depending on the data set (Tab. 5.2). This redution is slightly larger for high values

of the C parameter (that redues the bias of the base learners) and is due primarily to the

redution of the unbiased variane. Indeed in all data sets the relative redution of the

unbiased variane amounts to about 90 %, while bias remains substantially unhanged.

The error of the ensemble is redued to the bias of the single SVMs, beause net and

unbiased variane are largely redued and lose to 0.

Considering the bias-variane deomposition with respet to the number of base learners,

we an observe that most of the derement of the error ours within the �rst iterations

(from 10 to 30, depending on the data set), while the bias and the biased variane remains

unhanged during all the iterations. The derement of the error is almost entirely due to

the derement of the net and unbiased variane (Fig. 5.16, 5.19, 5.22).

With bagging also we have a redution of the error, but not so large as with random

aggregated ensembles (Fig. 5.24).

Indeed, unlike random aggregating, net and unbiased variane, although redued, are not

atually dropped to 0 (Fig. 5.4, 5.7, 5.10).

In partiular, in our experiments, we obtained a smaller redution of the average error

(from 0 to 20 %) due to a lower derement of the net-variane (about 35% against a

redution over 90 % with random aggregated ensembles), while bias remains unhanged or

slightly inreases (Fig. 5.25).

Random aggregating, approximated through undersampled bagging of suÆiently large

training sets, shows a behavior very lose to that predited by theory (Set. 5.1.1 and

5.1.2): eliminated variane and bias unhanged with respet to single base SVMs.

On the other hand experimental results on�rm that bagging an be interpreted as an

approximation of random aggregating (Set. 5.1.3), as net-variane is redued, but not

aneled by bootstrap aggregating tehniques, while bias remains unhanged or slightly

inreases.

The generalization error redution provided by bootstrap aggregating tehniques depends

ritially on the variane omponent of the error and on the bias proper of the base learner

used. Using base learners with low bias and aggregating them through bootstrap repliates

of the data an potentially redue both the bias and variane omponents of the error.
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Undersampled bagging, as an approximation of random aggregating an also provide very

signi�ant redution of the variane and an be in pratie applied to data mining problems

when learning algorithms annot omfortably manage very large data sets.
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Chapter 6

SVM ensemble methods based on

bias{variane analysis

Bias{variane theory provides a way to analyze the behavior of learning algorithms and

to explain the properties of ensembles of lassi�ers [66, 48, 94℄. Some ensemble methods

inrease expressive power of learning algorithms, thereby reduing bias [63, 33℄. Other

ensemble methods, suh as methods based on random seletion of input examples and

input features [19, 24℄ redue mainly the variane omponent of the error. In addition

to providing insights into the behavior of learning algorithms, the analysis of the bias{

variane deomposition of the error an identify the situations in whih ensemble methods

might improve base learner performanes. Indeed the deomposition of the error into bias

and variane an guide the design of ensemble methods by relating measurable properties

of algorithms to the expeted performane of ensembles [182℄. In partiular, bias{variane

theory an tell us how to tune the individual base lassi�ers so as to optimize the overall

performane of the ensemble.

The experiments on bias{variane deomposition of the error in SVMs gave us interestingly

insights into the way SVMs learn (Chap. 4). Indeed, with single SVMs, we provided

a bias{variane haraterization of their learning properties, showing and explaining the

relationships between kernel and SVMs parameters and their bias{variane harateristis

(Set. 4.4). Moreover bias{variane analysis in random aggregated and bagged ensembles

(Chap. 5) showed how ensemble methods based on resampling tehniques inuene learning

harateristis and generalization apabilities of single SVMs.

From a general standpoint, onsidering di�erent kernels and di�erent parameters of the

kernel, we an observe that the minimum of the error, bias and net{variane (and in

partiular unbiased variane) do not math. For instane, onsidering RBF-SVM we see

that we ahieve the minimum of the error, bias and net{variane for di�erent values of �
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(see, for instane, Fig. 4.6). Similar onsiderations an also be applied to polynomial and

dot{produt SVMs. Often, modifying parameters of the kernel, if we gain in bias we lose

in variane and vie versa, even if this is not a rule.

Moreover, in our experiments, omparing bias{variane deomposition of the error be-

tween single and random aggregated ensembles of SVMs, we showed that the relative error

redution varies from 10 to about 70 %, depending on the data set. This redution is

due primarily to the redution of the unbiased variane( about 90 %), while bias remains

substantially unhanged.

With bagging also we have a redution of the error, but not so large as with random

aggregated ensembles. In partiular the error with bagged ensembles of SVMs depends

mainly on the bias omponent, but, unlike random aggregating, net and unbiased variane,

although redued, are not atually redued to 0. In partiular, in our experiments, we

obtained a smaller redution of the average error (from 0 to 20 %) due to a lower derement

of the net-variane (about 35% on the average against a redution over 90 % with random

aggregated ensembles), while bias remains unhanged or slightly inreases.

Hene in both ases we have signi�ant net-variane redution (due to the unbiased variane

derement), while bias remains substantially unhanged.

In the light of the results of our extensive analysis for single SVMs and ensembles of SVMs,

we propose two possible ways of applying bias{variane analysis to develop SVM-based

ensemble methods.

The �rst approah tries to apply bias{variane analysis to enhane both auray and

diversity of the base learners. The seond researh diretion onsists in bootstrap aggre-

gating low bias base learners in order to lower both bias and variane. Regarding the �rst

approah, only some very general researh lines are depited. About the seond diretion,

a spei� new method that we named Lobag, that is Low bias bagged SVMs, is intro-

dued, onsidering also di�erent variants. Lobag applies bias{variane analysis to diret

the tuning of Support Vetor Mahines to optimize the performanes of bagged ensembles.

Spei�ally, sine bagging is primarily a variane-redution method, and sine the overall

error is (to a �rst approximation) the sum of bias and variane, this suggests that SVMs

should be tuned to minimize bias before being ombined by bagging.

Numerial experiments show that Lobag ompares favorably with bagging, and some pre-

liminary results show that Lobag an be suessfully applied to gene expression data anal-

ysis.

127



6.1 Heterogeneous Ensembles of SVMs

The analysis of bias{variane deomposition of the error in SVMs shows that the mini-

mum of the overall error, bias, net{variane, unbiased and biased variane ours often

in di�erent SVM models. These di�erent behaviors of di�erent SVM models ould be in

priniple exploited to produe diversity in ensembles of SVMs. Although the diversity

of base learner itself does not assure the error of the ensemble will be redued [121℄, the

ombination of auray and diversity in most ases does [43℄. As a onsequene, we ould

selet di�erent SVM models as base learners by evaluating their auray and diversity

through the bias-variane deomposition of the error.

For instane, our results show that the \optimal region" (low average loss region) is quite

large in RBF-SVMs (Fig. 4.5). This means that C and � do not need to be tuned ex-

tremely arefully. From this point of view, we an avoid time-onsuming model seletion

by ombining RBF-SVMs trained with di�erent � values all hosen from within the \op-

timal region." For instane, if we know that the error urve looks like the one depited in

Fig. 4.23, we ould try to �t a sigmoid-like urve using only few values to estimate where

the stabilized region is loated. Then we ould train an heterogeneous ensemble of SVMs

with di�erent � parameters (loated in the low bias region) and average them aording

to their estimated auray.

A high-level algorithm for Heterogeneous Ensembles of SVMs ould inlude the following

steps:

1. Individuate the "optimal region" through bias{variane analysis of the error

2. Selet the SVMs with parameters hosen from within the optimal region de�ned by

bias-variane analysis.

3. Combine the seleted SVMs by majority or weighted voting aording to their esti-

mated auray.

We ould use di�erent methods or heuristis to �nd the "optimal region" (see Set. 4.3.1.3)

and we have to de�ne also the riterion used to selet the SVM models inside the "optimal

region". The ombination ould be performed using also other approahes, suh as min-

imum, maximum, average and OWA aggregating operators [105℄ or Behavior-Knowledge

spae method [87℄, Fuzzy aggregation rules [190℄, Deision templates [118℄ or Meta-learning

tehniques [150℄. Bagging and boosting [63℄ methods an also be ombined with this ap-

proah to further improve diversity and auray of the base learners.

If we apply bootstrap aggregating methods to the previous approah, exploiting also the

fat that the most important learning parameter in gaussian kernels is represented by the

spread � (Set. 4.3.1), we obtain the following �-Heterogeneous Ensembles of bagged SVMs:
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1. Apply bias-variane analysis to SVMs, in order to individuate the low bias region

with respet to kernel parameter �

2. Selet a subset of values for �, hosen from within the optimal region de�ned by

bias-variane analysis (for instane n values).

3. For eah � value, seleted in the previous step, train a bagged ensembles, for a total

of n bagged ensembles

4. Combine the n ensembles by majority or weighted voting aording to their estimated

auray.

In Set. 4.3.1 we showed that with gaussian kernels the optimal region with respet to � is

quite large, and also that � is the most relevant parameter a�eting the performanes of

gaussian SVMs. Hene we ould selet di�erent � values in order to improve diversity in

the ensemble, while maintaining a high auray. We ould also apply expliit measures of

diversity [121℄ to selet appropriate subsets of � values. Then the variane of the set of �-

heterogeneous SVMs is lowered using bagging. Training multiple bagged SVM ensembles is

omputationally feasible, as in our experiments we showed that usually the error stabilizes

within the �rst 20� 30 iterations (Set. 5.2.2). These results were on�rmed also in other

experimental appliations of bagged SVMs, for instane in bioinformatis [186℄.

This approah presents several open problems. Even if we disuss this point in Chapter 4,

we need to hoose an appropriate riterion to de�ne the "optimal region": for instane,

optimal in the sense of minimum overall error or minimum bias? Moreover, we the need to

de�ne the relationships between diversity and auray in seleting the "optimal" subset of

� values. Other questions are whih diversity measure should be more appropriate in this

ontext and whether the ombination in the last step has to be performed at base learner

or ensemble level.

Another more general approah, Breiman's random forests [19℄ "inspired", ould use ran-

domness at di�erent levels to improve performanes of ensemble methods. For instane,

besides random seletion of input samples, we ould onsider random seletion of features,

or also other types of randomness. In this ontext bias{variane analysis ould selet "ap-

propriate" subsets of learning parameters, while randomness at di�erent levels ould be

used to redue the variane and/or the bias omponents of the error.
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6.2 Bagged Ensemble of Seleted Low-Bias SVMs

In hapter 5 we showed that random aggregating removes all variane, leaving only bias

and noise. Hene, if bagging is a good approximation to random aggregating, it will also

remove most of the variane. As a onsequene, to minimize the overall error, bagging

should be applied to base learners with minimum bias.

6.2.1 Parameters ontrolling bias in SVMs

We propose to tune SVMs to minimize the bias and then apply bagging to redue (if not

eliminate) variane, resulting in an ensemble with very low error. The key hallenge, then,

is to �nd a reasonable way of tuning SVMs to minimize their bias. The bias of SVMs is

typially ontrolled by two parameters. First, reall that the objetive funtion for (soft

margin) SVMs has the form: kwk

2

+ C

P

i

�

i

, where w is the vetor of weights omputed

by the SVM and the �

i

are the margin slaks, whih are non-zero for data points that are

not suÆiently separated by the deision boundary. The parameter C ontrols the tradeo�

between �tting the data (ahieved by driving the �

i

's to zero) and maximizing the margin

(ahieved by driving kwk to zero). Setting C large should tend to minimize bias.

The seond parameter that ontrols bias arises only in SVMs that employ parameterized

kernels suh as the polynomial kernel (where the parameter is the degree d of the polyno-

mial) and RBF kernels (where the parameter is the width � of the gaussian kernel). In

Chap. 4 we showed that in gaussian and polynomial SVMs bias depends ritially on these

parameters.

6.2.2 Aggregating low bias base learners by bootstrap repliates

Bagging is an ensemble method e�etive for unstable learners. Under the bootstrap as-

sumption, it redues only variane. From bias-variane deomposition we know that unbi-

ased variane redues the error, while biased variane inreases the error.

In theory, the bagged ensemble having a base learner with the minimum estimated bias will

be the one with the minimum estimated generalization error, as the variane of the single

base learner will be eliminated by the bagged ensemble, and the estimated generalization

error will be redued to the estimated bias of the single base learner. Indeed the bias

(without noise) is B(x) = L(t; y

m

), where L is the loss funtion, t is the target and the

main predition y

m

= argmin

y

E

D

[L(y

D

; y)℄, for a lassi�ation problem is the most voted

lass, that is the lass seleted by the bagged ensemble.

Hene bagging should be applied to low-bias lassi�ers, beause the biased variane will
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be small, while bagging is essentially a variane redution method, espeially if well-tuned

low bias base lassi�ers are used.

Summarizing, we an shematially onsider the following observations:

� We know that bagging lowers net{variane (in partiular unbiased variane) but not

bias.

� From Domingos bias-variane deomposition we know that unbiased variane redues

the error, while biased variane inreases the error. Hene bagging should be applied

to low-bias lassi�ers, beause the biased variane will be small.

� For single SVMs, the minimum of the error and the minimum of the bias are often

ahieved for di�erent values of the tuning parameters C, d, and �.

� SVMs are strong, low-biased learners, but this property depends on the proper se-

letion of the kernel and its parameters.

� If we an identify low-biased base learners with no negligible unbiased variane,

bagging an lower the error.

� Bias{variane analysis an identify SVMs with low bias.

We ould try to exploit the low bias of a base learner to build a bagged ensemble that

ombines the redued variane peuliar to bagging with low bias in order to redue the

generalization error. This is the key idea of Lobag, Low bias bagged ensembles, that is

bagged ensembles of low bias learning mahines:

1. Estimate bias-variane deomposition of the error for di�erent SVM models

2. Selet the SVM model with the lowest bias

3. Perform bagging using as base learner the SVM with the estimated lowest bias.

From this algorithmi sheme, a major problem is the seletion of a base learner with min-

imum estimated bias for a given data set. That is, given a learning set D and a parametri

learning algorithm L(�; �) that generates a model f

�

= L(�; �), with � representing the

parameters of the learning algorithm L, we need to �nd:

f

�

B

= argmin

�

B(f

�

;D) (6.1)

where B() represents the bias of the model f

�

estimated using the learning data set D.

This in turn requires an eÆient way to estimate the bias{variane deomposition of the

error.
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6.2.3 Measuring Bias and Variane

To estimate bias and variane, we ould use ross-validation in onjuntion with bootstrap,

or out-of-bag estimates (espeially if we have small training sets), or hold-out tehniques

in onjuntion with bootstrap tehniques if we have suÆiently large training sets.

We propose to apply out-of-bag proedures [19℄ to estimate the bias and variane of SVMs

trained with various parameter settings (see also Set. 3.2.2). The proedure works as

follows. First, we onstrut B bootstrap repliates of the available training data set D

(e. g., B = 200): D

1

; : : : ; D

B

. Then we apply a learning algorithm L to eah repliate S

b

to obtain an hypothesis f

b

= L(D

b

). For eah bootstrap repliate D

b

, let T

b

= DnD

b

be

the (\out-of-bag") data points that do not appear in D

b

. We apply hypothesis f

b

to the

examples in T

b

and ollet the results.

Consider a partiular training example (x; t). On the average, this point will be in 63.2%

of the bootstrap repliates D

b

and hene in about 36.8% of the out-of-bag sets T

b

. Let

K be the number of times that (x; t) was out-of-bag; K will be approximately 0:368B.

The optimal predition at x is just t. The main predition y

m

is the lass that is most

frequently predited among the K preditions for x. Hene, the bias is 0 if y

m

= t and 1

otherwise. The variane V (x) is the fration of times that f

b

(x) 6= y

m

. One the bias and

variane have been omputed for eah individual point x, they an be aggregated to give

B, V

u

, V

b

, and V

n

for the entire data set D.

6.2.4 Seleting low-bias base learners.

Considering the seond step of the Lobag algorithm (Set. 6.2.2), that is the seletion of

the low bias SVM model, depending on the type of kernel and parameters onsidered, and

on the way the bias is estimated for the di�erent SVM models, di�erent variants an be

provided:

1. Seleting the RBF-SVM with the lowest bias with respet to the C and � parameters.

2. Seleting the polynomial-SVM with the lowest bias with respet to the C and degree

parameters.

3. Seleting the dot{prod-SVM with the lowest bias with respet to the C parameter.

4. Seleting the SVM with the lowest bias with respet both to the kernel and kernel

parameters.

Note that here we propose SVMs as base learners, but other low bias base learners ould

in priniple be used (for instane MLPs), as long as an analysis of their bias-variane
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harateristis suggests to apply them with bootstrap aggregating tehniques. Of ourse,

we annot expet a high error redution if the bias{variane analysis shows that the base

learner has a high bias and a low unbiased variane.

A problem unovered in this work is the estimate of the noise in real data sets. A straight-

forward approah simply onsists in disregarding it, but in this way we ould overestimate

the bias. Some heuristi are proposed in [94℄, but the problem remains substantially unre-

solved.

6.2.5 Previous related work

Lobag an be interpreted as a variant of bagging: it estimates the bias of the SVM lassi�ers,

selets low-bias lassi�ers, and then ombines them by bootstrap aggregating.

Previous work with other lassi�ers is onsistent with this approah. For example, several

studies have reported that bagged ensembles of deision trees often give better results

when the trees are not pruned [8, 41℄. Unpruned trees have low bias and high variane.

Similarly, studies with neural networks have found that they should be trained with lower

weight deay and/or larger numbers of epohs before bagging to maximize auray of the

bagged ensemble [5℄.

Unlike most learning algorithms, support vetor mahines have a built-in mehanism for

variane redution: from among all possible linear separators, they seek the maximum

margin lassi�er. Hene, one might expet that bagging would not be very e�etive with

SVMs. Previous work has produed varying results. On several real-world problems,

bagged SVM ensembles are reported to give improvements over single SVMs [102, 186℄.

But for fae detetion, Buiu et al. [23℄ report negative results for bagged SVMs.

A few other authors have explored methods for tuning SVMs in ensembles. Collobert et

al. [34℄ proposed solving very large sale lassi�ation problems by using meta-learning

tehniques ombined with bagging. Derbeko et al. [40℄ applied an optimization tehnique

from mathematial �nane to redue the variane of SVMs.

6.3 The lobag algorithm

The Lobag algorithm [183℄ aepts the following inputs: (a) a data set D = f(x

i

; y

i

)g

n

i=1

,

with x

i

2 R and y

i

2 f�1; 1g, (b) a learning algorithm L(�; �), with tuning parameters �,

and () a set A of possible settings of the � parameters to try. Lobag estimates the bias of

eah parameter setting � 2 A, hooses the setting that minimizes the estimated bias, and

applies the standard bagging algorithm to onstrut a bag of lassi�ers using L(�; �) with
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the hosen � value.

Unlike bagging, lobag selets the hypothesis with the estimated lowest bias to build the

bootstrap aggregated lassi�er. As a onsequene the ore of the algorithm onsists in

evaluating bias{variane deomposition of the error varying the learning parameters �.

The remainder of this setion provides the pseudo-ode for Lobag.

6.3.1 The Bias{variane deomposition proedure

This proedure estimates the bias{variane deomposition of the error for a given learning

algorithm L and learning parameters �.

The learning algorithm L returns a hypothesis f

�

= L(D; �) using a learning set D, and it

is applied to multiple bootstrap repliates D

b

of the learning set D in order to generate a

set F

�

= ff

b

�

g

B

b=1

of hypotheses f

b

�

. The proedure returns the models F

�

and the estimate

of their loss and bias. For eah learning parameter it alls Evaluate BV, a proedure that

provides an out-of-bag estimate of the bias{variane deomposition.

Proedure [V;F ℄ BV deomposition (L;A;D; B)

Input:

- Learning algorithm L

- Set of algorithm parameters A

- Data set D

- Number of bootstrap samples B

Output:

- Set V of triplets (�; loss; bias), where loss and bias are the estimated loss and bias of

the model trained through the learning algorithm L with algorithm parameters �.

- Set of ensembles F = fF

�

g

�2A

with F

�

= ff

b

�

g

B

b=1

begin proedure

V = ;

F = ;

for eah � 2 A

begin

F

�

= ;

T

�

= ;

for eah b from 1 to B

begin

D

b

= Bootstrap repliate(D)

f

b

�

= L(D

b

; �)

T

b

= DnD

b

F

�

= F

�

[ f

b

�
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T

�

= T

�

[ T

b

end

F = F [ F

�

[loss, bias, variane℄ = Evaluate BV (F

�

; T

�

)

V = V [ (�; loss; bias)

end

end proedure.

The following proedure Evaluate BV provides an out-of-bag estimate of the bias{variane

deomposition of the error for a given model. The funtion jjzjj is equal to 1 if z is true, and

0 otherwise. E

x

[Q(x)℄ represents the expeted value of Q(x) with respet to the random

variable x.

Proedure [ls; bs; var℄ Evaluate BV (F; T )

Input:

- Set F = ff

b

g

B

b=1

of models trained on bootstrapped data

- Set T = fT

b

g

B

b=1

of out-of-bag data sets

Output:

- Out-of-bag estimate of the loss ls of model F

- Out-of-bag estimate of the bias bs of model F

- Out-of-bag estimate of the net variane var

of model F

begin proedure

for eah x 2 [

b

T

b

begin

K = jfT

b

jx 2 T

b

; 1 � b � Bgj

p

1

(x) =

1

K

P

B

b=1

jj(x 2 T

b

) and (f

b

(x) = 1)jj

p

�1

(x) =

1

K

P

B

b=1

jj(x 2 T

b

) and (f

b

(x) = �1)jj

y

m

= argmax(p

1

; p

�1

)

B(x) =

�

�

y

m

�t

2

�

�

V

u

(x) =

1

K

P

B

b=1

jj(x 2 T

b

) and (B(x) = 0)

and (y

m

6= f

b

(x))jj

V

b

(x) =

1

K

P

B

b=1

jj(x 2 T

b

) and (B(x) = 1)

and (y

m

6= f

b

(x))jj

V

n

(x) = V

u

(x)� V

b

(x)

Err(x) = B(x) + V

n

(x)

end

ls = E

x

[Err(x)℄

bs = E

x

[B(x)℄

var = E

x

[V

n

(x)℄

end proedure.
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Even if the bias{variane deomposition of the error error ould be, in priniple, evaluated

using other methods, suh as multiple hold-out sets or ross-validation, the out-of-bag

estimation is heaper and allows us to exploit all the available data without separating

the learning set in a training and a validation data set. Moreover the bias estimated for a

single learning mahine orresponds to the estimated error of the bagged ensemble having

the same learning mahine as base learner.

6.3.2 The Model seletion proedure

After the estimate of the bias{variane deomposition of the error for di�erent models, we

need to selet the model with the lowest bias. This proedure hooses in a straightforward

way the learning parameters orresponding to the model with the lowest estimated bias

and loss.

Proedure [�

B

; �

L

; B

min

; L

min

; B

L

min

℄ Selet model (V )

Input:

- Set V of triplets (�; loss; bias), where loss and bias are the estimated loss and bias of

the model trained through the learning algorithm L with algorithm parameters �.

Output:

- Learning parameter �

B

orresponding to the model with the estimated minimum bias

- Learning parameter �

L

orresponding to the model with the estimated minimum loss

- Minimum B

min

of the bias values olleted in V

- Minimum L

min

of the loss values olleted in V

- Bias B

L

min

orresponding to the minimum loss L

min

begin proedure

L

min

= min

v2V

v:loss

B

min

= min

v2V

v:bias

�

L

= v:� s.t. v:loss = L

min

�

B

= v:� s.t. v:bias = B

min

B

L

min

= v:bias s.t. v:loss = L

min

end proedure.

6.3.3 The overall Lobag algorithm

Using the proedure BV deomposition we an implement a version of the Lobag algorithm

that exhaustively explores a given set of learning parameters in order to build a low bias

bagged ensemble.

Using out-of-bag estimate of the bias{variane deomposition of the error, the proedure

Selet model selets the model with the minimum bias and/or minimum loss and returns
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the parameter values �

B

and �

L

that orrespond respetively to the model with minimum

bias and minimum loss. Then the Lobag and bagged ensembles are hosen through the

proedure Selet ensemble: the Lobag ensemble has base learners with the minimum

estimated bias, while the bagged ensemble has base learners with the minimum estimated

loss.

Algorithm Lobag exhaustive

Input:

- Learning algorithm L

- Set of algorithm parameters A

- Data set D

- Number of bootstrap samples B

Output:

- Seleted Lobag ensemble : F

Lob

= ff

b

�

B

g

B

b=1

- Seleted bagged ensemble : F

Bag

= ff

b

�

L

g

B

b=1

- Oob error of the Lobag ensemble : B

min

- Oob error of the bagged ensemble : B

L

min

- Oob error of the single model : L

min

begin algorithm

V = ;

F = ;

[V;F ℄ = BV deomposition (L;A;D; B)

[�

B

; �

L

; B

min

; L

min

; B

L

min

℄ = Selet model (V )

F

Lob

= ff

b

�

B

g

B

b=1

= Selet ensemble (F , �

B

)

F

Bag

= ff

b

�

L

g

B

b=1

= Selet ensemble (F , �

L

)

end algorithm.

In order to speed up the omputation, we ould design variants of the exhaustive Lobag

algorithm. For example, we ould apply multidimensional searh methods, suh as the

Powell's method [149℄, to selet the tuning values that minimize bias.

Lobag presents several limitations. Suh as lassial bagging it is only an approximation of

random aggregating: there is no guarantee of aneled net-variane. Moreover if variane

is small, we annot expet a signi�ant derement of the error. For data sets where the

minimum of the bias and loss are ahieved for the same learning parameters, lobag annot

improve bagging.

6.3.4 Multiple hold-out Lobag algorithm

This proedure shows how to apply lobag in a multiple-hold-out experimental setting,

that is when multiple random splits of the data in a separated training and test set are
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provided, in order to redue the e�et of a partiular split of the data on the evaluation of

the generalization performane of learning mahines.

Algorithm Multiple hold-out Lobag

Input:

- Learning algorithm L

- Set of algorithm parameters A

- Data set S

- Number of bootstrap samples B

- Number of splits n

Output:

- Oob estimate of the error of the Lobag ensemble : B

min

- Oob estimate of the error of the bagged ensemble : B

L

min

- Oob estimate of the error of the single model : L

min

- Hold-out estimate of the error of the Lobag ensemble : L

lobag

- Hold-out estimate of the error of the bagged ensemble : L

bag

- Hold-out estimate of the error of the single model : L

single

begin algorithm

for eah i from 1 to n

begin

V

i

= ;

F

i

= ;

[D

i

; T

i

℄ = Split(S)

[V

i

;F

i

℄ = BV deomposition (L;A; D

i

; B)

end

for eah � 2 A

begin

loss =

1

n

P

n

i=1

(v:lossjv 2 V

i

, v:� = �)

bias =

1

n

P

n

i=1

(v:biasjv 2 V

i

, v:� = �)

V = V [ (�; loss; bias)

end

[�

B

; �

L

; B

min

; L

min

; B

L

min

℄ = Selet model (V )

for eah i from 1 to n

begin

F

i

Lob

= ff

i;b

�

B

g

B

b=1

= Selet ensemble (F

i

, �

B

)

F

i

Bag

= ff

i;b

�

L

g

B

b=1

= Selet ensemble (F

i

, �

L

)

end

L

single

= Cal avg loss(ff

i

�

L

g

n

i=1

; fT

i

g

n

i=1

)

L

bag

= Cal avg loss(fF

i

Bag

g

n

i=1

; fT

i

g

n

i=1

)

L

lobag

= Cal avg loss(fF

i

Lob

g

n

i=1

; fT

i

g

n

i=1

)

end algorithm
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The algorithm generates the lobag ensemble using multiple splits of a given data set S

(proedure Split) in a separated learning D

i

and test T

i

sets. On eah learning set D

i

it is performed an out-of-bag estimate of the bias{variane deomposition of the error

(proedure BV deomposition, Set. 6.3.1). The bias and the loss for eah model are

evaluated averaging the estimated bias and loss over eah training set D

i

. Then the

SVMs with parameter �

B

that orresponds to the minimum estimated bias are seleted

as base learners for the Lobag ensemble (proedure Selet model). Lobag and bagged

ensembles are built through the proedure Selet ensemble, and the loss L

lobag

of the

Lobag ensemble is estimated averaging the error of the n ensembles fF

i

Lob

g

n

i=1

over the

test sets fT

i

g

n

i=1

, where F

i

Lob

= ff

i;b

�

B

g

B

b=1

, and the f

i;b

�

B

is the SVM trained on the b

th

bootstrap sample obtained from the i

th

training set D

i

using the learning parameter �

B

.

The algorithm provides an hold-out estimate of the generalization error of the lobag and

bagged ensembles, averaging between the resulting loss on the di�erent test sets T

i

. The

proedure Cal avg loss simply returns the average of the loss of the ensemble tested on

di�erent test sets:

Proedure [Err℄ Cal avg loss (ff

i

g

n

i=1

; fT

i

g

n

i=1

)

Input arguments:

- Set (ff

i

g

n

i=1

of the models trained on the di�erent SnT

i

learning sets

- Set fT

i

g

n

i=1

of the multiple hold-out test sets T

i

Output:

- Estimated average loss Err

begin proedure

Err = 0

for eah i from 1 to n

begin

e = f

i

(T

i

)

Err = Err + e

end

Err = Err=n

end proedure.

6.3.5 Cross-validated Lobag algorithm

This proedure applies the lobag algorithm in the experimental framework of ross-validation.

Algorithm Cross-validated Lobag

Input:
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- Learning algorithm L

- Set of algorithm parameters A

- Data set D

- Number of bootstrap samples B

- Number of folds n

Output:

- Oob estimate of the error of the Lobag ensemble : B

min

- Oob estimate of the error of the bagged ensemble : B

L

min

- Oob estimate of the error of the single model : L

min

- Cross-validated estimate of the error of the Lobag ensemble : L

lobag

- Cross-validated estimate of the error of the bagged ensemble : L

bag

- Cross-validated estimate of the error of the single model : L

single

begin algorithm

fD

i

g

k

i=1

= Generate folds (D; k)

for eah i from 1 to n

begin

V

i

= ;

F

i

= ;

[V

i

;F

i

℄ = BV deomposition (L;A;DnD

i

; B)

end

for eah � 2 A

begin

loss =

1

n

P

n

i=1

(loss of the element v 2 V

i

s.t. v:� = �)

bias =

1

n

P

n

i=1

(bias of the element v 2 V

i

s.t. v:� = �)

V = V [ (�; loss; bias)

end

[�

B

; �

L

; B

min

; L

min

; B

L

min

℄ = Selet model (V )

for eah i from 1 to n

begin

F

i

Lob

= ff

i;b

�

B

g

B

b=1

= Selet ensemble (F

i

, �

B

)

F

i

Bag

= ff

i;b

�

L

g

B

b=1

= Selet ensemble (F

i

, �

L

)

end

L

single

= Cal avg loss(ff

i

�

L

g

n

i=1

; fD

i

g

n

i=1

)

L

bag

= Cal avg loss(fF

i

Bag

g

n

i=1

; fD

i

g

n

i=1

)

L

lobag

= Cal avg loss(fF

i

Lob

g

n

i=1

; fD

i

g

n

i=1

)

end algorithm

The seletion of the lobag ensemble is performed through a ross-validated out-of-bag

estimate of the bias{variane deomposition of the error. The data set is divided in k

separated folds through the proedure Generate folds. The oob estimate of the bias{
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variane deomposition of the error is performed on eah fold, and the overall estimate

of bias and loss are omputed averaging over the di�erent folds. The algorithm provides

also a ross-validated estimate of the generalization error of the resulting lobag and bagged

ensembles (proedure Cal avg loss).

6.3.6 A heterogeneous Lobag approah

Using ross-validation or multiple hold-out tehniques to evaluate the error, instead of

using the "best" low bias model, obtained averaging the bias over all the folds or the

di�erent splits of the data, we ould selet eah time the model with the lowest bias for

eah fold/split. In this way we ould in priniple to obtain di�erent models, eah one

well-tuned for a spei� fold/split.

Then we ould ombine them by majority or weighted voting, or we ould ombine them

by multiple bootstrap aggregating in order to lower the variane. Aording to this seond

approah, we ould bag eah model seleted on eah di�erent fold/split ombining the

di�erent ensembles by majority or weighted voting. We ould also introdue a seond-

level meta-learner in order to ombine the base learners and the ensembles. This general

approah ould introdue diversity in the ensemble, while preserving at the same time the

auray of the di�erent "heterogeneous" base learners.

6.4 Experiments with lobag

We performed numerial experiments on di�erent data sets to test the Lobag ensemble

method using SVMs as base learners. We ompared the results with single SVMs and

lassial bagged SVM ensembles.

6.4.1 Experimental setup

We employed 7 di�erent two-lass data sets, both syntheti and \real". We seleted two

syntheti data sets (P2 and a two-lass version ofWaveform) and 5 \real" data sets (Grey-

Landsat, Letter, redued to the two-lass problem of disriminating between the letters B

and R, Letter with added 20% noise, Spam, and Musk). Most of them are from the UCI

repository [135℄.

We applied two di�erent experimental settings, using the same data sets, in order to

ompare lobag, lassial bagging and single SVMs.

At �rst, we employed smallD training sets and large test T sets in order to obtain a reliable
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Table 6.1: Results of the experiments using pairs of train D and test T sets. E

lobag

, E

bag

and E

SVM

stand respetively for estimated error of lobag, bagged and single SVMs on

the test set T . The three last olumns show the on�dene level aording to the M

Nemar test. L=B, L=S and B=S stand respetively for the omparison Lobag/Bagging,

Lobag/Single SVM and Bagging/Single SVM. If the on�dene level is equal to 1, no

signi�ant di�erene is registered.

Kernel E

lobag

E

bag

E

single

Con�dene level

type L=B L=S B=S

Data set P2

Polyn. 0.1735 0.2008 0.2097 0.001 0.001 0.001

Gauss. 0.1375 0.1530 0.1703 0.001 0.001 0.001

Data set Waveform

Linear 0.0740 0.0726 0.0939 1 0.001 0.001

Polyn. 0.0693 0.0707 0.0724 1 0.1 0.1

Gauss. 0.0601 0.0652 0.0692 0.001 0.001 0.001

Data set Grey-Landsat

Linear 0.0540 0.0540 0.0650 1 0.001 0.001

Polyn. 0.0400 0.0440 0.0480 1 0.1 1

Gauss. 0.0435 0.0470 0.0475 0.1 0.1 1

Data set Letter-Two

Linear 0.0881 0.0929 0.1011 1 0.025 0.05

Polyn. 0.0701 0.0717 0.0831 1 0.05 0.1

Gauss. 0.0668 0.0717 0.0799 1 1 1

Data set Letter-Two with added noise

Linear 0.3535 0.3518 0.3747 1 1 0.1

Polyn. 0.3404 0.3715 0.3993 1 0.05 0.1

Gauss. 0.3338 0.3764 0.3829 0.05 0.025 1

Data set Spam

Linear 0.1408 0.1352 0.1760 0.05 0.001 0.001

Polyn. 0.0960 0.1034 0.1069 0.1 0.025 1

Gauss. 0.1130 0.1256 0.1282 0.005 0.001 1

Data set Musk

Linear 0.1291 0.1291 0.1458 1 0.001 0.001

Polyn. 0.1018 0.1157 0.1154 0.001 0.001 1

Gauss. 0.0985 0.1036 0.0936 0.05 1 0.05

estimate of the generalization error: the number of examples for D was set to 100, while

the size of T ranged from a few thousands for the \real" data sets to ten thousands for

syntheti data sets. Then we applied the Lobag algorithm desribed in Set. 6.3, setting the
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number of samples bootstrapped from D to 100, and performing an out-of-bag estimate of

the bias{variane deomposition of the error. The seleted lobag, bagged and single SVMs

were �nally tested on the separated test set T .

Then, using a di�erent experimental set-up, we divided the data into a separated training

D and test T sets. We then drew 30 data sets D

i

from D, eah onsisting of 100 examples

drawn uniformly with replaement. Then we applied the lobag algorithm desribed in

Set. 6.3 to eah of the D

i

, setting the number of examples bootstrapped from eah D

i

to

100, and averaging both the out-of-bag estimation of the error and the error estimated on

the separated test sets T .

We developed new C++ lasses and appliations using the NEURObjets library [185℄ to

implement the lobag algorithm and to analyze the results.

6.4.2 Results

Table 6.1 shows the results of the experiments with small D training sets and large T test

sets. We measured 20 outomes for eah method: 7 data sets, and 3 kernels (gaussian,

polynomial, and dot-produt) applied to eah data set exept P2 for whih we did not apply

the dot-produt kernel (beause it was obviously inappropriate). For eah pair of methods,

we applied MNemar test [42℄ to determine whether there was a signi�ant di�erene in

preditive auray on the test set.

On nearly all the data sets, both bagging and Lobag outperform the single SVMs inde-

pendently of the kernel used. The null hypothesis that Lobag has the same error rate as a

single SVM is rejeted at or below the 0.1 signi�ane level in 17 of the 20 ases. Similarly,

the null hypothesis that bagging has the same error rate as a single SVM is rejeted at or

below the 0.1 level in 13 of the 20 ases.

Most importantly, Lobag generally outperforms standard bagging. Lobag is statistially

signi�antly better than bagging in 9 of the 20 ases, and signi�antly inferior only one.

These experiments are also shown graphially in Fig. 6.1. In this �gure, eah pair of points

(joined by a line) orresponds to one of the 20 ases. The x oordinate of the point is the

error rate of Lobag, the y oordinate is the error rate of either a single SVM (for the \star"

shapes) or of standard bagging (for the \+" shapes). The line y = x is plotted as well.

Points above the line orrespond to ases where Lobag had a smaller error rate. In most

ases, the \star" is above the \+", whih indiates that bagging had lower error than a

single SVM.

Tab 6.2 summarizes the results of the omparison between bagging, lobag and single SVMs,

aording to the seond experimental set-up (Set. 6.4.1), using diretly the out-of-bag

estimate of the generalization error, averaged over the 30 di�erent splits of the data. On
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Figure 6.1: Graphial omparison of Lobag, bagging, and single SVM.

all the data sets both bagging and lobag outperform the single SVM, independently of

the kernel used. The null hypothesis (no di�erene between the onsidered lassi�ers), is

rejeted at a 0:01 on�dene level aording to the resampled paired t test.

Moreover Lobag ompares favorably to bagging. The average relative error redution

with respet to single SVMs is about 23 % for lobag and 18 % for bagged ensembles

of SVMs. Using SVMs with gaussian kernels as base learners the di�erene of auray

between lobag and bagging is signi�ant at 0:01 on�dene level on all the 7 data sets.

We ahieve the same results with polynomial kernels, exept for the Grey-Landsat data

set, where the di�erene is signi�ant only at 0:05 level. With linear kernels there is no

signi�ant statistial di�erene in the data sets Waveform, Grey-Landsat and Musk. Using

the separated test sets to evaluate the generalization error, the di�erenes between bagging,

lobag and also single SVMs beome less signi�ant, but also in this ase lobag slightly tends

to outperform bagging.

The outomes of the seond experimental approah on�rm the results of the �rst one,

even if they must be onsidered with aution, as the resampled t test su�ers of a relatively

large type I error, and onsequently it an inorretly detet a di�erene when no di�erene

exists [42℄.

The results show that despite the ability of SVMs to manage the bias{variane tradeo�,
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Table 6.2: Comparison of the results between lobag, bagging and single SVMs. E

lobag

, E

bag

and E

SVM

stand respetively for average error of lobag, bagging and single SVMs. r.e.r.

stands for relative error redution between lobag and single SVMs and between bagging

and single SVMs.

Kernel E

lobag

E

bag

E

SVM

r:e:r r:e:r

type L=S B=S

Data set P2

Polynomial 0.1593 � 0.0293 0.1753 � 0.0323 0.2161 � 0.0321 26.28 18.88

Gaussian 0.1313 � 0.0337 0.1400 � 0.0367 0.1887 � 0.0282 30.41 25.80

Data set Waveform

Linear 0.0713 � 0.0312 0.0716 � 0.0318 0.0956 � 0.0307 25.41 25.10

Polynomial 0.0520 � 0.0210 0.0597 � 0.0214 0.0695 � 0.0200 25.17 14.10

Gaussian 0.0496 � 0.0193 0.0553 � 0.0204 0.0668 � 0.0198 25.74 17.21

Data set Grey-Landsat

Linear 0.0483 � 0.0252 0.0487 � 0.0252 0.0570 � 0.0261 15.26 14.56

Polynomial 0.0413 � 0.0252 0.0430 � 0.0257 0.0472 � 0.0257 12.50 8.89

Gaussian 0.0360 � 0.0209 0.0390 � 0.0229 0.0449 � 0.0221 19.82 13.14

Data set Letter-Two

Linear 0.0890 � 0.0302 0.0930 � 0.0310 0.1183 � 0.0281 24.76 21.38

Polynomial 0.0616 � 0.0221 0.0656 � 0.0247 0.0914 � 0.0233 32.60 28.22

Gaussian 0.0553 � 0.0213 0.0597 � 0.0238 0.0875 � 0.0244 36.80 31.77

Data set Letter-Two with added noise

Linear 0.2880 � 0.0586 0.2993 � 0.0604 0.3362 � 0.0519 14.34 10.97

Polynomial 0.2576 � 0.0549 0.2756 � 0.0633 0.3122 � 0.0502 17.49 11.72

Gaussian 0.2580 � 0.0560 0.2706 � 0.0607 0.3064 � 0.0512 15.79 11.68

Data set Spam

Linear 0.1273 � 0.0374 0.1353 � 0.0400 0.1704 � 0.0423 25.29 20.59

Polynomial 0.1073 � 0.0379 0.1163 � 0.0400 0.1407 � 0.0369 23.74 17.34

Gaussian 0.1120 � 0.0352 0.1190 � 0.0380 0.1392 � 0.0375 19.54 14.51

Data set Musk

Linear 0.1250 � 0.0447 0.1250 � 0.0447 0.1612 � 0.0446 22.45 22.45

Polynomial 0.0960 � 0.0331 0.1070 � 0.0364 0.1295 � 0.0357 25.87 17.37

Gaussian 0.0756 � 0.0252 0.0793 � 0.0253 0.0948 � 0.0247 20.25 16.35

SVM performane an generally be improved by bagging, at least for small training sets.

Furthermore, the best way to tune the SVM parameters is to adjust them to minimize bias

and then allow bagging to redue variane.
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6.5 Appliation of lobag to DNAmiroarray data anal-

ysis

As an appliation of Lobag to "real world" problems, we onsider a hallenging lassi�ation

problem in funtional bioinformatis. In partiular we applied Lobag to the analysis of

DNA miroarray data, in order to preliminary evaluate the e�etiveness of the proposed

ensemble method to small-sized and high-dimensional data, haraterized also by a large

biologial variability.

DNA hybridization miroarrays [57, 127℄ supply information about gene expression through

measurements of mRNA levels of a large amount of genes in a ell. After extrating mRNA

samples from the ells, preparing and marking the targets with uoresent dyes, hybridizing

with the probes printed on the miroarrays and sanning the miroarrays with a laser

beam, the obtained TIFF images are proessed with image analysis omputer programs to

translate the images into sets of uoresent intensities proportional to the mRNA levels of

the analyzed samples. After preproessing and normalization stages, gene expression data

of di�erent ells or di�erent experimental/funtional onditions are olleted in matries

for numerial proessing: eah row orresponds to the gene expression levels of a spei�

gene relative to all the examples, and eah olumn orresponds to the expression data of

all the onsidered genes relative to a spei� ell example. Typially thousands of genes

are used and analyzed for eah miroarray experiment.

Several supervised methods have been applied to the analysis of DNA miroarrays and

high density oligonuleotide hips. These methods inlude deision trees, Fisher linear

disriminant, multi-layer pereptrons (MLP), nearest-neighbors lassi�ers, linear disrim-

inant analysis, Parzen windows and others [22, 53, 75, 101, 146℄. In partiular Support

Vetor Mahines are well suited to manage and lassify high dimensional data [188℄, as

miroarray data usually are, and have been reently applied to the lassi�ation of normal

and malignant tissues using dot-produt (linear) kernels [67℄, or polynomial and gaussian

kernels in order to lassify normal and tumoural tissues [179℄. These types of kernels have

also been suessfully applied to the separation of funtional lasses of yeast genes using

miroarray expression data [22℄.

Furthermore, ensembles of learning mahines are well-suited for gene expression data anal-

ysis, as they an redue the variane due to the low ardinality of the available training

sets, and the bias due to spei� harateristis of the learning algorithm [43℄. Indeed,

in reent works, ombinations of binary lassi�ers (one-versus-all and all-pairs) and Error

Correting Output Coding (ECOC) ensembles of MLP, as well as ensemble methods based

on resampling tehniques, suh as bagging and boosting, have been applied to the analysis

of DNA miroarray data [194, 158, 54, 178, 186℄.
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6.5.1 Data set and experimental set-up.

We used DNA miroarray data available on-line. In partiular we used the GCM data set

obtained from the Whitehead Institute, Massahusetts Institute of Tehnology Center for

Genome Researh [158℄. It is onstituted of 300 human normal and tumor tissue speimens

spanning 14 di�erent malignant lasses. In partiular it ontains 190 tumoral samples

pertaining to 14 di�erent lasses, plus other 20 poorly di�erentiated tumor samples and 90

normal samples.

We grouped together the 14 di�erent tumor lasses and the poorly di�erentiated tumor

samples to redue the multi-lass lassi�ation problem to a dihotomy in order to separate

normal from malignant tissues. The 300 samples sequentially hybridized to oligonuleotide

miroarrays ontain a total of 16063 probe sets (genes or ESTs) and we performed a

strati�ed random splitting of these data in a training and test set of equal size. We

preproessed raw data using thresholding, �ltering and normalizationmethods as suggested

in [158℄. Performanes of Lobag ensembles of SVMs were ompared with a standard bagging

approah and with single SVMs, using subsets of genes seleted through a simple feature-

�ltering method.

6.5.2 Gene seletion.

We used a simple �lter method, that is a gene seletion method applied before and indepen-

dently of the indution algorithm, originally proposed in [75℄. The mean gene expression

value aross all the positive (�

+

) and negative (�

�

) examples are omputed separately for

eah gene, together with their orresponding standard deviations (�

+

and �

�

). Then the

following statisti (a sort of signal-to-noise ratio) 

i

is omputed:



i

=

�

+

� �

�

�

+

+ �

�

(6.2)

The larger is the distane between the mean values with respet to the sum of the spread of

the orresponding values, more related is the gene to the disrimination of the positive and

negative lasses. Then the genes are ranked aording to their 

i

value, and the �rst and last

m genes are seleted. The main problem of this approah is the underlying independene

assumption of the expression patterns of eah gene: indeed it fails in deteting the role of

oordinately expressed genes in arinogeni proesses. Eq. 6.2 an also be used to ompute

the weights for weighted gene voting [75℄, a minor variant of diagonal linear disriminant

analysis [54℄.

With the GCM data set we applied a permutation test to automatially selet a set of

marker genes. It is a gene-spei� variant of the neighborhood analysis proposed in [75℄:
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1. Calulate for eah gene the signal-to-noise ratio (eq. 6.2)

2. Perform a gene-spei� random permutation test:

(a) Generate n random permutations of the lass labels omputing eah time the

signal-to-noise ratio for eah gene.

(b) Selet a p signi�ane level (e.g. 0 < p < 0:1)

() If the randomized signal-to-noise ratio is larger than the atual one in less than

p � n random permutations, selet that gene as signi�ant for disrimination at

p signi�ane level.

This is a simple method to estimate the signi�ane of the mathing of a given phenotype

to a partiular set of marker genes: its time omplexity is O(nd), where n is the number

of examples and d the number of features (genes). Moreover the permutation test is dis-

tribution independent: no assumptions about the funtional form of the gene distribution

are supposed.

6.5.3 Results.

Using the above gene-spei� neighborhood analysis, we seleted 592 genes orrelated with

tumoral examples (p = 0:01) (set A) and about 3000 genes orrelated with normal examples

(p = 0:01) (set B). Then we used the genes of set A and the 592 genes with highest signal-

to-noise ratio values of set B to assemble a seleted set omposed by 1184 genes. The results

of the lassi�ations with single SVMs, with and without gene seletion are summarized

in Tab. 6.3.

Table 6.3: GCM data set: results with single SVMs

Kernel type Err:all Err:sel: Relative

and parameters genes genes err:red:

Dot-produt, C=20 0.2600 0.2279 12.31 %

Polynomial, deg=6 C=5 0.7000 0.2275 |-

Polynomial, deg=2 C=10 0.6900 0.2282 |-

Gaussian, �=2 C=50 0.3000 0.2185 27.33 %

There is a signi�ant inrement in auray using only a seleted subset of genes for las-

si�ation. Aording to the MNemar test [44℄, in all ases there is a statistial signi�ant
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di�erene at 0:05 on�dene level between SVMs trained with and without feature sele-

tion. Polynomial kernels without feature seletion fail to lassify normal from malignant

tissues.

Tab. 6.4 summarizes the results of bagged SVMs on the GCM data set. Even if not always

Table 6.4: GCM data set: ompared results of single and bagged SVMs

Kernel type Error Error Relative

and parameters SVMs bagged err:red:

Dot-produt, C=10 0.2293 0.2200 4.06 %

Dot-produt, C=20 0.2279 0.2133 6.41 %

Polynomial, degree=6 C=5 0.2275 0.2000 12.09 %

Polynomial, degree=2 C=10 0.2282 0.2133 6.53 %

Gaussian, sigma=2 C=50 0.2185 0.2067 5.40 %

Gaussian, sigma=10 C=200 0.2233 0.2067 7.44 %

there is a statistial signi�ant di�erene (aording to M Nemar test) between single and

bagged SVMs, in all ases bagged ensembles of SVMs outperform single SVMs. The degree

of enhanement depends heavily on the possibility to redue the variane omponent of

the error, as bagging is mainly a variane-redution ensemble method.

Indeed, performing a bias{variane analysis of the error of single SVMs on the GCM

data set, we note that bias largely overrides the variane omponents of the error, and

in this ase we annot expet a very large redution of the error with bagging (Fig. 6.2).

Nonetheless we an see that both with linear SVMs (Fig. 6.2 a), polynomial (Fig. 6.2 b),

and gaussian (Fig. 6.2 ) SVMs, the minimum of the estimated error and the estimated

bias are ahieved for di�erent learning parameters, showing that in this ase Lobag ould

improve the performane, even if we annot expet a large redution of the overall error,

as the bias largely dominates the variane omponent of the error (Fig. 6.2).

Indeed with Lobag the error is lowered, both with respet to single and bagged SVMs

(Tab. 6.5). As expeted, both bagged and lobag ensembles of SVMs outperform single

SVMs, but with lobag the redution of the error is signi�ant at 0:05 on�dene level,

aording to M Nemar's test, for all the applied kernels, while for bagging it is signi�ant

only for the polynomial kernel. Moreover Lobag always outperforms bagging, even if the

error redution is signi�ant only if linear or polynomial kernels are used. Summarizing,

Lobag ahieves signi�ant enhanements with respet to single SVMs in analyzing DNA

miroarray data, and also lowers the error with respet to lassial bagging.

Even if these results seem quite enouraging, they must be onsidered only as preliminary,

and we need more experiments, using di�erent data sets and using more reliable ross-
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Figure 6.2: GCM data set: bias-variane deomposition of the error in bias, net-variane,

unbiased and biased variane, while varying the regularization parameter with linear SVMs

(a), the degree with polynomial kernels (b), and the kernel parameter � with gaussian SVMs

().
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validated estimates of the error, in order to evaluate more arefully the appliability of

the lobag method to DNA miroarray data analysis. Moreover we need also to assess the

quality of the lassi�ers using for instane ROC urves or appropriate quality measures as

shown, for instane, in [76℄.

Table 6.5: GCM data set: ompared results of single, bagged and Lobag SVMs on gene ex-

pression data. An asterisk in the last three olumns points out that a statistial signi�ant

di�erene is registered (p = 0:05) aording to the M Nemar test.

Kernel type Error Error Error Err:red: Err:red: Err:red:

SVMs bagged Lobag SVM� > bag SVM� > Lobag bag� > Lobag

Dot-produt 0.2279 0.2133 0.1933 6.41 % 15.18 % � 9.38 % �

Polynomial 0.2275 0.2000 0.1867 12.09 % � 17.93 % � 6.65 % �

Gaussian 0.2185 0.2067 0.1933 5.40 % 11.53 % � 6.48 %
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Conlusions

Cosa volevo dire, non lo so,

per�o ho ragione, e i fatti,

mi osano.

Palmiro Cangini

Researh on ensemble methods foused on the ombination/aggregation of learning ma-

hines, while the spei� harateristis of the base learners that build them up have been

only partially onsidered. On the ontrary we started from the learning properties and the

behavior of the learning algorithms used to generate the base preditors, in order to build

around them ensemble methods well-tuned to their learning harateristis.

To this purpose we showed that bias{variane theory provides a way to analyze the behavior

of learning algorithms and to explain the properties of ensembles of lassi�ers. Moreover

we showed that the analysis of the bias{variane deomposition of the error an identify

the situations in whih ensemble methods might improve base learner performanes.

We onduted an extended bias{variane analysis of the error in single SVMs (Chap. 4),

bagged and random aggregated ensembles of SVMs (Chap. 5), involving training and test-

ing of over 10 million of SVMs, in order to gain insights into the way single and ensembles

of SVMs learn. To this purpose we developed proedures to measure bias and variane in

lassi�ation problems aording to Domingos bias{variane theory.

In partiular we performed an analysis of bias and variane in single SVMs, onsidering

gaussian, polynomial, and dot{produt kernels. The relationships between parameters of

the kernel and bias, net{variane, unbiased and biased variane were studied, disovering

regular patterns and spei� trends. We provided a haraterization of bias{variane de-

omposition of the error, showing that in gaussian kernels we an individuate at least three

di�erent regions with respet to the � (spread) parameter, while in polynomial kernels the

U shape of the error an be determined by the ombined e�ets of bias and unbiased vari-

ane. The analysis also revealed that the expeted trade-o� between bias and variane

holds only for dot produt kernels, while other kernels showed more omplex relationships.

We disovered that the minimum of bias, variane and overall error are often ahieved
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for di�erent values of the regularization and kernel parameters, as a result of a di�erent

learning behavior of the trained SVM.

Aording to Breiman's theoretial results, we showed that bagging an be interpreted as

an approximation of random aggregating, that is a proess by whih base learners, trained

on samples drawn aordingly to an unknown probability distribution from the entire

universe population, are aggregated through majority voting or averaging their outputs.

These experiments showed that the theoretial property of a very large variane redution

holds for random aggregating, while for bagging we registered a smaller redution, but not

a total elimination as in random aggregating.

Bias{variane analysis in random aggregated SVM ensembles suggested also to aggregate

ensembles of SVMs for very large sale data mining problems using undersampled bagging.

Unfortunately, time was not suÆient to follow this promising researh line.

On the basis of the information supplied by bias-variane analysis we proposed two researh

lines for designing ensembles of SVMs. The �rst one applies bias-variane analysis to on-

strut a heterogeneous, diverse set of low-bias lassi�ers. The seond presents an ensemble

method, that is Lobag, that selets low bias base learners (well tuned - low bias SVMs)

and then ombines them through bagging. The key issue of the bias{variane evaluation is

performed through an eÆient out-of-bag estimate of the bias{variane deomposition of

the error. This approah a�ets both bias, through the seletion of low bias base learners,

and variane, through bootstrap aggregation of the seleted low bias base learners. Numer-

ial experiments showed that low bias bagged ensembles of SVMs ompare favorably both

to single and bagged SVM ensembles, and preliminary experiments with DNA miroarray

data suggested that this approah might be e�etive with high-dimensional low sized data,

as gene expression data usually are.

Open questions, related to some topis only partially developed in this thesis, delineate

possible future works and developments.

In our researh planning, we pursued to exeute a bias{variane analysis for ensemble

methods based on resampling tehniques. However we performed only a bias{variane

analysis in bagged SVMs, but we plan to perform the same analysis in boosted ensembles

of SVMs, in order to gain insights into the behavior of boosted SVMs with "strong" well-

tuned SVMs, omparing them with "weak" not-optimally-tuned SVMs.

We showed that bias{variane analysis is an e�etive tool to design new ensemble methods

tuned to spei� bias-variane harateristis of base learners. In partiular "strong" base

learners suh as SVMs work well with lobag. We expet that this will be true for base

learners that exhibit relatively large variane and low bias, espeially with relatively small

data sets. Hene we plan to experiment with other low bias base learners (e.g. Multi Layer

Pereptrons) in order to gain insights into their learning behavior and to evaluate if we an

apply them with Lobag or to evaluate if we an design other base learner spei� ensemble
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methods.

In order to speed-up the omputation, we plan to implement variants of the basi Lobag

algorithm. For instane we ould apply multidimensional searh methods, suh as the

Powell method, to selet the tuning values that minimize bias.

In our experiments we did not onsider noise, but it is present in most real data sets. As a

result noise is embodied into bias, and bias itself is overestimated. Even if the evaluation of

noise in real data sets is an open problem, we plan to evaluate the role of noise in syntheti

and real data sets, in order to develop variants of lobag spei� for noisy data.

The peuliar harateristis of Lobag and the preliminary results relative to its appliation

to DNA miroarray data, enourage us to ontinue along this researh line (Set. 6.5). In

partiular we plan to perform an extended experimental analysis with high-dimensional

low-sized gene expression data, evaluating Lobag with respet to single SVMs (largely

applied in bioinformatis) and to other ensemble methods (bagging and boosting, for in-

stane), assessing arefully the quality and the reliability of the lassi�ers

We provided only high-level algorithmi shemes for heterogeneous ensembles of SVMs

(Set. 6.1). We plan to design and implement these algorithms, possibly integrating this

approah with an expliit evaluation of the diversity of the base learners, using measures

and approahes similar to those proposed by Kunheva [121℄.

In our experiments with bagged and random aggregated ensembles of SVMs we used rela-

tively small and �xed sized bootstrap samples. A natural development of these experiments

ould be to expliitly onsider the ardinality of the data, setting-up a series of experiments

with inreasing number of examples for eah randomly drawn data set, in order to evaluate

the e�et of the sample size on bias, variane and instability of base learners.

Experiments with random aggregated ensembles of SVMs showed that we ould use un-

dersampled bagging with large data sets in order to obtain large redution of the unbiased

variane, without signi�ant inrement in bias (Set. 5.4). We plan to develop this ap-

proah, also in relation with the above researh on the e�et of the ardinality of the data

in random aggregating. The main goal of this researh line is the development of ensemble

methods for very large data mining problems.

In our experiments we did not expliitly onsider the harateristis of the data. Nonethe-

less, as we expeted and our experiments suggested, di�erent data harateristis inuene

bias{variane patterns in learning mahines. To this purpose we plan to expliitly analyze

the relationships between bias{variane deomposition of the error and data harateris-

tis, using data omplexity measures based on geometrial and topologial harateristis

of the data [126, 84℄.
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